Topology and Geometry
Department of Mathematics and Statistics
Texas Tech University
Abstract: We prove that the category of diffeological spaces does not admit a model structure transferred via the smooth singular complex functor from simplicial sets, resolving in the negative a conjecture of Christensen and Wu. Embedding diffeological spaces into sheaves of sets (not necessarily concrete) on the site of smooth manifolds, we then prove the existence of a proper combinatorial model structure on such sheaves transferred via the smooth singular complex functor from simplicial sets. We show the resulting model category to be Quillen equivalent to the model category of simplicial sets. We then show that this model structure is cartesian, all smooth manifolds are cofibrant, and establish the existence of model structures on categories of algebras over operads. We use these results to establish analogous model structures on simplicial presheaves on smooth manifolds, as well as presheaves valued in left proper combinatorial model categories, and prove a generalization of the smooth Oka principle established in arXiv:1912.10544. We finish by establishing classification theorems for differential-geometric objects like closed differential forms, principal bundles with connection, and higher bundle gerbes with connection on arbitrary cofibrant diffeological spaces. arXiv:2210.12845.
I will introduce a class of diffeological spaces, called elastic, on which the left Kan extension of the tangent functor of smooth manifolds defines an abstract tangent functor in the sense of Rosický. On elastic spaces there is a natural Cartan calculus, consisting of vector fields and differential forms, together with the Lie bracket, de Rham differential, inner derivative, and Lie derivative, satisfying the usual graded commutation relations. Elastic spaces are closed under arbitrary coproducts, finite products, and retracts. Examples include manifolds with corners and cusps, diffeological groups and diffeological vector spaces with a mild extra condition, mapping spaces between smooth manifolds, and spaces of sections of smooth fiber bundles. arXiv:2301.02583.
The Jones polynomial is an invariant of knots in R^3. Following a proposal of Witten, it was extended to knots in 3-manifolds by Reshetikhin–Turaev using quantum groups. Khovanov homology is a categorification of the Jones polynomial of a knot in R^3, analogously to how ordinary homology is a categorification of the Euler characteristic of a space. It is a major open problem to extend Khovanov homology to knots in 3-manifolds. In this talk, I will explain forthcoming work towards solving this problem, joint with Leon Liu, David Reutter, Catharina Stroppel, and Paul Wedrich. Roughly speaking, our contribution amounts to the first instance of a braiding on 2-representations of a categorified quantum group. More precisely, we construct a braided (∞,2)-category that simultaneously incorporates all of Rouquier's braid group actions on Hecke categories in type A, articulating a novel compatibility among them.
The third string bordism group is known to be $\mathbb{Z}/24\mathbb{Z}$. Using Waldorf's notion of a geometric string structure on a manifold, Bunke--Naumann and Redden have exhibited integral formulas involving the Chern-Weil form representative of the first Pontryagin class and the canonical 3-form of a geometric string structure that realize the isomorphism $Bord_3^{String} \to \mathbb{Z}/24\mathbb{Z}$ (these formulas have been recently rediscovered by Gaiotto--Johnson-Freyd--Witten). In the talk I will show how these formulas naturally emerge when one considers the U(1)-valued 3d TQFTs associated with the classifying stacks of Spin bundles with connection and of String bundles with geometric structure. Joint work with Eugenio Landi (arXiv:2209.12933).
Thanks to a result of Baez and Hoffnung, the category of diffeological spaces is equivalent to the category of concrete sheaves on the site of cartesian spaces. By thinking of diffeological spaces as kinds of sheaves, we can therefore think of diffeological spaces as kinds of infinity sheaves. We do this by using a model category presentation of the infinity category of infinity sheaves on cartesian spaces, and cofibrantly replacing a diffeological space within it. By doing this, we obtain a new generalized cocycle construction for diffeological principal bundles, a new version of Čech cohomology for diffeological spaces that can be compared very directly with two other versions appearing in the literature, which is precisely infinity sheaf cohomology, and we show that the nerve of the category of diffeological principal G-bundles over a diffeological space X for a diffeological group G is weak equivalent to the nerve of the category of G-principal infinity bundles over X. arXiv:2202.11023.
A real number $x$ is said to be normal if the sequence $a^n x$ is uniformly distributed modulo 1 for every integer $a≥2$. Although Lebesgue-almost all numbers are normal, the problem determining whether specific irrational numbers such as $e$ and $π$ are normal is extremely difficult. However, techniques from Fourier analysis and geometric measure theory can be used to show that certain “thin” subsets of $R$ must contain normal numbers.
Extensions of the Dold-Kan correspondence for the duplicial and (para)cyclic index categories were introduced by Dwyer and Kan. Building on the categorification of the Dold-Kan correspondence by Dyckerhoff, we categorify the duplicial case by establishing an equivalence between the $\infty$-category of $2$-duplicial stable $\infty$-categories and the $\infty$-category of connective chain complexes of stable $\infty$-categories with right adjoints. I will further explain the current progress towards a conjectured correspondence between $2$-paracyclic stable $\infty$-categories and connective spherical complexes. Examples of the latter naturally arise from the study of perverse schobers. arXiv:2303.03653.
In this talk I will discus a recognition principle for iterated suspensions as coalgebras over the little cubes operad. This is joint work with Oisín Flynn-Connolly and José Moreno-Fernádez. arXiv:2210.00839.