LOCAL RINGS OF EMBEDDING CODEPTH 3. EXAMPLES

LARS WINTHER CHRISTENSEN AND OANA VELICHE

ABSTRACT. A complete local ring of embedding codepth 3 has a minimal free
resolution of length 3 over a regular local ring. Such resolutions carry a differ-
ential graded algebra structure, based on which one can classify local rings of
embedding codepth 3. We give examples of algebra structures that have been
conjectured not to occur.

1. INTRODUCTION

A classification of commutative noetherian local rings of embedding codepth ¢ < 3
took off more than a quarter of a century ago. Up to completion, a local ring of
embedding codepth c¢ is a quotient of regular local ring @@ by an ideal I of grade
¢, and the classification is based on an algebra structure on Tor*Q (Q/I,k), where
k is the residue field of ). The possible isomorphism classes of these algebras
were identified by Weyman [7] and by Avramov, Kustin, and Miller [2]. Significant
restrictions on the invariants that describe these isomorphism classes were recently
worked out by Avramov [1]. Here is a précis that will suffice for our purposes.

Let R be a commutative noetherian local ring with maximal ideal m and residue
field K = R/m. Denote by e the minimal number of generators of m and by d the
depth of R. The number e is called the embedding dimension of R, and ¢ = e —d is
the embedding codepth. By Cohen’s Structure Theorem the m-adic completion R of
R has the form R = Q/I, where @ is a complete regular local ring with the same
embedding dimension and residue field as R; we refer to I as the Cohen ideal of R.

The projective dimension of R over Q is ¢, by the Auslander-Buchsbaum For-
mula. From now on let ¢ < 3; the minimal free resolution F' of R over Q@ then
carries a differential graded algebra structure. It induces a graded algebra struc-
ture on F gk = H(F ®q k) = Torg(]%,k), which identifies R as belonging to
one of six (parametrized) classes, three of which are called B, C(c), and G(r) for
r > 2. The ring R is in C(c) if and only if it is an embedding codepth ¢ complete
intersection. If R is Gorenstein but not a complete intersection, then it belongs
to the class G(r) with r = u(I), the minimal number of generators of the Cohen
ideal. Work of J. Watanabe [6] shows that u(I) is odd and at least 5. Brown [3]
identified rings in B of type 2, and thus far no other examples of B rings have been
known. Rings in G(r) that are not Gorenstein—rings in G(3) and G(2n) for n € N
in particular—have also been elusive; in fact, it has been conjectured [1, 3.10] that
every ring in G(r) would be Gorenstein and, by implication, that the classes G(3)
and G(2n) would be empty.
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In this paper we provide examples of some of the sorts of rings that have hitherto
dodged detection; the precise statements follow in Theorems I and II below.

Theorem 1. Let k be a field, set Q = k[z,y, z], and consider these ideals in Q:
a1 = (xy?, wyz, 922, ot — iz, 02% — o)
g2 = o1 + (z%y — 2%)
gs = g2 + (272°)
g1 =93 + (¢°2) .
Each algebra QQ/g,, has embedding codepth 3 and type 2, and Q/g, is in G(n+1).
The theorem provides counterexamples to the conjecture mentioned above: The

classes G(2), G(3), and G(4) are not empty, and rings in G(5) need not be Goren-
stein. The second theorem provides examples of rings in B of type different from 2.

Theorem II. Let k be a field, set Q = k[, y, ]}, and consider these ideals in Q:
by = (22, 2%y, y2?, 2%)
by = by + (xy2)
b3 = by + (zy* — 9°)
by = b3 + (v°2) .

Each algebra Q/b,, has embedding codepth 3 and belongs to B. The algebras Q /b,
and /by have type 1 while Q/bs and Q /b4 have type 3.

The algebras Q/b; and @Q/bs have embedding codimension 2, which is the largest
possible value for a non-Gorenstein ring of embedding codepth 3 and type 1. The
algebras /b and Q)/by are artinian; that is, they have embedding codimension 3.
An artinian local ring of codepth 3 and type 2 belongs to B only if the minimal
number of generators of its Cohen ideal is odd and at least 5; see [1, 3.4]. In that
light it appears noteworthy that bs and by are minimally generated by 6 and 7
elements, respectively.

