Alastair Hamilton

Department of Mathematics and Statistics

Texas Tech University

Lubbock, TX 79409-1042

Department of Mathematics and Statistics

Texas Tech University

Lubbock, TX 79409-1042

alastair -- dot -- hamilton -- at
-- ttu -- dot -- edu

Office: M-248

Office: M-248

Office hours: Mon, Wed, Fri
9:00--10:00.

*On two constructions of an effective field theory*. J. Lond. Math. Soc. (2) 94 (2016), no. 1, 314--336.*The topological quantum field theory of Riemann's theta functions*(with R. Gelca). J. Geom. Phys. 98 (2015), 242--261.

- Classical theta functions
from a quantum group perspective (with R. Gelca). New York J. Math. 21
(2015), 93--127.

- Classes
on the moduli space of Riemann surfaces through a
noncommutative Batalin-Vilkovisky formalism. Adv.
Math. 243 (2013), 67--101.

- A
nondiagrammatic description of the Connes-Kreimer Hopf
algebra. J.
Pure Appl. Algebra 217 (2013), no. 3, 449--469.

- On the
extension of a TCFT to the boundary of the moduli space.
Lett.
Math. Phys. 98 (2011), no. 2, 111--132.

- Noncommutative geometry
and compactifications of the moduli space of curves. J.
Noncommut.
Geom. 4 (2010), no. 2, 157--188.

- Cohomology
theories
for homotopy algebras and noncommutative geometry
(with A. Lazarev). Algebr. Geom. Topol.
9 (2009), 1503--1583.

- Classes on compactifications of the moduli space of curves through solutions to the quantum master equation. Lett. Math. Phys. 89 (2009), no. 2, 115--130.
- Graph cohomology classes in the Batalin-Vilkovisky formalism (with A. Lazarev). J. Geom. Phys. 59 (2009), no. 5, 555--575.
- Characteristic classes of A-infinity algebras (with A. Lazarev). J. Homotopy Relat. Struct. 3 (2008), no. 1, 65--111.
- Symplectic C-infinity algebras (with A. Lazarev). Mosc. Math. J. 8 (2008), no. 3, 443--475, 615.
- Symplectic A-infinity algebras and string topology operations (with A. Lazarev). Amer. Math. Soc. Transl. (2), Vol. 224, 2008, 147--157.
- A super-analogue of Kontsevich's theorem on graph homology. Lett. Math. Phys. 76 (2006), no. 1, 37--55.
- On the classification of Moore algebras and their deformations. Homology, Homotopy Appl. 6 (2004), no. 1, 87--107.
- Homotopy algebras and noncommutative geometry (with A. Lazarev). math.QA/0410621.