Publications

Valid XHTML 1.0 Transitional

Preprints

  • Lars Winther Christensen and Oana Veliche,
    The Golod property of powers of the maximal ideal of a local ring.

    [ Preprint (2017), 10 pp.  .dvi  .pdf  .ps ]

Papers

  1. Lars Winther Christensen, Srikanth B. Iyengar, and Thomas Marley, Rigidity of Ext and Tor
    with coefficients in residue fields of a commutative noetherian ring
    ,
    Proc. Edinb. Math. Soc., to appear.   [ Preprint (2016), 15 pp.  .dvi  .pdf  .ps ]
  2. Lars Winther Christensen and Kirko Kato, Totally acyclic complexes and locally Gorenstein rings,
    J. Algebra Appl., online March 2017; 6 pp.   [ .dvi  .pdf  .ps ]
  3. Lars Winther Christensen, Oana Veliche, and Jerzy Weyman, Trimming a Gorenstein ideal,
    J. Commut. Algebra, onine October 2016; 16 pp.   [ .dvi  .pdf  .ps ]
  4. Olgur Celikbas, Lars Winther Christensen, Li Liang, and Greg Piepmeyer, Complete homology
    over associative rings
    , Israel J. Math., 221 (2017), 1–24.   [ .dvi  .pdf  .ps   MR3705846 ]
  5. Olgur Celikbas, Lars Winther Christensen, Li Liang, and Greg Piepmeyer, Stable homology
    over associative rings
    , Trans. Amer. Math. Soc. 369 (2017), 8061–8086.   [ .dvi  .pdf  .ps   MR3695854 ]
  6. Lars Winther Christensen and Srikanth B. Iyengar, Tests for injectivity of modules over commutative rings, Collect. Math. 68 (2017), 243–250.   [ .dvi  .pdf  .ps   MR3633060  Zbl 06748544 ]
  7. Lars Winther Christensen, Sergio Estrada, and Alina Iacob, A Zariski-local notion of F-total acyclicity
    for complexes of sheaves
    , Quaest. Math., 40 (2017), 197–214.   [ .dvi  .pdf  .ps   MR3630500 ]
  8. Lars Winther Christensen, Fatih Köksal, and Li Liang, Gorenstein dimensions of unbounded complexes
    and change of base (With an appendix by Driss Bennis)
    , Sci. China Math. 60 (2017), 401–420.  
    [ .dvi  .pdf  .ps   MR3600932 ]
  9. Lars Winther Christensen and Fatih Köksal, Injective modules under faithfully flat ring extensions,
    Proc. Amer. Math. Soc. 144 (2016), 1015–1020.   [ .dvi  .pdf  .ps   MR3447655  Zbl 1361.13006 ]
  10. Jesse Burke, Lars Winther Christensen, and Ryo Takahashi, Building modules from the singular locus,
    Math. Scand. 116 (2015), 23–33.   [ .dvi  .pdf  .ps   MR32322605  Zbl 1310.13019 ]
  11. Lars Winther Christensen and David A. Jorgensen,
    Vanishing of Tate homology and depth formulas over local rings,
    J. Pure Appl. Algebra 219 (2015), 464–481.   [ .dvi  .pdf  .ps   MR3279366  Zbl 1311.13016 ]
  12. Lars Winther Christensen and Henrik Holm, The direct limit closure of perfect complexes,
    J. Pure Appl. Algebra 219 (2015), 449–463.   [ .dvi  .pdf  .ps   MR3279365  Zbl 1357.16015 ]
  13. Lars Winther Christensen and Oana Veliche, Local rings of embedding codepth 3: a classification
    algorithm
    , J. Softw. Algebra Geom. 6 (2014), 1–8.   [ .dvi  .pdf  .ps   MR3338667  Zbl 06437712 ]

    [ Accompanying Macaulay 2 package CodepthThree ]