* ok ok

In preparation for the proofs, we recall a few definitions and facts. Let @ be a
regular local ring with residue field k£ and let I be an ideal in @ of grade 3. The
quotient ring R = (/I has codepth 3 and its minimal free resolution over @ has
the form

F=0—Q" —Q" —Q" —Q—o0,
where n is the type of R and one has m = n+1! and 141 = p(I). It has a structure of
a graded-commutative differential graded algebra; this was proved by Buchsbaum
and Eisenbud [4, 1.3]. While this structure is not unique, the induced graded-
commutative algebra structure on A = H(F ®¢ k) is unique up to isomorphism.
Given bases
€1,...,€141 for Al,
(11) fl,...,fm for AQ, and

g1;---,8n for A3
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graded-commutativity yields
—eje; = eje; ande?zO forall 1 <id,j <I+1;

1.2
(1.2) ef; =f;e; forall 1<i<[+4+1 andall 1<j5<m.

We recall from [2, 2.1] the definitions of the classes G(r) with r > 2* and B.
The ring R belongs to G(r) if there is a basis (1.1) for A>; such that one has

(13) eifi = 81 for all 1 < 7 <r

and all other products of basis elements not fixed by (1.3) via (1.2) are zero.
The ring R belongs to B if there is a basis (1.1) for A>; such that one has

eifi =g

(1.4) ejey = f3 and eofy — g1

and all other products of basis elements not fixed by (1.4) via (1.2) are zero.

The proofs of both theorems use the fact that the graded algebra A is isomorphic
to the Koszul homology algebra over R. We fix notation for the Koszul complex.
Let R be of embedding dimension 3 and let m = (z,y, z) be its maximal ideal. We
denote by K the Koszul complex over the canonical homomorphism 7: R? — m.
It is the exterior algebra of the rank 3 free R-module with basis ¢,, €, €., endowed
with the differential induced by w. For brevity we set

Exy =Ex NEy, Egz =ExNEz, Eyr=¢€EyNE, and Exyz = Ex NEYNE, .

The differential is then given by,

O(ez) =2 O(exy) = xEY — YEu

O(ey) =y O(gzz) = we, — 284 Oepyz) = TEy, — YEgz + 2E4y ,

d(e,) == 0(eyz) = ye, — 2€y
and it makes K® into a graded-commutative differential graded algebra. The in-
duced algebra structure on H(KR) is graded-commutative, and there is an isomor-
phism of graded algebras A = H(K™); see [1, (1.7.1)].

Note that the homology module H3(KR) is isomorphic, as a k-vector space, to
the socle of R, that is, the ideal (0 : m). To be precise, if s1,..., s, is a basis for the
socle of R, then the homology classes of the cycles si€zyz,. .., SpEzy- in K3R form
a basis for Hs(K®). From the isomorphism A = H(K®) one gets, in particular,
Zg’:o(—l)i rank, H;(K®) = 0, as the ranks of the Koszul homology modules equal
the ranks of the free modules in F'. To sum up one has,

ranky, Hy (K™) =1 +1 = pu(I)
(1.5) ranky, Hy(K™) = [ + ranky, Hz(K™)
ranky, Hz(K®) = ranky (0 : m) .

Theorem I is proved in Sections 2-4 and Theorem II in Sections 5-7. For each
quotient algebra @Q)/g,, and Q/b,, we shall verify that the Koszul homology algebra
has the desired multiplicative structure as described in (1.3) and (1.4), and we shall

determine the type of the quotient algebra. As described above, the latter means
determining the socle rank, as each of these algebras has depth 0.

* One does not define G(1) because it would overlap with another class called H(0, 1).
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2. PROOF THAT (/g1 IS A TYPE 2 ALGEBRA IN G(2)

The ideal g; = (292, 2yz, y22, 2* — 22,223 — 9*) in Q = k[, v, 2] is generated by
homogeneous elements, so R = Q/g; is a graded k-algebra. For n > 0 denote by R,
the subspace of R of homogeneous polynomials of degree n. It is simple to verify
that the elements in the second column below form bases for the subspaces R,,; for
convenience, the third column lists the relations among non-zero monomials.

Ry 1
Rl z, Y,z
Ro 2, xy, xz, Y2, yz, 22

(2.1) Rs 3, 2%y, 2z, 222, 3, yPz, 22
Ry zt, 2By, 13z, 222, 223, 2t yt =23, P =2t
Ry xly, a32%, 2° 2t = ytz = 2ty
Rn>6 2"

Set A = H(K"); we shall verify that A has the multiplicative structure described
in (1.3) with » = 2, and that R has socle rank 2.

