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Abstract

Let I be an ideal of a regular local ring ) with residue field k. The length of the
minimal free resolution of R = @/I is called the codepth of R. If it is at most 3,
then the resolution carries a structure of a differential graded algebra, and the induced
algebra structure on Tor? (R, k) provides for a classification of such local rings.

We describe the Macaulay 2 package CodepthThree that implements an algorithm
for classifying a local ring as above by computation of a few cohomological invariants.

1 Introduction and notation

Let R be a commutative noetherian local ring with residue field k. Assume that R has the
form @Q/I where Q is a regular local ring with maximal ideal n and I C n?. The embedding
dimension of R (and of Q) is denoted e. Let

F=0—F,— - —F —F—0

be a minimal free resolution of R over (). Set d = depth R; the length ¢ of the resolution F
is by the Auslander—Buchsbaum formula

¢ = proj.dimg R = depth () — depthgy R = e — d,

and one refers to this invariant as the codepth of R. In the following we assume that c is
at most 3. By a theorem of Buchsbaum and Eisenbud [3, 3.4.3] the resolution F' carries a
differential graded algebra structure, which induces a unique graded-commutative algebra
structure on A = Tor?(R, k). The possible structures were identified by Weyman [5] and by
Avramov, Kustin, and Miller [2]. According to the multiplicative structure on A, the ring R
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belongs to exactly one of the classes designated B, C(c), G(r), H(p, q), S, and T. Here the
parameters p, ¢, and r are given by

p =rankg(A; - Ay), ¢ =rankg(A;-As), and r =rankg(d: Ay — Homy(A;, A3)),

where 4 is the canonical map. See [1, 2, 5] for further background and details.

When, in the following, we talk about classification of a local ring R, we mean the
classification according to the multiplicative structure on A. To describe the classification
algorithm, we need a few more invariants of R. Set

[ =rankg F7 — 1 and n = rankg I;

the latter invariant is called the type of R. The Cohen-Macaulay defect of Ris h = dim R—d.
The Betti numbers f; and the Bass numbers p; record ranks of cohomology groups,

B; = (k) = ranky, Ext’(k, k) and i = pi( R) = ranky, Ext%(k, R).

The generating functions Y ;=) 5;t" and > p;t" are called the Poincaré series and the Bass
series of R.

2 The algorithm

For a local ring of codepth ¢ < 3, the class together with the invariants e, ¢, [, and n
completely determine the Poincaré series and the Bass series of R; see [1]. Conversely, one
can determine the class of R based on e, ¢, [, n, and a few Betti and Bass numbers; in the
following we describe how.

Lemma 1. For a local ring R of codepth 3 the invariants p, q, and r are determined by e,
I, n, Ba, B3, Ba, and pe_o through the formulas

p=n+le+ 8 — B+ (),
q=(Mn—ple+1B2+ 3~ Ps+ (821)7 and
T:l+"—ﬂe—2-

Proof. The Poincaré series of R has by [1, 2.1] the form

0 > = e

l—t—1t2—(n—p)B3+qtt+---’

and expansion of the rational function yields the expressions for p and q.
One has d = e — 3 and the Bass series of R has, also by [1, 2.1], the form

- , n+{l—r)t+---
(2) Z;u i
expansion of the rational function now yields the expression for r. m



Proposition 2. A local ring R of codepth 3 can be classified based on the invariants e, h, [,
n, B2, B3, Ba, fre—2, and fe—1.

Proof. First recall that one has h = 0 and n = 1 if and only if R is Gorenstein; see [3, 3.2.10].
In this case R is in class C(3) if [ = 2 and otherwise in class G(I + 1).

Assume now that R is not Gorenstein. The invariants p, ¢, and r can be computed from
the formulas in Lemma 1. It remains to determine the class, which can be done by case
analysis. Recall from [1, 1.3 and 3.1] that one has

Class|p q r
T3 0 0

B|i11 2
G(r)[r>2/|0 1 r
H(p.q) |p ¢ q

In case ¢ > 2 the ring R is in class H(p, q); for ¢ < 1 the case analysis shifts to p.

In case p = 0 the distinction between the classes G(r) and H(0, ¢) is made by comparing
q and r; they are equal if and only if R is in class H(0, q).

In case p = 1 the distinction between the classes B and H(1, ¢) is made by comparing ¢
and r; they are equal if and only if R is in class H(1, q).

