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Abstract. Foxby defined the (Krull) dimension of a complex of modules over
a commutative Noetherian ring in terms of the dimension of its homology

modules. In this note it is proved that the dimension of a bounded complex

of free modules of finite rank can be computed directly from the matrices
representing the differentials of the complex.

Introduction

This short note concerns certain homological invariants—specifically, dimension
and depth—of complexes of modules over commutative Noetherian local rings. The
concepts of depth and dimension for modules, introduced by Krull and by Auslander
and Buchsbaum, respectively, need no recollection. Both concepts were extended to
complexes of modules by Foxby [5], and also by Iversen [9]. Their extensions agree
up to a normalization; in what follows we work with Foxby’s definitions, recalled
further below, for they are better suited to computations in the derived category.
The depth and dimension of a complex depend only on the quasi-isomorphism class
of the complex; said differently, they are defined on the derived category of the ring.

To compute these invariants one can usually reduce to the case where the com-
plex is finite free, for they are independent of the domain. Indeed, if Q → R is a
surjective map of rings with Q a regular local ring, then the depth and dimension of
an R-complex M coincide with the corresponding invariants of M viewed as a com-
plex over Q. And, at least when M is homologically finite, it is quasi-isomorphic,
over Q, to a finite free complex. Thus, in what follows we consider a complex over
a local ring R of the form:

F := 0 −→ Fb
∂−−→ · · · ∂−−→ Fa −→ 0

where each Fi is a free R-module of finite rank. We assume that F is minimal, in
that ∂(F ) ⊆ mF , where m is the maximal ideal of R.

For such a complex F , the depth can be read off easily: The equality of Auslan-
der and Buchsbaum for modules of finite projective dimension applies equally to
complexes—this was proved by Foxby [4]—and yields that the depth of F equals
depthR−b, provided that Fb 6= 0. In this note we establish a formula that expresses
the dimension of F in terms of the ranks of the modules Fi and the Fitting ideals
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of the differentials; see Theorem 1. We were lead to it in an attempt to relate the
codimension, in the sense of Bruns and Herzog [3], to other homological invariants.
It turns out that the codimension of F equals dimR − dimR HomR(F,R); see Re-
mark 3. This observation gives a different perspective on, and different proofs of,
certain results in [3] related to the homological conjectures; see Proposition 6 and
Theorem 8.

Dimension

Let R be a ring. By an R-complex we mean a complex of R-modules, with lower
grading:

X := · · · −→ Xn
∂n−−→ Xn−1 −→ · · ·

A graded R-module, such as the homology H(X) of X, is viewed as an R-complex
with zero differentials; in particular, we use the same grading convention for such
objects.

Dimension. Let R be a commutative Noetherian ring. In [5, Section 3] Foxby
introduced the dimension of an R-complex X to be

(1) dimRX := sup{dim(R/p)− inf H(X)p | p ∈ SpecR} .
By [5, Proposition 3.5] this invariant can be computed in terms of the homology:

(2) dimRX = sup{dimR Hn(X)− n | n ∈ Z} .
The convention is that the dimension of the zero module is −∞.

Finite free complexes. By a finite free R-complex we mean a bounded R-
complex

(3) F := 0 −→ Fb
∂b−−→ Fb−1 −→ · · · −→ Fa+1

∂a+1−−→ Fa −→ 0

where each Fi is a free R-module of finite rank. For such a complex F we set

(4) sn =
∑
i6n

(−1)n−i rankR Fi for each n ∈ Z .

Given a map ϕ between finite free modules we write Is(ϕ) for the ideal generated
by the s × s minors of a matrix representing ϕ; see, for example, [3, p. 21]. It
is convenient to adopt the convention that the determinant and all minors of the
empty matrix is 1; in particular, for s 6 0 an s × s minor of any matrix is 1. For
s > 1 an s × s minor of a non-empty matrix is 0 if s exceeds the number of rows
or columns. For the differentials of the complex (3) this means that Isn(∂n+1) = R
holds for integers n outside [a, b].

Theorem 1. With F and sn as above, there is an equality

dimR F = sup{dim(R/Isn(∂n+1))− n | n ∈ Z} .

Proof. To prove the inequality “>” we verify that

dim(R/Isn(∂n+1)) 6 dimR F + n

holds for every integer n in [a, b]. Fix such an n. The inequality above holds if and
only if one has Isn(∂n+1)p = Rp for every p ∈ SpecR with dim(R/p) > dimR F +n.
For such a prime ideal and any integer i 6 n one gets

dimR Hi(F ) 6 dimR F + i < dim(R/p)
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where the first inequality holds by (2). This yields

Hi(F )p = 0 for all i 6 n ,

which implies that the homology of the complex

(5) (Fn+1)p
(∂n+1)p−−−−−→ (Fn)p −→ · · · −→ (Fa+1)p

(∂a+1)p−−−−−→ (Fa)p −→ 0

is zero in degrees 6 n. It follows that the image of (∂n+1)p is a free Rp-module of
rank sn. Hence one has Isn(∂n+1)p = Rp.