A basis for Az. From (2.1) it is straightforward to verify that the socle of R is
generated by z%y and 2322, so it has rank 2 and the homology classes of the cycles
(2.2) g1 = J;4y£wyz and go = x3225wyz

form a basis for Az. As there are no non-zero boundaries in K3R, the homology

classes g1 and g, contain only g; and gs, respectively, and the bar merely signals
that we consider the cycles as elements in A rather than K%,

As the ideal g; is minimally generated by 5 elements, one has ranky A; = 5, and
hence ranky A; = 6 by (1.5).

A basis for Ay. It is elementary to verify that the next elements in K2 are cycles.
fr = —yzeny + yea.

f2 = yzea:

f3= xgzswy

fa= xz3szy

fs = (=%y — 24)5wy

fo = 2°2%e.

To see that their homology classes form a basis for A it suffices, as As is a k-vector

space of rank 6, to verify that they are linearly independent modulo boundaries. A
boundary in K& has the form

(2.4) 0(aegys) = axey, — AYEy, + aZEqy ,

for some a in R. As the differential is graded, one needs to verify that f; and
fo are linearly independent modulo boundaries, that f3, f4, and f5 are linearly
independent modulo boundaries, and that fg is not a boundary.

If u and v are elements in k such that ufi +vfo = —uyzegy + (uy® + vyz)e,. is a
boundary, then it has the form (2.4) for some @ in R;. In particular, one has ax = 0,
and that forces a = 0; see (2.1). With this one has uyz = 0 and uy® + vyz = 0,
whence u = 0 = v. Thus, f; and fs are linearly independent modulo boundaries.
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If u, v, and w in k are such that ufs+vfi+wfs = (wrdy+urdz+vrzd —wzt)ey,

is a boundary, then it has the form (2.4) for some element
a = alx?’ + a2x2y + a3:c2,z + a4x22 + a5y3 + aﬁyzz + a723
in R3. From az = wxy + urdz + vrzd — wz?t one gets w =0, u = a1, and v = ay;
see (2.1). From ax = 0 one gets a; = 0 = ay, that is, u =0 = v.
Finally, fs is not a boundary as no element a in Ry satisfies —ay = 2322,

A basis for A;. The following elements are cycles in K{%.
e1 =23, — y2zsy

eq = 256, — y35y

(2.5) e3 = yzex
€4 = 22€y
€5 = yQE:v
The vector space A; has rank 5, so as above the task is to show that eq, ..., e5 are

linearly independent modulo boundaries. A boundary in K{% has the form
(2.6) 0(aegy + beg: + cey.) = —(ay + b2)ey + (ax — c2)ey + (b + cy)e.

for a, b, and ¢ in R. As above, the fact that the differential is graded allows us to
treat cycles with coefficients in Re and R3 independently.

If u and v are elements in k such that ue; +ves = (uz® +v2z3)e, — (uy?z +vy?)e,
is a boundary in K¥¥, then it has the form (2.6) for elements

a = a1x2 + asxry + asrz + a4y2 + asyz + a622 ,
b=bax®+ boxy + bsxz + b4y2 + bsyz + bg 2> , and

c= clx2 + coxy + Cc3xz + C4y2 + csyz + 662’2

in Ry. The equality cz — ar = uy?z + vy? yields v = 0 and u = ¢4, and from
bx + cy = 0 one gets ¢4 = 0.

If u, v, and w are elements in k such that uwes+wves+wes = (uyz—kwyz)ew—i—vzzsy
is a boundary, then it has the form (2.6) for a = a1z +asy+aszz, b = byx+boy+bsz,
and ¢ = c1x + coy + c3z in Ry. This yields equations:

—ayxy — azy® — (az + by)yz — bixz — b3z® = uyz + wy? ,

a1x? + asxy + (ag — c1)xz — coyz — 322 =vz?, and

biz? + (by + ¢1)xy + baxz + coy® + c3yz =0.

From the last equation one gets, in particular, c3 = 0 and by + ¢; = 0. The second
one now yields v = 0, as = 0, and a3 = ¢;. With these equalities, the first equation
yields w =0 and u = 0.

