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CONDITIONS FOR TRANSIENT VIREMIA IN DETERMINISTIC
IN-HOST MODELS: VIRAL BLIPS NEED NO EXOGENOUS

TRIGGER∗
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Abstract. This paper presents an analytical study of the phenomenon of recurrent infection,
that is, transient episodes of high viral reproduction, separated by long periods of relative quiescence,
which are observed in many persistent infections; the “viral blips” observed during chronic infection
with human immunodeficiency virus (HIV) are a well-known example. Although in-host models which
incorporate forcing functions or stochastic elements have been proposed to generate viral blips, simple
deterministic models also exhibit this phenomenon. Analyzing a 4-dimensional HIV antioxidant-
therapy model which exhibits viral blips, we show that an increasing, saturating infectivity function
may contribute to the recurrent behavior of the model. We then propose four conditions for the
existence of viral blips in a deterministic in-host infection model. We use these conditions to derive
the simplest (2- and 3-dimensional) infection model which produces viral blips, and we determine
the complete parameter range for the 3-dimensional model in which blips are possible, using stability
analysis. We also use these conditions to demonstrate that low-dimensional in-host models with linear
or constant infectivity functions cannot generate viral blips. Further, we find that a 5-dimensional
immunological model satisfies the conditions and exhibits recurrent infection even with constant
infectivity; thus, an increasing, saturating infectivity is not necessary if the model is sufficiently
complex.
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1. Introduction. Viruses are infectious intracellular parasites: they can repro-
duce only inside the living cells of host organisms and must spread from host to host
for continued existence. Animal viruses tend to exhibit either an acute or persistent
mode of host infection to ensure this continuity [40]. An acute viral infection is charac-
terized by a relatively short period of symptoms and resolution within days or weeks.
It usually triggers the host immune response to clear the infection, and a memory re-
sponse can then prevent the same virus from infecting the same host. Pathogens such
as influenza virus and rhinovirus typically cause acute viral infections. In contrast,
persistent infections [3] establish long-lasting infections in which the virus is not fully
eliminated but remains in infected cells. Persistent infections involve both silent and
productive infection stages without rapid killing or excessive damage to infected cells.
Latent infection is a type of persistent infection.

In latent infection, no clinical signs nor detectable infectious cells can be observed
during the silent or quiescent stage of low-level viral replication. However, the virus
has not been completely cleared, and recurrent episodes of rapid viral production and
release can periodically punctuate relatively long periods in the silent stage. These
episodes of recurrent infection are a clinical phenomenon observed in many latent
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infections [41]. Recurrent infection can also occur in the context of drug treatment
for persistent infections. Human immunodeficiency virus (HIV), for instance, can be
suppressed by highly active antiretroviral therapy (HAART) to below the limit of
detection for months or years [5, 8]; nonetheless supersensitive assays can still detect
low levels of viremia during this stage [8, 31, 30]. Moreover, these long periods of
relative quiescence are typically interrupted by unexplained intermittent episodes of
viremia above the detectable limit, termed viral blips [35, 34]. Although these blips
have been the focus of much recent research [12, 17, 14, 6], their etiology is still not
well understood [17, 34].

To date, many possible explanations for viral blips during HIV infection have been
explored mathematically. An early model of the long-term pathogenesis of HIV [11]
incorporates the activation of T cells in response to antigen, as suggested earlier
by [9]. In [11], both HIV and non-HIV antigen exposure are considered in a coupled
deterministic-stochastic model. The probability of antigenic exposure evolves contin-
uously in time, and Poisson-distributed exposure events are generated, by simulation,
at the appropriate probabilities. This approach captures a number of features of long-
term HIV dynamics, including episodic “bursts” of residual viral replication. Further
work [10] considers the number of distinct antigens which activate the CD4+ T cell
pool as a random variable, coupled to an ordinary differential equation (ODE) model.
Stochastic changes to this number drive fluctuation in the basic reproductive number
and viral load. This model is also able to capture the episodic burst-like nature of
residual HIV viral replication during long-term infection.

More recent models are based on the recurrent activation of latently infected
lymphocytes, a class of T cells introduced in immunological models by Perelson et
al. [32] and Rong, Feng, and Perelson [33], in order to explain the slower second-
phase decay of plasma viremia. By introducing antigen concentrations as an explicit
variable, Jones and Perelson [23] developed a system of ODEs which exhibits viral
blips. The model describes programmed proliferation and contraction of the CD8+ T
cell population and exhibits low viral loads under HAART as expected. Opportunistic
or concurrent infection, modeled as an initial concentration of antigen, activates the
immune system and is shown by numerical simulation to elicit a transient viral blip.
The same authors further showed that occasional intercurrent infections can generate
viral blips by the activation of target cells or latently infected cells, predicting a power
law relationship between blip amplitude and viral load [24].

