CH 7: Sampling Distributions

1. Basic Concepts

- (A) Parameter: A numerical characteristic of a population, such as a population mean μ , a population standard standard deviation σ , a population proportion p.
- (B) Sample statistic: A sample characteristic, such as sample mean \overline{x} , sample standard deviation s, a sample proportion \overline{p} .
- (C) Our goal in this chapter is to use sample statistics to estimate certain parameters, such as point estimator \bar{x} for μ , point estimator \bar{p} for p.
- (D) Any sample statistic will have a probability distribution called the **sampling distribu-tion** of the statistic.
- 2. Sample Distribution of \bar{x} .
 - (A) The expected value of \bar{x} (or the population mean of the sample mean, denoted by $E(\bar{x})$)

$$E(\bar{x}) = \mu \tag{eq7.1}$$

where μ is the population mean.

(B) The standard deviation the sample mean (or the standard error of the sample mean, denoted by $\sigma_{\overline{x}}$)

$$\sigma_{\overline{x}} = \frac{\sigma}{\sqrt{n}} \tag{eq7.3}$$

where σ is the population standard deviation.

EX 1 A population has a mean of 99 and standard deviation of 7. Compute the expected value of the sample mean and the standard error of the sample mean for (1). n = 4

(2). n = 25

(C) If a random variable x is from a normal distribution, i.e., $N(\mu, \sigma)$, then the random variable sample mean \overline{x} would have a normal distribution with mean μ and standard deviation $\frac{\sigma}{\sqrt{n}}$, i.e., $N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$. Application 1: Finding the probability of the sample mean \overline{x} : Step 1: Write down the probability statement (say: $P(\overline{x} < a)$. $P(\overline{x}) > a$, $P(a < \overline{x} < b)$) Step 2: Use $Z = \frac{\overline{x} - \mu}{\frac{\sigma}{\sqrt{n}}}$ to standardize the value of \overline{x} into ZStep 3: Look in the standard normal table (z-table) to find the probability. Application 2: Recovering the \overline{x} value for a given probability p.

Step 1: Find the Z-value from the standard normal table for the given probability.

Step 2: Use the formula $Z = \frac{\overline{x} - \mu}{\frac{\sigma}{\sqrt{n}}}$ to solve for \overline{x}

- EX 2 Apples have a mean weight of 7 ounces and a standard deviation of 2 ounces (they are normally distributed) and they are chosen at random and put in a box of 30.
 - (1) Find the probability that the average weight of the apples in a box is greater than 6.5 ounces.
 - (2) Below what value do 12.1% of the average weight of the apples fall?
- (D) Question: what if the sampling is from a nonnormal population, do we have similar result? Answer: yes! if the sample size n is large enough (say, at least 30). This result is called the Central Limit Theorem: Whatever the population, the distribution of \overline{x} is approximately normal with mean μ and standard deviation $\frac{\sigma}{\sqrt{n}}$ if n is large.
- EX 3 Consider a population with mean $\mu = 82$ and standard deviation $\sigma = 12$. If a random sample of size of 64 is selected. What is the probability that the sample mean will lie between 80.8 and 83.2?
- 3. Sample distribution of \bar{p}
 - (A) The sample proportion \bar{p} can be computed use the equation $\bar{p} = \frac{x}{n}$ where x is the number of elements in the sample that possess the characteristic of interest and n is the sample size.
 - (B) Expected value of \bar{p}

$$E(\bar{p}) = p \tag{eq7.4}$$

where p is the population proportion

(C) The standard deviation of \bar{p} (or called the standard error, denoted by $\sigma_{\bar{p}}$)

$$\sigma_{\bar{p}} = \sqrt{\frac{p(1-p)}{n}} \tag{eq7.6}$$

EX 4 A simple random sample of size 100 is selected from a population with p = 0.40. What is the expected value of \bar{p} ? What is the standard error of \bar{p} ?