The product A; - A;. To determine the multiplication table Ay x A; it is by (1.2)
sufficient to compute the products e;e; for 1 <i < j < 5. The product eses is zero
by graded-commutativity of K, and the following products are zero because the
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coefficients vanish in R; cf. (2.1).

eres = (=Y + y?2%)eny, ezes = Y2y

eres = y322e,, eses = —y222e,y,

€2€5 = y5€zy
Finally, the computations

e1e4 = 3:3225:5‘,! = 8(I326xyz) ,

e1es = y4zamy = xz45my = 6(;62351%) ,

ege3 = y4zsw = xz4sxy = 8(:17235%2) , and

eaey = 2°e4y = O((2" — 2°Y)euy:)
show that also the products e;éy, €15, é2€3, and €264 in homology are zero. Thus,
one has A; - A; = 0.
The product A; - A>. Among the products e;f; for 1 < ¢ < 5and 1 <5 <6
several are zero by graded-commutativity of K%

esf; and esf; for1 <7 <6
e1fs, enfa, erfs, eafs, eafa, eafs, eafs, eafs, and eqfs .

The following products are zero because the coefficients vanish in R.

3.2 2.2
e1fo =y 2"€ry. esf1 =~y 2 €ry:

3,23 3
elfG =TY 2 Exyz €4f2 = Yz Exyz

5 3 4
eafi = Y ey esfe = —T°2 ey,

3,32
eafo = 27y 2 €0y,

This leaves two products to compute, namely e f; = y4z5xyz = esfo.

The computations above show that in terms of the k-basis é1,...,és, fi,..., fe.
g1, G2 for A>q the non-zero products of basis vectors are

(2.7) efi =éfa=g1,
whence R belongs to G(2).

3. PROOF THAT /g2 IS A TYPE 2 ALGEBRA IN G(3)

Set R = QQ/g2; as one has go = g1+ (23y—2%) it follows from (2.1) that the elements
listed below form bases for the subspaces R,. As in (2.1) the third column records
the relations among non-zero monomials.

Ry 1
Rl z,y, =z

2 2 2
R2 T, xY, Tz, Y , Yz, 2

3.1

( ) R?) .’1/'37 iUQny xQZa 'TZ27 y37 y227 Z3
Ry ot 23y, 23z, 2222, x28 yt =223 P =at, 2t =23y
Rs a'y, 22" x2t = ytz = 2ty

Set A = H(K"); we shall verify that A has the multiplicative structure described
in (1.3) with » = 3, and that R has socle rank 2.
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The next remark will also be used in later sections; loosely speaking, it allows
us to recycle the computations from Section 2 in the analysis of A.

(3.2) Remark. Let a C b be ideals in . The canonical epimorphism Q/a — Q/b
yields a morphism of complexes KQ/® 5 K@/ 1t maps cycles to cycles and bound-
aries to boundaries. To be explicit, let E = {1,e4,¢y,€2, €y, a2, Eyz, Exy- } De the
standard basis for either Koszul complex; if ) __ (¢ + a)e is a cycle (boundary)
in K%/%, then > ccr(g: +b)e is a cycle (boundary) in K®?/". By habitual abuse of
notation, we write x, y, and z for the cosets of z, y, and z in any quotient algebra
of @, and as such we make no notational distinction between an element in KQ/¢
and its image in K@/®,

A basis for A>;. From (3.1) it is straightforward to verify that the socle of R is
Rs, so it has rank 2, and the homology classes of the cycles g; and go from (2.2)
form a basis for Az. The ideal go is minimally generated by 6 elements, so one
has ranky A; = 6 and ranky As = 7; see (1.5). Proceeding as in Section 2 it is
straightforward to verify that the homology classes eq,...,e5 from (2.5) together
with the homology class of the cycle

eg = T2ye, — 2°¢,
form a basis for A;. Similarly, one verifies that the homology classes of f1, f2, f1,
and fs from (2.3) together with those of the cycles
f3 = xssmy - 23512 + y35yz ;
fs = zteq, — y3zsyz , and
fr= x2y5zy + ngyz

make up a basis for As.