In further work, by considering the asymmetric division of latently infected cells,
Rong and Perelson [34] developed a 4-dimensional ODE model based on the basic
model of latent cell activation [32]. This new model not only generated viral blips but
also maintained a stable latent reservoir in patients on HAART. In this model, latently
infected cells can divide to produce latently infected daughter cells, or differentiate
into activated, productively infected cells, depending on antigen concentrations. In a
further 5-dimensional ODE model [35], these two types of daughter cells were distin-
guished as dependent variables, and a contraction phase was added to the activated
daughter cells. Numerical simulation showed that both cases gave rise to viral blips
and a stable latent reservoir, which were generated from the activated and the latently
infected daughter cells, respectively. In both papers [34, 35], the antigenic stimulation
of latently infected cells was modeled as an “on-off” forcing function, and viral blips
were initiated during brief pulses in which this activation function was “on.”

Most recently, a stochastic model developed by Conway and Coombs [6] presented
another possible treatment of latent cell activation. In this model [6], the authors
derive the probability generating function for a multitype branching process describing
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the populations of productively and latently infected cells and free virus. A numerical
approach is then used to estimate the probability distribution for viral load, which
is then used to predict blip amplitudes and frequencies; blip durations are studied
by simulation. The authors are able to conclude that with effective drug treatment
and perfect adherence to drug therapy, viral blips cannot be explained by stochastic
activation of latently infected cells, and other factors such as transient secondary
infections, or imperfect adherence, must be involved.

In order to elicit transient episodes of high viral replication, the models described
above incorporate either transient immune stimulation, for example as a forcing func-
tion, or stochastic approaches. In contrast, recent studies have shown that simple
deterministic systems can exhibit viral blips. Based on the close relation between
recurrent infections and antibody (B-cell) immunodeficiency, Yao, Hertel, and Wahl
[41] investigated a 5-dimensional ODE model which included antibody concentrations
as an explicit variable and exhibited transient periods of high viral replication. By
numerical simulation at specific, meaningful, parameter values, the authors explored
factors affecting the interval between recurrent episodes and their severity. Later, an
even simpler 4-dimensional antioxidant-therapy model [39] was explored for HIV and
was similarly used to simulate viral blips with appropriate parameter values. These
examples indicate that deterministic systems can produce blips as part of the natu-
ral, rich behavior of the nonlinear system. Although to date numerical simulation has
been invaluable in describing and delineating the behavior of these models, there is as
yet very little analytical work exploring the mathematical underpinnings of recurrent
infection. It should be noted that data from clinical studies indicates that HIV viral
blips appear to be random biological events, with varying magnitude, frequency, and
duration. This suggests that stochastic models may be more realistic or appropriate
for describing such phenomena. On the other hand, deterministic models are more
tractable, and their analysis may reveal a global picture or key underlying charac-
teristics of the system. Moreover, nonlinear deterministic systems can indeed exhibit
varying amplitudes and frequencies of motion, particularly when the underlying pa-
rameters are functions of time. We shall return to a discussion of this point in the
last section of the paper.

In this paper, we take advantage of dynamical systems theory to reinvestigate
deterministic in-host infection models that exhibit viral blips. By examining the bi-
furcation behavior in parameter spaces “close” to the region where blips occur, we
propose an understanding of the features of the dynamical system which underlie
this complex model behavior. We then propose four conditions which, when satisfied,
guarantee that an in-host infection model will exhibit long periods of quiescence, punc-
tuated by brief periods of rapid replication—viral blips. Based on these conditions,
we develop very simple 2- and 3-dimensional models that produce blips. Further, we
apply stability criteria to determine parameter ranges which may yield blips. Most of
the models discussed in this paper share a similar infectivity function, describing the
rate at which new infected cells are created. In a final section, we examine a related
5-dimensional immunological model and demonstrate that viral blips are possible in
this system even when infectivity is constant.

The rest of the paper is organized as follows. In section 2, the previously proposed
4-dimensional HIV antioxidant-therapy model is reinvestigated analytically. Based
on the insights of our bifurcation analysis, conditions for generating viral blips are
proposed. In section 3, we use these conditions to propose a simpler 3-dimensional
in-host infection model, and parameter ranges which will exhibit blips in the simpler
model are determined. In section 4, we develop a 2-dimensional model, characterized
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by an increasing and saturating infectivity function, which can also generate viral
blips. Finally, we demonstrate that a 5-dimensional immunological model [41] can
exhibit viral blips with constant infectivity.

2. A 4-dimensional model which exhibits viral blips. In this section, we
reconsider a 4-dimensional HIV antioxidant-supplementation therapy model which
was developed and studied numerically in [39]. This model novelly introduced reactive
oxygen species (ROS) and antioxidants to an in-host model of HIV infection. In
uninfected individuals, ROS play a positive physiological role at moderate levels [16,
25, 7, 20, 18] but are harmful at high levels [39].

HIV infection may lead to chronic and acute inflammatory diseases, which may
cause high levels of ROS [26] as well as lowered antioxidant levels; this phenomenon
has been observed clinically and experimentally [26, 15, 22, 36, 38]. In addition, high
levels of ROS may cause damage to CD4+ T cells, impair the immune response to
HIV [37], and exacerbate infected cell apoptosis, releasing more HIV virions. Thus,
infected cells produce high levels of ROS, which in turn increase the viral production
by infected cells. To control this cycle, antioxidant supplementation (vitamin therapy)
has been suggested as a potential complement to HIV therapy [15, 13], with the aim
of counteracting and reducing ROS concentrations [16].