  14. Lars Winther Christensen and Oana Veliche, Local rings of embedding codepth 3. Examples,
    Algebr. Represent. Theory 17 (2014), 121–135.   [ .dvi  .pdf  .ps   MR3160716  Zbl 1295.13019 ]
  15. Lars Winther Christensen and David A. Jorgensen, Tate (co)homology via pinched complexes,
    Trans. Amer. Math. Soc. 366 (2014), 667–689.   [ .dvi  .pdf  .ps   MR3130313  Zbl 1326.18008 ]
  16. Lars Winther Christensen and Henrik Holm, Vanishing of cohomology over Cohen–Macaulay rings,
    Manuscripta Math. 139 (2012), 535–544.   [ .dvi  .pdf  .ps   MR2974289  Zbl 1255.13009 ]
  17. Lars Winther Christensen, David A. Jorgensen, Hamidreza Rahmati, Janet Striuli, and Roger Wiegand,
    Brauer–Thrall for totally reflexive modules, J. Algebra 350 (2012), 340–373.
    [ .dvi  .pdf  .ps  MR2859892  Zbl 1274.13026 ]
  18. Lars Winther Christensen and Henrik Holm,
    Algebras that satisfy Auslander's condition on vanishing of cohomology,
    Math. Z. 265 (2010), 21–40.   [ .dvi  .pdf  .ps   MR2606948  Zbl 1252.16008 ]
  19. Lars Winther Christensen and Sean Sather-Wagstaff,
    Transfer of Gorenstein dimensions along ring homomorphisms,
    J. Pure Appl. Algebra 214 (2010), 982–989.   [ .dvi  .pdf  .ps   MR2580673  Zbl 1186.13010 ]
  20. Lars Winther Christensen, Janet Striuli, and Oana Veliche,
    Growth in the minimal injective resolution of a local ring,
    J. Lond. Math. Soc. 81 (2010), 24–44.
      [ .dvi  .pdf  .ps   MR2580452  Zbl 1190.13018 ]
  21. Lars Winther Christensen and Sean Sather-Wagstaff, Descent via Koszul extensions,
    J. Algebra 322 (2009), 3026–3046.   [ .dvi  .pdf  .ps   MR2567408  Zbl 1186.13024 ]
  22. Lars Winther Christensen and Henrik Holm, Ascent properties of Auslander categories,
    Canad. J. Math. 61 (2009), 76–108.   [ .dvi  .pdf  .ps   MR2488450  Zbl 1173.13016 ]
  23. Lars Winther Christensen and Sean Sather-Wagstaff,
    A Cohen–Macaulay algebra has only finitely many semidualizing modules,
    Math. Proc. Cambridge Philos. Soc. 145 (2008), 601–603.   [ .dvi  .pdf  .ps   MR2464778  Zbl 1153.13020 ]
  24. Lars Winther Christensen, Greg Piepmeyer, Janet Striuli, and Ryo Takahashi,
    Finite Gorenstein representation type implies simple singularity,
    Adv. Math. 218 (2008), 1012–1026.   [ .dvi  .pdf  .ps   MR2419377  Zbl 1148.14004 ]
  25. Lars Winther Christensen and Oana Veliche, A test complex for Gorensteinness,
    Proc. Amer. Math. Soc. 136 (2008), 479–487.   [ .dvi  .pdf  .ps   MR2358487  Zbl 1131.13021 ]
  26. Lars Winther Christensen and Oana Veliche, Acyclicity over local rings with radical cube zero,
    Illinois J. Math. 54 (2007), 1439–1454.   [ .dvi  .pdf  .ps   MR2417436  Zbl 1148.13004 ]
  27. Lars Winther Christensen and Srikanth Iyengar, Gorenstein dimension of modules over homomorphisms,
    J. Pure Appl. Algebra 208 (2007), 177–188.   [ .dvi  .pdf  .ps   MR2269838  Zbl 1105.13014 ]
  28. Lars Winther Christensen, Anders Frankild, and Henrik Holm,
    On Gorenstein projective, injective and flat dimensions—A functorial description with applications,
    J. Algebra 302 (2006), 231–279.   [ .dvi  .pdf  .ps   MR2236602  Zbl 1104.13008 ]
  29. Lars Winther Christensen, Sequences for complexes II,
    Math. Scand. 91 (2002), 161–174.   [ .dvi  .pdf  .ps   MR1931568  Zbl 1021.13015 ]
  30. Lars Winther Christensen, Hans-Bjørn Foxby, and Anders Frankild,
    Restricted homological dimensions and Cohen–Macaulayness,
    J. Algebra 251 (2002), 479–502.   [ .dvi  .pdf  .ps   MR1900297  Zbl 1073.13501 ]
  31. Lars Winther Christensen, Sequences for complexes,
    Math. Scand. 89 (2001), 161–180.   [ .dvi  .pdf  .ps   MR1868172  Zbl 1021.13014 ]
  32. Lars Winther Christensen, Semi-dualizing complexes and their Auslander categories,
    Trans. Amer. Math. Soc. 353 (2001), 1839–1883.   [ .dvi  .pdf  .ps   MR1813596  Zbl 0969.13006 ]
 

Book and book chapters

 Lars Winther Christensen, Tate homology beyond Gorenstein rings,
Extended Abstracts Spring 2015, Research Perspectives CRM Barcelona vol. 5, 47–51, Trends in Mathematics Springer-Birkhäuser, Basel, 2016.  [ .dvi  .pdf  .ps   ]
 Lars Winther Christensen, Hans-Bjørn Foxby, and Henrik Holm, Beyond totally reflexive modules and back, Commutative Algebra: Noetherian and non-Noetherian perspectives, 101–143, Springer-Verlag, New York, 2011.
[ .dvi  .pdf  .ps   MR2762509  Zbl 1225.13019 ]
 Lars Winther Christensen, Gorenstein Dimensions,
Lecture Notes in Math. vol. 1747, Springer-Verlag, Berlin, 2000, xiii + 204 pp.  [ MR1799866  Zbl 0965.13010 ]
[ Errata  .dvi  .pdf  .ps ]
 

Varia

Home
Teaching
Publications
Curriculum Vitæ