In case p = 3 the distinction between the classes T and H(3, ¢) is drawn by the invariant
te—1. Recall the relation d = e — 3; expansion of the expressions from [1, 2.1] yields p._1 =
fe—o +In —2if Risin T and pe_1 = pe_o + In — 3 if R is in H(3, q).

In all other cases, i.e. p =2 or p > 4, the ring R is in class H(p, q). ]

Remark 3. One can also classify a local ring R of codepth 3 based on the invariants e, h,
I, n, Ba,...05, and pe_o. In the case p = 3 one then discriminates between the classes by
looking at (5, which is 84 + 13 + (n — 3)52 + 7 with 7 = 0 if R is in class H(3,¢) and 7 = 1
if R is in class T. However, it is not possible to classify R based on Betti numbers alone.
Indeed, rings in the classes B and H(1,1) have identical Poincaré series and so do rings in
the classes G(r) and H(0,1).

Remark 4. A local ring R of codepth ¢ < 2 can be classified based on the invariants c, h,
and n. Indeed, if ¢ < 1 then R is a hypersurface; i.e. it belongs to class C(c). If ¢ = 2 then R
belongs to class C(2) if and only if it is Gorenstein (h = 0 and n = 1); otherwise it belongs
to class S.

Algorithm 5. From Remark 4 and the proof of Proposition 2 one gets the following algo-
rithm that takes as input invariants of a local ring of codepth ¢ < 3 and outputs its class.

INPUT: ¢ €, ha l: n, 527 B?n ﬁ47 He—2;5 He—1
m In case ¢ <1 set Class = C(c)

m In case c =2
o if (h=0and n=1) then set Class = C(2)

o else set Class = S



m Incasec=3
oif(h=0andn=1)thensetr=17+1
e if r = 3 then set Class = C(3)
e clse set Class = G(r)

¢ else compute p and ¢
e if(¢>2orp=2orp>4)then set Class = H(p,q)
e else compute r
o Incase p=20
— if ¢ = r then set Class = H(0, q)
— else set Class = G(r)
oIncasep=1
— if ¢ = r then set Class = H(1,q)
— else set Class = B
o Incasep=3
— if pte—1 = pe—2 + In — 2 then set Class =T
— else set Class = H(3,q)

OUTPUT: Class

Remark 6. Given a local ring R = /1 the invariants e and h can be computed from R, and
¢, I, and n can be determined by computing a minimal free resolution of R over (). The Betti
numbers s, B3, 84 one can get by computing the first five steps of a minimal free resolution
F of k over R. Recall the relation d = e — ¢; the Bass numbers p._5 and .1 one can get by
computing the cohomology in degrees d+ 1 and d+2 of the dual complex F* = Hompg(F, R).
For large values of d, this may not be feasible, but one can reduce R modulo a regular
sequence X = xy,. .., 2 and obtain the Bass numbers as jq4;(R) = p;(R/(x)); cf. [3, 3.1.16].

3 The implementation

The Macaulay 2 package CodepthThree implements Algorithm 5. The function torAlgClass
takes as input a quotient /I of a polynomial algebra, where I is contained in the irrelevant
maximal ideal 91 of Q). It returns the class of the local ring R obtained by localization of
Q/1 at M. For example, the local ring obtained by localizing the quotient

Qlz,y, 2)/(xy®, ayz,y2", o' — vz, 22° — )
is in class G(2); see [4]. Here is how it looks when one calls the function torAlgClass.

Macaulay2, version 1.6
with packages: ConwayPolynomials, Elimination, IntegralClosure,
LLLBases, PrimaryDecomposition, ReesAlgebra, TangentCone

il : needsPackage "CodepthThree";
i2 : Q = QQlx,y,z];



i3 : I = ideal (x*y~2,x*y*z,y*z"2,x"4-y 3%z,x*xz"3-y"4);
03 : Ideal of Q

i4 : torAlgClass (Q/I)

o4 = G(2)

Underlying torAlgClass is the workhorse function torAlgData which returns a hash table
with the following data:

Key Value
" codepth of R
e embedding dimension of R
"h" Cohen-Macaulay defect of R
"m" minimal number of generators of defining ideal of R
"n" type of R
"Class" (non-parametrized) class of R
(‘B’, «C’, ‘G, ‘H’, ‘S’, ‘T, ‘codepth > 3, or ‘zero ring’)
"p" rank of A; - A;
"q" rank of A; - A,
nypt rank of §: Ay — Homy (A, A3)
"PoincareSeries" | Poincaré series of R
"BassSeries" Bass series of R