The equations of the 4-dimensional model are described by [39]:

(2.1)

ẋ = λx − dxx− (1− ε)β(r)xy,
ẏ = (1 − ε)β(r)xy − dyy,
ṙ = λr + ky −mar − drr,
ȧ = λa + α− par − daa,

where x, y, r, and a represent, respectively, the population densities of the uninfected
CD4+ T cells, infected CD4+ T cells, ROS, and antioxidants. The constant λx denotes
the production rate of CD4+ T cells, and dxx is the death rate. Uninfected cells
become infected at rate (1−ε)β(r)xy, where ε is the effectiveness of drug therapy, and
dy is the per-capita death rate of infected CD4+ T cells. ROS are generated naturally
at rate λr, and by the infected cells at rate k y; the concentration of ROS decays at
rate dr r and is eliminated by interaction with antioxidants at rate mar. Antioxidants
are introduced into the model through natural dietary intake at a constant rate λa

and through antioxidant supplementation at rate α, which is treated as a bifurcation
parameter. Antioxidants are eliminated from the system by natural decay at rate daa
and by reacting with the ROS at rate par, where p is much smaller than m.

An important novel feature of this model is that the infectivity β(r) is a positive,
increasing, and saturating function of r (ROS),

(2.2) β(r) = b0 +
r(bmax − b0)

r + rhalf
,

where b0 represents the infection rate in the ROS-absent case, while bmax denotes the
maximum infection rate, and rhalf is the ROS concentration at half maximum. It is
obvious that β(r) > 0, and it is also assumed that 0 < ε < 1. Therefore, all the
parameters in (2.1) and (2.2) are positive. The experimental values used for studying
model (2.1) are given in Table 2.1. Importantly, these parameters were chosen with
careful reference to clinical studies, such that the predicted equilibrium densities are
clinically reasonable. Also note that the densities of antioxidants and ROS are of
order 1013 per μL, while cell densities are of the order 102 or 103 per μL.
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Table 2.1

Parameter values used in model (2.1) [39].

Parameter Value

λx 60.76 cellsμL−1 day−1

dx 0.0570 day−1

dy 1.0 day−1

λa 2.74× 1013 moleculesμL−1 day−1

da 0.0347 day−1

ε 1
3

b0 2.11× 10−4 cell−1 μLday−1

bmax 0.00621 cell−1 μLday−1

rhalf 3.57× 1013 moleculesμL−1

dr 1.66× 107 day−1

λr 1.86× 1021 moleculesμL−1 day−1

k 1.49× 1019 molecules cell−1 day−1

m 1.27× 10−6 molecule−1 μL day−1

p 5.04× 10−14 molecule−1 μLday−1

In [39], this model was explored numerically to assess the potential of antioxidant
therapy as a complement to HIV drug therapy. In that study, regions of oscillatory
behavior, reminiscent of viral blips, were observed. In the following subsections we
perform a thorough equilibrium and stability analysis of the model in order to shed
further light on the factors underlying these rich behaviors.

2.1. Well-posedness of the solutions of system (2.1). By using the method
of variation of constants, we can easily obtain the solutions of (2.1) to show that
x(t)> 0, y(t)> 0, r(t)> 0, a(t)> 0 ∀ t > 0 if x(0)> 0, y(0)> 0, r(0)> 0, a(0)> 0. To
consider the boundedness of the solutions, suppose in general we have the differential
inequality Ṫ ≤ λ−dT (λ, d> 0, T (0)> 0). Then if Ṫ = λ − dT , we have Ṫ+dT =λ.

Thus, T (t) = T (0)e−
∫ t
0
dds+

∫ t

0
λ e−

∫ t
s
dduds= T (0) e−d t+ λ

d (1−e−d t), which implies

that limt→+∞ supT (t) = λ
d . From the first equation of (2.1), we have ẋ≤ λx−dxx,

which yields limt→+∞ supx(t) = λx

dx
. It is also easy to see from the first equation

of (2.1) that x(t) > 0 ∀ t > 0. Then, by adding the first two equations of (2.1) we

obtain d[x(t)+y(t)]
dt = λx−dxx−dyy ≤ λx− d̃(x+y), where d̃ = min(dx, dy). Hence,

limt→+∞ sup(x(t)+y(t)) = λx

d̃
. Therefore, for any given ε > 0, there exists t∗ > 0,

such that x + y ≤ λx

d̃
+ ε ∀ t≥ t∗. For the third equation of (2.1), we similarly have

dr
dt ≤ (λr+k λx

d̃
)−drr, which results in limt→+∞ sup r(t) = λrd̃+kλx

drd̃
. Finally, for the

fourth equation of (2.1), we get da
dt ≤(λa+α)−da a, and thus limt→+∞ sup a(t)= λa+α

da
.

