Errata for *Gorenstein Dimensions*
Lecture Notes in Mathematics 1747
Springer-Verlag, 2000

Lars Winther Christensen
Department of Mathematics, Texas Tech University
Lubbock TX 79401, U.S.A.
lars.w.christensen@ttu.edu

July 14, 2008

Careful readers have found the following errors and misprints in the book.

Page 1, first line after chapter title. Remove the superfluous “Introduction”.

Page 49–50; (2.2.4) lines 3–12. Replace the text “the diagram . . . (2.1.13), it follows” with “consider the exact sequence $0 \to K_n \to G_{n-1} \to \cdots \to G_0 \to M \to 0$, where K_n is as defined in (1.2.5.1). It follows”.

Page 53; proof of (2.3.5) line 1. Change $C^P(R)$ to $C^P_{\Delta}(R)$.

Page 97, (4.2.4) line 1. Add the sentence “Let R be of finite Krull dimension, $\dim R < \infty$.”

Page 98, (4.2.5) line 1. Add the sentence “Let R be of finite Krull dimension, $\dim R < \infty$.”

Page 98, line 3 from page bottom. A comment is required on the use of Proposition (4.2.5): Here we do not assume that $\dim R < \infty$, but that poses no problem. The test module in question, R, is projective, and the assumption $\dim R < \infty$ is only used in (4.2.5) to ensure that the test modules $T \in \mathcal{F}_0(R)$ have finite projective dimension, cf. proof of Lemma (4.2.4).

Page 114; (5.1.4) line 1. Add the sentence “Let R be of finite Krull dimension, $\dim R < \infty$.”

Page 118–119; proof of (5.1.10). In line 1, add the sentence “Clearly (ii) is stronger than (i).”
In line 2, change “so (i) implies (ii)” to “so (i) and (ii) are equivalent”.
In line 2-4, remove “By Proposition (5.1.4)... so (ii) implies (iii).”
At the end of the proof, change “This concludes the proof.” to “The same isomorphisms show that if $\text{Hom}_R(L,R)$ is homologically trivial, then $E \otimes_R L$ is homologically trivial for any injective module E, and this concludes the proof.”

Page 150; (6.3.7) line 2. Change “For any R–module N it then ...” to “For any R–module N with $m \in \text{supp}_R N$ it then ...”.