The product A; - A;. It follows from the computations in the previous section
that one has €;; = 0 for 1 <4,j < 5. To complete the multiplication table A; x A;
it is by (1.2) sufficient to compute the products e;eg for 1 < i < 5. The products
e1eg and eseg are zero as one has Rg- R3 = 0. The remaining products involving eg,

4
€366 = —YZ E€xz
eqg = —x2yz2€xy — z55yz , and
2.3
€566 = —Y 2 Exz

are zero because the coefficients vanish in R. Thus, one has A; - A; = 0.

The product A; - A;. It follows from the computations in the previous section
that the only non-zero products é,fj for1<i<b5andje€{l,2,4,6} are the ones
listed in (2.7). The products e;f5 for 1 < i < 6 are zero as one has R>y - Ry = 0;
similarly, the products

eifs, eifr, eafs, eafr, ecfs, esfs, and eqf7

are zero as one has R3- R>3 = 0. Among the remaining products, e4 f7 and eg f2 are
zero by graded-commutativity, and the following are zero because the coefficients
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vanish in R.
63f7 = yz451yz €5f7 = ygzggmyz
64.](.3 = Z55.ryz 66.}(.1 = yz45myz
€5f3 = y55$yz

The one remainging product is e3f3 = y*ze4,. = g1.

In terms of the basis €1, ..., &, fi,..., fr,G1, G2 for A>1 the only non-zero prod-
ucts of basis vectors are

éifi=gi forl<i<3,
whence R belongs to G(3).

4. PROOF THAT /g3 AND Q/g4 ARE TYPE 2 ALGEBRAS IN G(4) AND G(5)

The arguments that show that Q/gs and Q /g4 are G algebras follow the argument
in Section 3 closely; we summarize them below.

(4.1) The quotient by g3. Set R = Q/gs; as one has g3 = go + (2222) it follows
from (3.1) that the elements listed in the second column below form bases for the
subspaces R,.

Ry 1

Ry z,y,z

RZ x27 zy, rz, y27 Yz, Z2

Ry 23, 2%y, 22, 222, o3, y?z, 2°

Ry %, 23y, 23z, x2® yt=a23 Pz =2t 2t =2y
Rs 2y w2t =gtz = a2ty

It is straightforward to verify that the socle of R is generated by the elements xy
and 232, so it has rank 2. Set A = H(KR); the homology classes of cycles

4 3
g1 = 2 Yegy, and go = T°zEqy.

form a basis for Az. One readily verifies that the homology classes of ey, ..., eg and
f1, f2s f3, f5, f7 from Section 3, see also (3.2), together with those of the cycles

2 3 2 2 3
er =2y, [fi1=Y"€uy — T2 €z., fo=2x2"€zy, and fg=1x"26,

form bases for A; and As.

The products eyer, eser, and eger vanish as one has Rz - R3 = 0, while eger
and ese7 are zero by graded-commutativity. Finally, one has eje; = fxz‘*smy =
—8(:1c,z35:,3yz)7 so also the product ese; is zero. Together with the computations
from the previous section this shows that A; - Ay is zero.

The products e7 f; vanish for 3 < j < 8 as one has R3-R>3 = 0, and for the same
reason any one of the elements e, es, and eg multiplied by either f4 or fg is zero.
All products e; fg vanish as one has R>5 - R4 = 0. Among the remaining products
involving ez, f4, or fg all but one are zero by graded-commutativity, the non-zero
product is eq fy = xz4€zyz = ¢1. It follows that in terms of the k-basis €y, ..., €7,
fi,---,fs, §1,02 for A>q the only non-zero products of basis-elements are

eifi=g1 for1<i<4,
whence R belongs to G(4).
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(4.2) The quotient by gs4. Set R = @Q/g4; as one has g4 = g3 + (232) it follows
from (4.1) that the elements listed in the second column below form bases for the
subspaces R,,.

Ry 1

R z,y, 2

Ry, 22, TY, TZ, y2, Yz, 22

R3 x?’, a:zy, :L'22, xzz, y3, y2z, 23

Ry 2%, 23y, 23 yt =23 P =2t 2t =2y
Rs sc4y zzt = y4z = :C4y

=

It is straightforward to check that the socle of R is generated by the elements x*y
and 22z, so it has rank 2. Set A = H(K®); the homology classes of the cycles

4 2
g1 = T YExyz and g2 = X" ZEqyz

form a basis for As. One readily verifies that the homology classes of ey, ..., e7 and
f1, f2, I3, fa, fo, f7 from (4.1), see also (3.2), together with those of

.2 _ 3 2 2 2
€8 = X126z, f5=—2"€r.+yY 26y, [fs=a"264y, and fo=1a"26,;

form bases for A; and A,.