We define

Γ =
{
(x, y, a, r) ∈ R4

∣∣ 0 ≤ x ≤ λx

dx
, 0 ≤ x+y ≤ λx

d̃
, 0 ≤ r ≤ λr+kλx/d̃

dr
, 0 ≤ a ≤ λa+α

da

}
.

Clearly, Γ is a positively invariant set and attracts all nonnegative solutions of (2.1).

2.2. Equilibrium solutions of (2.1) and their stability. To find the equi-
librium solutions of (2.1), simply setting ẋ = ẏ = ṙ = ȧ = 0 yields two solutions, the
uninfected equilibrium solution E0 and the infected equilibrium solution E1, given,
respectively, by

(2.3) E0 : (xe0, ye0, re0, ae0) =

(
λx

dx
, 0, re0,

λr − dr re0
mre0

)
,
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where the re0 is determined by the equation

(2.4) F0(r, α) ≡ α+ λa +
1

m

(
p dr r − da λr

r

)
+

da dr − p λr

m
= 0,

and

(2.5)
E1 :

(
xe1, ye1, re1, ae1

)
, xe1 =

dy
(1 − ε)βr(re1)

,

ye1 =
λx − dx xe1

(1 − ε)βr(re1)xe1
, ae1 =

λa + α

da+pre1
,

where re1 is a function in the system parameters, particularly α (see the function F1

in 2.8)). Both E0 and E1 are expressed in terms of r (re0 or re1) for convenience.
We first consider the uninfected equilibrium E0. The solution of re0 is determined

by (2.4), which is a quadratic equation in r. To simplify the analysis, we use r to
express the parameter α since (2.4) is linear in α, and α is treated as a bifurcation
parameter. Thus, solving F0(r, α) = 0 for α, we obtain

(2.6) α0(re0) = −λa − 1

m

(
p dr re0 − da λr

re0

)
− da dr − p λr

m
.

To find the stability of the equilibrium solution E0, we first evaluate the Jacobian
of system (2.1) at E0 to get J0(re0), where (2.6) has been used, and then we use
det(ξ I−J0) to obtain the 4th-degree characteristic polynomial, given by P0(ξ, re0) =
(ξ + dx)

[
ξ2 + (pre0 + da +

λr

re0
)ξ + (daλr

re0
+ pdrre0)

]
(ξ + P0r), where

(2.7) P0r = dy − (1− ε)λx(b0rhalf + re0bmax)

dx(re0 + rhalf)
.

P0(ξ, re0) contains three factors: the first is a linear polynomial of ξ, and the second
is a quadratic polynomial of ξ, and both are stable polynomials (i.e., their roots
(eigenvalues) have negative real part); and thus the stability of E0 depends only on
the third factor, a linear polynomial of ξ. Therefore, when P0r > 0 (P0r < 0), the
equilibrium solution E0 is asymptotically stable (unstable).

The graph for the equation F0(r, α) = 0 given in (2.4) is shown as the red line
in Figure 2.1(a), which clearly shows a hyperbola. It is seen from this red line that
the relation (2.4) also defines a single-valued function r in α if only the positive
(biologically meaningful) value of r is considered (i.e., the positive branch of the red
line in Figure 2.1(a)). More precisely, it can be shown that the biologically meaningful
solution must be located on the first quadrant and above, including the top branch
of the red line (see Figure 2.1(a)), since E0 has the component ye0 = 0.

Next, consider the infected equilibrium solution E1. The solution for re1 can be
similarly obtained by solving the equation

(2.8) F1(r, α) = λr +
kλx

dy
− kdx(r + rhalf)

(1 − ε)(b0rhalf + bmaxr)
− mr(λa + α)

pr + da
− drr = 0,

which is again a linear function of α, and we can use re1 to express α as

α1(re1) = −λa +
λr(pre1 + da)

mre1
+

kλx(pre1 + da)

mre1dy

− kdx(re1 + rhalf)(pre1 + da)

mre1(1− ε)(b0rhalf + bmaxre1)
− (pre1 + da)dr

m
.(2.9)
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(a) (b)

Fig. 2.1. (a) Complete bifurcation diagram for the 4-dimensional HIV antioxidant-therapy
model (2.1) projected on the r-α plane, with the red and blue lines denoting E0 and E1, respectively.
(b) Bifurcation diagram in (a), restricted in the first quadrant, with the dotted and solid lines
indicating unstable and stable, respectively.

The graph of the equations F0(r, α) = 0 given in (2.4) and F1(r, α) = 0 given in
(2.8) is shown in Figure 2.1(a). To find the stability of E1, in a similar way, we
evaluate the Jacobian of (2.1) at E1 to obtain the 4th-degree characteristic polynomial,
P1(ξ, re1)=ξ4+a1(re1)ξ

3+a2(re1)ξ
2+a3(re1)ξ+a4(re1), where the lengthy expressions

for the coefficients a1(re1), a2(re1), a3(re1), and a4(re1) are omitted here for brevity.

2.3. Bifurcation analysis. To understand the conditions underlying oscillatory
behavior and viral blips in this model, we now consider possible bifurcations which
may occur from the equilibrium solutions E0 and E1.