To prove the opposite inequality, “6”, we show that

dimR Hn(F )− n ≤ sup{dim(R/Isi(∂i+1))− i | a 6 i 6 b}

holds for each integer n in [a, b]. Let t be the supremum above. One needs to verify
that Hn(F )p = 0 holds for primes p with dim(R/p) > t+n. Fix such a p; for every
i 6 n one has

dim(R/Isi(∂i+1)) 6 t+ i 6 t+ n < dim(R/p)

so that Isi(∂i+1)p = Rp. We now argue by induction on i that the homology of the
complex (5) is zero in degrees 6 n; in particular, one has Hn(F )p = 0, as desired.
With fi = rankR Fi and Ki = ker ∂i the argument goes as follows: In the base
case i = a one applies [3, Lemma 1.4.9] to the presentation of the image of ∂a+1

afforded by (5), and one concludes that it is a free submodule of Fa of rank fa, i.e.
the whole thing. One also notices that a free module contained in Ka+1 has rank
at most sa+1. In the induction step one applies op.cit to the presentation of the
image of ∂i+1 and concludes that it is a free module of rank fi+1 − si+1 = si. By
the induction hypothesis a free module contained in Ki has rank at most si, so the
complex is exact at (Fi)p. �

Codimension. Let R be a commutative Noetherian ring and F a finite free R-
complex as in (3). For each integer n set

rn :=
∑
i>n

(−1)i−n rankR(Fi) .

For n in [a+ 1, b] this is the expected rank of the map ∂n; see [3, p. 24].

Corollary 2. With F and rn as above there is an equality

dimR HomR(F,R) = sup{dim(R/Irn(∂Fn )) + n | n ∈ Z} .

Proof. Set G := HomR(F,R). This too is a finite free complex, concentrated in
degrees [−b,−a], with differentials ∂Gn = HomR(∂F1−n, R) for each n. It is now easy
to check that the expected ranks rn of F and the invariants sn of G, from (4),
determine each other:

sn(G) = r−n(F ) for each n.

Whence one gets equalities

dimRG = sup{dim(R/Isn(∂Gn+1))− n | n ∈ Z}
= sup{dim(R/Ir−n(∂F−n)− n | n ∈ Z}
= sup{dim(R/Irn(∂Fn )) + n | n ∈ Z} . �
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Remark 3. Bruns and Herzog [3, Section 9.1] have introduced a notion of “codimen-
sion” for finite free complexes. This is perhaps a misnomer: Applied to the minimal
free resolution of a module, the codimension does not equal the usual codimension
of the module. In fact, Corollary 2 yields that the codimension, in their sense, of
any finite free R-complex F , is precisely dimR− dimR HomR(F,R).

Foxby also has a notion of codimension for an R-complex X, namely the invariant

codimRX := inf{dimRp + inf H(X)p | p ∈ SpecR}
= inf{codimR Hn(X) + n | n ∈ Z} ;

see [5, Lemma 5.1] and the definition preceding it. From the definitions one im-
mediately gets codimRX + dimRX 6 dimR; equality holds if R is local, catenary,
and equidimensional. For a finite free complex F over such a ring one thus has

codimR HomR(F,R) = dimR− dimR HomR(F,R) .

In particular, the codimension of F in the sense of [3] is the codimension of the
dual complex, HomR(F,R), in the sense of [5].

In Bruns and Herzog’s [3] treatment of the homological conjectures—most of
which are now theorems thanks to André [2]—their notion of codimension of a finite
free complex is key. Per Remark 3 this suggests that estimates on the dimension
of HomR(F,R) are useful, and that motivates the development below.

Support. Let R be a commutative Noetherian ring. The large support of an R-
complex X is the support of the graded module H(X), i.e.

SuppRX := {p ∈ SpecR | Hn(X)p 6= 0 for some n} .
Foxby [5, Section 2] also introduced the (small) support of X to be the set

suppRX := {p ∈ SpecR | H(κ(p)⊗L
R X) 6= 0} ;

as usual, κ(p) denotes the residue field of the local ring Rp. Support is connected
to the finiteness of the depth of X:

suppRX = {p ∈ SpecR | depthRp
Xp <∞} .

We recall that the depth of a complex X over local ring R with residue field k is

depthRX := inf{n ∈ Z | ExtnR(k,X) 6= 0} .
This invariant can also be computed in terms of the Koszul homology, and the

local cohomology, of X; see [6].