In the example from above one gets:

i5 : torAlgData(Q/I)

2 3 4
2+ 2T -T -T + T
o5 = HashTable{BassSeries => —-———————————————————— }
2 3 4
1 -T-4T - 2T + T
c =>3
Class => G
e => 3
h=>1
m =>5
n=>2
p=>0
2
1+
PoincareSeries => -—————————————————————
2 3 4
1 -T-4T -2T + T
q=>1
r => 2

To facilitate extraction of data from the hash table, the package offers two functions
torAlgDataList and torAlgDataPrint that take as input a quotient ring and a list of keys. In
the example from above one gets:



i6 : torAlgDatalist( Q/I, {"c", "Class", "p", "q", "r", "PoincareSeries"} )

06 : List
i7 : torAlgDataPrint( Q/I, {"e", "h", "m", "n", "r"} )

o7 = e=3 h=1 m=5 n=2 r=2

As discussed in Remark 6, the computation of Bass numbers may require a reduction
modulo a regular sequence. In our implementation such a reduction is attempted if the
embedding dimension of the local ring R is more than 3. The procedure involves random
choices of ring elements, and hence it may fail. By default, up to 625 attempts are made, and
with the function setAttemptsAtGenericReduction, one can change the number of attempts.
If none of the attempts are successful, then an error message is displayed:

i8 : Q

zz/2[,v,w,x,y,2] ;

i9 : R

Q/ideal (x*y~2,x*y*z,y*z"2,x"4-y 3%z ,x*xz"3-y"4) ;
i10 : setAttemptsAtGenericReduction(R,1)

010 = 1 attempt(s) will be made to compute the Bass numbers via a generic
reduction

i1l : torAlgClass R

stdio:11:1:(3): error: Failed to compute Bass numbers. You may raise the
number of attempts to compute Bass numbers via a generic reduction
with the function setAttemptsAtGenericReduction and try again.

i12 : setAttemptsAtGenericReduction(R,25)

012 = 625 attempt(s) will be made to compute the Bass numbers via a generic
reduction

i13 : torAlgClass R

013 = G(2)

Notice that the maximal number of attempts is n? where n is the value set with the function
setAttemptsAtGenericReduction.



Notes. Given @/ our implementation of Algorithm 5 in torAlgData proceeds as follows.

. Check if a value is set for attemptsAtBassNumbers; if not use the default value 25.

. Initialize the invariants of R (the localization of @)/I at the irrelevant maximal ideal)

that are to be returned; see the table in Section 3.

. Handle the special case where the defining ideal I or @/I is 0. In all other cases

compute the invariants ¢, e, h, m (=1 + 1), and n.

. If possible, classify R based on ¢, e, h, m, and n. At this point the implementation

deviates slightly from Algorithm 5, as it uses that all rings with ¢ = 3 and h = 2 are
of class H(0,0); see [1, 3.5].

. For rings not classified in step 3 or 4 one has ¢ = 3; cf. Remark 4. Compute the Betti

numbers By, (3, and (4, and with the formula from Lemma 1 compute p and ¢. If
possible classify R based on these two invariants.

. For rings not classified in steps 3-5, compute the Bass numbers p. o and p_;. If

d = e — 3 is positive, then the Bass numbers are computed via a reduction modulo
a regular sequence of length d as discussed above. Now compute r with the formula
from Lemma 1 and classify R.

. The class of R together with the invariants ¢, [ = m — 1, and n determine its Bass and

Poincaré series; cf. [1, 2.1].

If I is homogeneous, then various invariants of R can be determined directly from the

graded ring /1. If I is not homogeneous, and R hence not graded, then functions from the
package LocalRings are used.

References

[1] Luchezar L. Avramov. A cohomological study of local rings of embedding codepth 3. J.

2]

Pure Appl. Algebra, 216(11):2489-2506, 2012.

Luchezar L. Avramov, Andrew R. Kustin, and Matthew Miller. Poincaré series of mod-
ules over local rings of small embedding codepth or small linking number. J. Algebra,
118(1):162-204, 1988.

[3] Winfried Bruns and Jiirgen Herzog. Cohen-Macaulay rings, volume 39 of Cambridge

Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1993.

Lars Winther Christensen and Oana Veliche. Local rings of embedding codepth 3. Ex-
amples. Algebr. Represent. Theory 17(1):121-135, 2014.

Jerzy Weyman. On the structure of free resolutions of length 3. J. Algebra, 126(1):1-33,
1989.