2.3.1. Transcritical bifurcation. First, for the uninfected equilibrium E0, it
follows from P0(ξ, re0) and (2.7) that in general E0 is stable for P0r > 0, and the only
possible singularity occurs at the critical point, determined by P0r = 0 (see (2.7)).
At this point, one eigenvalue of the characteristic polynomial becomes zero (and the
other three eigenvalues still have negative real part), leading to a static bifurcation,
and E0 becomes unstable. More precisely, when the parameter values in Table 2.1 are
used, the two equilibrium solutions E0 and E1 intersect and exchange their stability at
the point

(
rt, αt

) ≈ (8.89×1012, 4.58×1013), indicating that a transcritical bifurcation
occurs at this critical point (see Figure 2.1(b)). Here, the subscript “t” stands for
transcritical bifurcation. The value of αt is obtained by substituting rt into either
α0(rt) in (2.6) or α1(rt) in (2.9). In fact, α0(rt) = α1(rt).

As discussed above, the biologically meaningful solutions should be above or on
the uninfected equilibrium solution E0 (the red line shown in Figure 2.1(b)), since
solutions below the red line contain the component y < 0. It is obvious that there
is no Hopf bifurcation from E0. So, the uninfected equilibrium E0 is asymptotically
stable (unstable) when r < rt (r > rt) or α > αt (α < αt) (see Figure 2.1(b)).

It should also be noted from Figure 2.1(b) that besides a transcritical bifurca-
tion point, E1 has a saddle-node bifurcation which occurs at the so-called turning

point. To determine this turning point, using (2.9) and dα1(r)
dr = 0 yields (rs, αs)≈(

1.72×1013, 5.06×1013
)
, where the subscript “s” denotes saddle-node bifurcation,

and αs =α1(rs) by using (2.9). Note that this bifurcation does not change the sta-
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Fig. 2.2. The saddle-node bifurcation on the center manifold with the dotted line indicating
unstable and the solid line stable (a) in the transformed x1-μ coordinates and (b) in the original
coordinates.

bility of E1 since the characteristic polynomial P1(ξ, re1) still has an eigenvalue with
positive real part when re1 (or α) is varied along E1 to pass through the turning point
(see Figure 2.1(b)).

The saddle-node bifurcation can be seen more clearly if we examine the local
dynamics close to the turning point; this analysis will also be useful later for analyzing
viral blips. At the turning point, the system contains a 1-dimensional center manifold
(whose linear part is characterized by the eigenvalue ξ11=0), a 1-dimensional unstable
manifold (whose linear part is characterized by the eigenvalue ξ12 ≈ 0.142), and a
2-dimensional stable manifold (whose linear part is characterized by the eigenvalues
ξ13 ≈ −0.290 and ξ14 ≈ −1.26 × 108), as shown in Figure 2.2. It is noted that the
eigenvalues ξ12 and ξ11 , which are both positive at the saddle-node point, become a
pair of complex conjugates with positive real part at the orange point above the
saddle-node point (see Figure 2.1(b)), moving toward the Hopf point. So the sub-
manifold that is the complement to the center manifold is still expelling until meeting
the Hopf bifurcation point.

In order to find the differential equation described on the center manifold, we
first apply the transformation (x, y, r, a)T = (xe1, ye1, re1, ae1)

T + Ts(x1, x2, x3, x4)
T ,

where (xe1, ye1, re1, ae1) is the infected equilibrium solution E1, and Ts is a constant,
nonsingular matrix. Under this transformation, the Jacobian of system (2.1) becomes
the Jordan canonical form: Λs ≈ diag {0, 0.142, −0.290, −1.26×108}. Then, by using
center manifold theory [19] on the transformed system of (2.1), we get the differential
equation describing the dynamics of the system, restricted to the center manifold,
ẋ1 ≈−2.66×10−12μ − 1.93×10−4x2

1, for which the perturbation value of μ near the
saddle-node point is roughly μ ≈ 1012, about 2% of α (see Figure 2.1(b)), as expected.
The bifurcation diagram restricted on the center manifold is depicted in Figure 2.2(a),
with the corresponding bifurcation diagram in the original system projected in the
α-r plane as shown in Figure 2.2(b). It should be noted that the scaling between the
graphs in Figures 2.2(a) and 2.2(b) depends on the transformation matrix Ts. Also,
note that the upper half branch in Figure 2.2(a) (denoted by the solid line) indicates
that it is stable but is only restricted to the 1-dimensional center manifold. For
the whole system, this branch is still unstable since the system contains an unstable
manifold (as shown in Figure 2.2(b)).
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2.3.2. Hopf bifurcation and limit cycles. To find any possible Hopf bifur-
cation which may occur from the infected equilibrium E1, we first need to determine
the critical points at which Hopf bifurcation occurs. The necessary and sufficient
conditions for general n-dimensional systems to have a Hopf bifurcation are obtained
in [43]. To state the theorem, consider the general nonlinear differential system

(2.10) ẋ = f(x, α), x ∈ R
n, α ∈ R

m,

with an equilibrium determined from f(x, α) = 0, as, say, xe = xe(α). To find the
stability of xe, evaluating the Jacobian of system (2.10) at x= xe(α) yields J(α) =

Dxf |x=xe(α)=
[∂fi(xe(α),α)

∂xj

]
. The eigenvalues of the Jacobian J(α) are determined by

the following characteristic polynomial:
(2.11)

Pn(λ) = det[λI − J(α)]

= λn + a1(α)λ
n−1 + a2(α)λ

n−2 + · · ·+ an−2(α)λ
2 + an−1(α)λ + an(α).