Proposition 4. Let R be a commutative noetherian ring. For every finite free
R-complex F one has

dimR HomR(F,R) 6 dimR+ sup H(F ) .

Proof. For every prime ideal p the complex Fp has finite projective dimension, so
the Auslander–Buchsbaum Formula combines with standard (in)equalities between
invariants to yield

− inf H(HomR(F,R))p = sup{m ∈ Z | ExtmRp
(Fp, Rp) 6= 0}

= proj.dimRp
Fp

= depthRp − depthRp
Fp

6 dimRp + sup H(F )p .
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From the definition (1) one now gets

dimR HomR(F,R) 6 sup{dim(R/p) + dimRp + sup H(F )p | p ∈ SpecR}
6 dimR+ sup H(F ) . �

Remark 5. For the minimal free resolution of a finitely generated module of fi-
nite projective dimension, the codimension considered in [3] is non-negative by the
Buchsbaum–Eisenbud acyclicity criterion; see the comment before [3, Lemma 9.1.8].
This compares to the inequality in Proposition 4, rewritten as

dimR− dimR HomR(F,R) > − sup H(F ) .

Balanced big Cohen–Macaulay modules. Let (R,m) be local and M a big
Cohen–Macaulay module; that is, a module with depthRM = dimR and mM 6= M .
Hochster [7, 8] proved that such a module exists for every equicharacteristic local
ring, and André [1] proved their existence over local rings of mixed characteristic. A
big Cohen–Macaulay R-module M is called balanced if every system of parameters
for R is an M -regular sequence. The m-adic completion of any big Cohen–Macaulay
module is balanced; see [3, Theorem 8.5.3]. Sharp [10] demonstrated that these
modules behave much like maximal Cohen–Macaulay modules. Of interest here is
the fact that for a balanced big Cohen–Macaulay module M one has

(6) depthRp
Mp = dimR− dim(R/p) for each p ∈ suppRM ;

this is part (iii) in [10, Theorem 3.2]. Note that what Sharp calls the supersupport
of M is the support of M , in the sense above; this follows from comparison of [5,
Remark 2.9] and part (v) in op. cit.

Proposition 6. Let R be a local ring, F a finite free R-complex, and M a balanced
big Cohen–Macaulay module. One has

sup H(F ⊗R M) = dimR HomR(F,R)− dimR .

Proof. Set G := HomR(F,R). There is an isomorphism F ⊗M ∼= HomR(G,M). In
the computation below, the first equality holds by [5, Proposition 3.4]. The second
equality follows from (6) and the fourth one follows from (1).

sup H(HomR(G,M)) = − inf{depthRp
Mp + inf H(G)p | p ∈ SpecR}

= − inf{dimR− dim(R/p) + inf H(G)p | p ∈ SpecR}
= sup{dim(R/p)− inf H(G)p | p ∈ SpecR} − dimR

= dimRG− dimR . �

Given Remark 3, the theorem above recovers [3, Lemma 9.1.8]:

Corollary 7. Let R be a local ring and F := 0 → Fb → · · · → F0 → 0 a finite
free R-complex. If dimR− dimR HomR(F,R) > 0 holds, then for any balanced big
Cohen–Macaulay module M one has Hi(F ⊗R M) = 0 for all i > 1.

In [3, Section 9.4] it is shown how to derive various intersections theorems, in-
cluding the New Intersection Theorem, from Corollary 7. The latter sheds further
light on the invariant dimR− dimR HomR(F,R).

Theorem 8. Let R be a local ring and F a finite free R-complex. One has

dimR+ inf H(F ) 6 dimR HomR(F,R) 6 dimR+ sup H(F ) .
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Proof. The right-hand inequality holds by Proposition 4. Since R is local, one can
apply the version of the New Intersection Theorem recorded by Foxby [5, Lemma
4.1] to the complex HomR(F,R) to get

dimR− dimR HomR(F,R) 6 proj.dimR HomR(F,R) .

As HomR(F,R) is also a finite free complex one has

proj.dimR HomR(F,R) = − inf H(HomR(HomR(F,R), R)) = − inf H(F ) . �

Remark 9. Let R be a local ring and M a nonzero finitely generated R-module of
finite projective dimension. Applying Theorem 8 to a finite free resolution of M
yields the equality

max{dimR ExtnR(M,R) + n | n ∈ Z} = dimR .

Notice that with p := proj.dimRM one gets inequalities

dimR− dimRM 6 proj.dimRM 6 dimR− dimR ExtpR(M,R) ;

the inequality on the left is the version of the New Intersection Theorem that went
into the proof of Theorem 8.
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