All the products e;eg are zero as %z is in the socle of R. Together with the
computations from (4.1) this shows that A; - A; is zero.

All products esf;, e;fs, and e;fo vanish as 222 is in the socle of R. Any one of
the elements eq, es, eg, and e; multiplied by f5 is zero for as one has Rz - R3 = 0.
The remaining products involving f5 are

3.2 3.2 4
63f5 =Y 2 Exyz =0, €4f5 =T 2 Exyz =0, and 65f5 =Y ZEzyz =91 -

It follows that in terms of the k-basis é1,...,és, fi,..., fo, g1, G for A>; the only
non-zero products of basis vectors are

eifi=q for1<i<5,
whence R belongs to G(5).

5. PROOF THAT ()/b; IS A TYPE 1 ALGEBRA IN B

The ideal by = (22,2%y,922,2%) in Q = k[x,y, 2] is generated by homogeneous
elements, so R = /by is a graded k-algebra. It is straightforward to verify that
the elements listed below form bases for the subspaces R,,.

Ry 1
R T, Y, 2

(51) R2 1'27 zy, szv y2a yzé 223 5
R3 Tz, TyY”, xYz, x2°, Y7, Y° 2
Ry 222, xy3, xy2z, y4, y3z

n—1 n—2 n n—1
Rn25 Yy y LY Y 5Y z

Set A = H(KR); we shall verify that A has the multiplicative structure described
n (1.4) and that R has socle rank 1.
A basis for As;. From (5.1) it is straightforward to verify that the socle of R is

generated by 2222, so it has rank 1 and the homology class of the cycle

(5.2) g1 = x2225zyz
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is a basis for Az. The ideal b; is minimally generated by 4 elements, whence one has
ranky A; = 4 = rankg As; see (1.5). Proceeding as in Section 2 it is straightforward
to verify that the elements eq,...,eq4 and f1,..., fy listed below are cycles in Kf
and K§ whose homology classes form bases for the k-vector spaces A; and As.

e = 22e, fi= z2€yz
(53) oo fom

€3 = TYey f3= $2225m

eq = 2%¢, f1=1wyzes,

The product A;-A;. To determine the multiplication table Ay x Ay it is sufficient
to compute the products e;e; for 1 < ¢ < j < 4; see (1.2). The product ejes3 is zero
by graded-commutativity of K%, and the following products are zero because the
coefficients vanish in R.

€g9€e3 = —J?yZQSxZ

€€y = —2 €y,

The remaining products are

eres = x22%,, = f3 and er1eq4 = x2225xy = 8(x2zszyz) .
It follows that the product €;€; in homology is zero, leaving us with a single non-
zero product of basis vectors in A, namely é;é2 = f3.

The product A; - A>. One has

2.2 2.4
elfl =T 2 Ezyz = 01 €4f3 = T2 Exyz =0

2.2 3
€2f2 =X 2 Ezyz = 01 €4f4 = —TYZ Exyzr = 0
2
esfi = xyz"egy, = 0.

The remaining products are zero by graded-commutativity.

In terms of the k-basis &1, . .., €4, f1, ..., f1, g1 for A>; the only non-zero products
of basis vectors are
- efi=n
(5.4) €162 = f3 and _ =
€2J2 = g1 -

It follows that R belongs to the class B.

6. PROOF THAT ()/bs IS A TYPE 1 ALGEBRA IN B

Set R = Q/ba; as one has by = by + (xyz) it follows from (5.1) that the elements
listed below form bases for the subspaces R,,.

Ry 1
Ry T, Y, 2
(6 1) R2 127 Y, Tz, 92» Yz, 22
' R3 ZL’2Z, wyza 5022, yga y2Z
Ry 2% 2y’ ' o2

n—1 n n—1
Rn25 Yy Y Y,y z
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Set A = H(K®); we shall verify that A has the multiplicative structure described
n (1.4) and that R has socle rank 1.