Then, by the Hurwitz criterion [21], we know that the equilibrium solution xe(α) is
asymptotically stable if and only if all the roots of the polynomial Pn(λ) have negative
real part, or equivalently, if and only if all the following Hurwitz arrangements Δi(α)
(i = 1, 2, . . . , n) are positive:

Δ1 = a1, Δ2 = det

[
a1 1
a3 a2

]
, Δ3 = det

[
a1 1 0
a3 a2 a1
a5 a4 a3

]
, . . . Δn = an ·Δn−1.

Having defined the Hurwitz arrangements as above, we have the following theorem.
Theorem 1 (see [43]). The necessary and sufficient condition for a Hopf bifurca-

tion to occur from the equilibrium solution xe(α) of system (2.10) is Δn−1 = 0, with
an > 0 and Δi > 0, for 1 ≤ i ≤ n− 2.

In order to further consider the postcritical dynamical behavior of the system
and to determine the stability of bifurcating limit cycles, we may apply normal form
theory to system (2.10). Assume that at a critical point α = αc, the Jacobian of
(2.10) evaluated at the equilibrium xe contains a pair of purely imaginary eigenvalues
±iωc, and all other eigenvalues have negative real part. Then, the normal form of
system (2.10) associated with Hopf bifurcation can be written in polar coordinates as
(see, e.g., [42])

(2.12)
dρ

dt
= ρ

(
v0 μ+ v1 ρ

2 + · · · ) , dθ

dt
= ωc + t0 μ+ t1 ρ

2 + · · · ,

where μ=α − αc, ρ and θ denote the amplitude and phase of motion, respectively.
Then, the first equation of (2.12) can be used to approximate the amplitude of bi-
furcating limit cycles and to determine their stability. The second equation of (2.12)
can determine the frequency of periodic motion. The coefficient v1, usually called the
first-order focus value, plays an important role in determining the stability of limit
cycles. When v1 < 0 (v1 > 0, respectively), the Hopf bifurcation is called supercrit-
ical (subcritical) and the bifurcating limit cycles are stable (unstable). The Maple
program developed in [42] can be easily applied to system (2.10) to obtain the normal
form (2.12). The coefficients v0 and t0 for the linear part of system (2.10) can be
found from a linear analysis, given by [44], v0=

1
2 (a11+a22), t0=

1
2 (a12−a21), where

aij=
∂fi

∂xj∂μ
, evaluated at the critical point.
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We now apply the above formula to consider the infected equilibrium E1 of system
(2.10). To check if there exists a Hopf bifurcation from E1, based on the 4th-degree
characteristic polynomial P1(ξ, re1), we apply the formula Δ3=a1a2a3−a23−a21a4=0
and solve this equation for r to obtain a unique value, rH > 0, such that (by using
(2.9)) αH = α1(rH) > 0. When the parameter values in Table 2.1 are used, these
critical values are given by (rH , αH)≈(6.72×1013, 2.64×1013), at which the Jacobian
of system (2.1) contains a purely imaginary pair and two negative real eigenvalues
±0.308 i, −1.66, and −3.66×107. Thus, as α is varied across αH , a Hopf bifurcation
occurs from E1, leading to a family of limit cycles.

To find the approximate solutions of the limit cycles and to determine their sta-
bility, we apply normal form theory to this model associated with this singularity.
First, we apply a transformation (x, y, r, a)T =(xe1, ye1, re1, ae1)

T+TH (x1, x2, x3, x4)
T ,

where (xe1, ye1, re1, ae1) is the infected equilibrium solution E1 and TH is a constant,
nonsingular matrix. We obtain a transformed system of (2.1), which we omit due to its
lengthy expression. Then, applying the formulas v0=

1
2 (a11+a22), t0=

1
2 (a12−a21) to

the transformed system, we obtain v0≈3.15 × 10−15 and t0≈3.33 × 10−15. Further,
we apply the Maple program [42] to the transformed system to obtain v1≈−4.18×10−7

and t1≈−3.38×10−6. Thus, the normal form up to third order is given by

(2.13)

dρ

dt
≈ ρ(3.15×10−15μ− 4.18×10−7ρ2 + · · · ),

dθ

dt
≈ 0.308+3.33×10−15μ−3.38×10−6ρ2+· · · .

The first equation of (2.13) can be used to analyze the bifurcation and stability of
bifurcating limit cycles. Setting dρ

dt = 0 results in two solutions: ρ = 0, which repre-
sents the infected equilibrium solution E1; and ρ ≈ 8.68×10−5√μ (μ > 0), which is
an approximation of the amplitude of bifurcating limit cycles. Since v1 < 0, this is a
supercritical Hopf bifurcation, and bifurcating limit cycles are stable. For example,
choose μ = 1012. Then, the approximate amplitude of the limit cycle is ρ ≈ 86.8, and
the frequency of the limit cycle approximately equals ω ≈ 0.283, slightly less than
ωc ≈ 0.308. The phase portrait of the simulated limit cycle, projected on the x-y
plane, is shown in Figure 2.3(d). It can be seen from Figures 2.3(a) and (d) that the
analytical prediction from the normal form, ρ ≈ 86.8, agrees well with the simulated
result.

The above analysis based on normal form theory is for local dynamical behavior;
that is, the limit cycles must be near the Hopf critical point (rH , αH). It can be
seen from Figure 2.1(b) that values of α taken from the interval α ∈ (αH , αt) lead to
unstable equilibrium solutions (since both E0 and E1 are unstable for this interval).
However, due to the solutions being nonnegative and bounded, we expect that there
should exist certain persistent motions such as oscillating solutions for the values of
α taken from this interval, and the amplitudes of these oscillations can be large. For
example, for α = 3.50× 1013, the phase portrait of the simulated solution, projected
on the x-y plane, is shown in Figure 2.3(e), corresponding to the oscillations in time
shown in Figure 2.3(b), which have much greater amplitude than the oscillations in
Figure 2.3(a).

Now, we take a particular value of α from the interval α ∈ (αH , αt), which is close
to αt, to simulate the system. For example, taking α=4.55×1013<αt≈ 4.58×1013,
we obtain the phase portrait of the simulated oscillating solution, projected on the
x-y plane, shown in Figure 2.3(f) with corresponding time history of x and y shown
in Figure 2.3(c). This clearly shows viral blips.
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Fig. 2.3. Simulated limit cycles of system (2.1) for the parameter values taken from Table 2.1,
with the time course of x and y on the top row and the corresponding phase portraits projected on
the x-y plane on the bottom row. For (a) and (d) α = 2.74× 1013, for (b) and (e) α = 3.50× 1013,
and for (c) and (f) α = 4.55× 1013.

Next, we will discuss what conditions are needed for creating the phenomenon of
viral blips.

2.4. Conditions for generating viral blips. In the previous subsection, we
carefully analyzed the occurrence of viral blips in a 4-dimensional HIV model (2.1).
System (2.1) is an example of an in-host infection model, an ODE system describing
the dynamics of infection within a single infected individual. In-host infection models,
based on classical susceptible-infected-recovered (SIR) models in epidemiology [1],
typically include populations of uninfected target cells, infected target cells, and the
infection dynamics between the two classes [28]. More complex models also include
populations of free virus, latently infected cells, and various relevant components of
the immune response, depending on the infection under study. Although there are
many exceptional cases, in-host models typically admit an uninfected equilibrium and
at least one infected equilibrium, analogous to the disease-free and endemic equilibria
of an SIR model.

Since in-host infection models share many similar features, much of our under-
standing regarding the behavior of system (2.1) can be generalized to other models.
Based on insights obtained in analyzing system (2.1), we propose in the following
hypothesis four conditions for an in-host infection model to generate viral blips.

Hypothesis 1. The following conditions are needed for an in-host infection model
to generate viral blips:

(i) there exist at least two equilibrium solutions;
(ii) there exists a transcritical bifurcation at an intersection of the two equilibrium

solutions;
(iii) there is a Hopf bifurcation which occurs from one of the equilibrium solutions;

and
(iv) large oscillations (or, more generally, global, persistent motions) can occur
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Fig. 2.4. Schematic diagram for explaining the occurrence of blips.

near the transcritical critical point.
The reasons for conditions (i) and (ii) are simple because when a parameter that

reflects infection severity is chosen as a bifurcation parameter, an in-host infection
model typically starts at the uninfected equilibrium and then bifurcates to the infected
equilibrium as the parameter is increased. Thus, these two equilibrium solutions must
exchange their stability, yielding a transcritical bifurcation. For the 4-dimensional
model considered in the previous subsection, the uninfected equilibrium E0 and the
infected equilibrium E1 intersect at the critical point (αt, rt), where they exchange
their stability. In fact, E0 is stable (unstable) for α > αt (α < αt), while the lower
branch of E1 is stable (unstable) for α < αt (α > αt), as shown in Figure 2.1(b).

Condition (iii), the existence of a Hopf bifurcation, is necessary to obtain oscil-
lations. It can be seen from Figure 2.1(b) that limit cycles bifurcate from E1 at the
Hopf critical point (αH , rH), and the limit cycles become larger if μ = α − αH > 0
increases.