A basis for A>;. From (6.1) it is straightforward to verify that the socle of R is
generated by 2222, so it has rank 1, and the homology class of the cycle g; from
(5.2) is a basis for As; cf. (3.2). The ideal by is minimally generated by 5 elements,
so one has rankg A1 = 5 = rankg As; see (1.5). Proceeding as in Section 2 it is
straightforward to verify that the homology classes of ey, ..., e4 from (5.3) together
with the class of the cycle
s = Y2en

form a basis for A;. Similarly, one verifies that the homology classes of f1, fa, f3
from (5.3) together with those of the cycles

f4 = XYEyz and f5 = YzEyzz

make up a basis for As.

The product A; - A;. It follows from (5.4) that &é; = f3 is the only non-zero
product e;e; for 1 <4 < j < 4. To complete the multiplication table A; x A; it
is by (1.2) sufficient to compute the products e;es for 1 < i < 4. The products
eres and eges are zero by graded-commutativity of K, and the remaining products
involving es,

egey = —yz?’em and eges = —yz?’smy ,

are zero because the coefficients vanish in R.
The product A; - Ay. It follows from (5.4) that the only non-zero products é; fj
for1<i<4and 1< j<3areeée;f) =eésfs =g1. To complete the multiplication

table A; x A one has to compute the products esf; for 1 < j < 5 and e;fs and
e; fs for 1 <4 < 5. The next products are zero because the coefficients vanish in R,

eafs = —xyztesy.
eafs = —yzeuys
esf1 =yz’enys
and the remaining are zero by graded-commutativity.
In terms of the k-basis €, ..., s, fi,..., f5, g1 for A1 the only non-zero products
of basis vectors are the ones listed in (5.4), so R belongs to B.
7. PROOF THAT ()/bs AND @Q/bs ARE TYPE 3 ALGEBRAS IN B

The arguments that show that Q/bs and /by are B algebras follow the argument
in Section 6 closely; we summarize them below.

(7.1) The quotient by bs. Set R = Q/bs; as one has bz = by + (zy? — 3?) it
follows from (6.1) that the elements listed below form bases for the subspaces R,,.

Ry 1

R z,9, 2

RQ 12; TY, Tz, y2a Yz, 22

Ry 2%z, xy?, x2?, y°2 Y = zy?

R, 2%7?
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It is straightforward to verify that the socle of R is generated by the elements 2222,
xy?, and y?z, so it has rank 3. Set A = H(KR); the homology classes of the cycles

g1 = 1222511/2 y 92 = xy2€zyz ) and gs = yZngyz
form a basis for A3. One readily verifies that the homology classes of ey, ..., e5 and
f1,---, f5 from the previous section, see also (3.2), together with those of the cycles
e6 = yer — ey, fo=ayleay, fr=vy’2esy, and fs =y 2e,.
form bases for A; and As.
The products e;eg, €; fs, €;f7, and e; fg for 1 <4 < 5 as well as the products eg f;
for 1 < j < 8 vanish as one has yQRZQ = 0. It follows that in terms of the k-basis

€1,---,€6, f1,-.-, [8,01, 02, g3 for A>; the only non-zero products of basis vectors
are the ones listed in (5.4), so R belongs to B.

(7.2) The quotient by bsy. Set R = Q/by; as one has by = b3 + (y%2) it follows
from (7.1) that the elements listed below form bases for the subspaces R,,.

Ry 1

Rl z, Yy, =z

Ry 22, Ty, TZ, y2, Yz, 22

Rs 2z, acyQ, zz? y3 = xy2
Ry %22

It is straightforward to check that the socle of R is generated by the elements 2222,
xy?, and yz, so it has rank 3. Set A = H(KR); the homology classes of the cycles

2.2 2
g1 =T 2 Egyzy G2 = TY Exyz, and g3 = YZExyz

form a basis for As. One readily verifies that the homology classes of ey, ..., eg and
fi,--+, fe from (7.1) together with those of

er =yzey fr=yzewy, fs=yzey., and fo=y’e,. — vl
form bases for A; and A,.

The products e;er for 1 < ¢ < 6 and erf; for 1 < § < 9 vanish as yz is in
the socle of R, and for 1 < i < 6 the products e; f7 and e; fg vanish for the same
reason. Finally, all products e;fo vanish as one has y?R>2 = 0. Thus, in terms
of the k-basis é1,...,ér, fi,..., fo, g1, g2, g3 for A>; the only non-zero products of
basis vectors are the ones listed in (5.4), so R belongs to B.
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