The reasoning behind condition (iv) is not so obvious. Large oscillations (or
global, persistent motions) are necessary, near the transcritical point, for viral blips
to emerge. As shown in Figure 2.1(b), both E0 and E1 are unstable for α ∈ (αH , αt)
(though a part of the lower branch of E1 is stable, it is biologically meaningless due
to y < 0). Thus, there exist large oscillations near the transcritical critical point αt.
Moreover, it is noted from Figure 2.1(b) that at the left side of the transcritical point
αt, the eigenvalues evaluated at E0 are all real, containing one positive eigenvalue
(ξ01 > 0) and three negative eigenvalues (ξ0i < 0, i = 2, 3, 4). In other words, any point
on the uninfected equilibrium E0 for α < αt is a saddle point. Since ξ01 crosses zero
at the critical point α = αt, ξ

0
1 is very small near the critical point for α < αt.

Now suppose we consider a value of α < αt, but near the critical point α = αt

(e.g., α = 0.455× 1014, as shown in Figures 2.3(c) and (f)). For simplicity, we may
consider a submanifold whose linear part is characterized by the eigenvalues ξ01 and ξ02 ,
and the corresponding coordinates are x0

1 and x0
2, respectively. A solution trajectory

of system (2.1) for such a value of α, projected on this submanifold, is depicted in
Figure 2.4. Due to 0 < ξ01 	 1, the trajectory moves away from the critical point
very slowly near the x0

1-axis, while it moves rapidly toward the critical point near the
x0
2-axis since |ξ02 | is not small. Further, due to the global boundedness of solutions,

the part of the trajectory which is not close to the saddle point moves rapidly, as
shown in Figure 2.4. This fast-slow motion yields the blips phenomenon, with slow
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changes corresponding to the near-flat section in the time history, and rapid changes
occurring during the viral blips, as shown in Figures 2.3(c) and (f). In other words,
the trajectory spends relatively long periods in regions of state space which lie very
close to the uninfected equilibrium and then transiently visits regions of state space
which are close to the infected equilibrium.

3. A simple 3-dimensional in-host infection model producing blips.
Having established the conditions in Hypothesis 1 for generating viral blips, we are
ready to turn to some basic questions such as the following: What types of in-host
infection models can generate blips, and what is the minimum dimension of such
models?

3.1. Generalizing ROS to other physical variables. In model (2.1), the
variable r represents ROS, which are produced naturally in the body. In HIV infection,
extra ROS are generated by infected cells, and these in turn directly accelerate HIV
progression [29, 36]. Therefore, infectivity β is an increasing and saturating function
of ROS concentrations. However, we note that the form of the infection term is not
specific to HIV or to ROS, and models of a similar form could in fact apply to other
infections. To generalize the physical meaning of the variable r, we can, for example,
let r denote any damage caused by the infection, for example, to the humoral immune
response, to infected organs, or to the infected individual aspecifically. The model
assumes that “damage” increases with the extent of the infection at rate ky and is
repaired or cleared at rate drr. This yields the 3-dimensional system

(3.1) ẋ = λx − dxx− β(r)xy, ẏ = β(r)xy − dyy, ṙ = ky − drr.

To achieve an infection term similar to that in model (2.1), we further assume that
accrued damage makes target cells more vulnerable to infection, that is, that accrued
damage increases the infection rate. We thus take β(r) to be an increasing, saturating
function of r.

In the original model (2.1), r represents ROS, for example, H2O2, whose produc-
tion and decay rates are both extremely fast. For the more general model (3.1), we
would like to assess whether viral blips are still possible at more moderate production
and repair rates, k and dr. For ROS the decay rate dr =1.66 ×107 day−1 implies a
half life of only 4ms. We decreased dr by several orders of magnitude; in particular,
at dr=1.0×103 day−1, a half life of 60s, we find that viral blips are still possible. For
this value of dr, we can take k=1.49×1015molecules cell−1 day−1. Note that λr has
been set to zero in (3.1) to make the model more general.

For simplicity, let a = bmax−b0, b = b0, and c = rhalf . Then, the function β(r)
is rewritten as β(r) = b+ a r

r+c , and a, b, and c are treated as bifurcation parameters.
Parameter values λx, dx, dy, k, dr, b0, bmax, and rhalf are given in Table 2.1. For prac-
tically meaningful solutions, the values of the bifurcation parameters will be chosen
close to the values in Table 2.1.

To analyze (3.1), we can follow the same procedure used in the previous section
and treat b as a bifurcation parameter. First, it is easy to prove the well-posedness
of system (3.1). Next, we get the infection-free equilibrium E0 : (xe0, ye0, re0) =

(λx/dx, 0, 0) and the infected equilibrium E1 := (xe1, ye1, re1), where xe1=
dy(re1+c)

(a+b)re1+bc ,

ye1 =
1
dy
(λx−dxxe1), and re1 is determined by F1(r, c) = drdy(a+b)r2+ [dy(drbc+

kdx)−kλx(a+b)] r+kc(dxdy−bλx) = 0. Again, it is easy to show that E0 and E1

intersect at the transcritical bifurcation point (bt, rt) ≈ (9.38×10−4, 0). On the in-
fected equilibrium E1, there are two saddle-node bifurcation points (turning points),
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Fig. 3.1. Dynamics and bifurcation of system (3.1) for dr = 1.0×103, k = 1.49×1015: (a)
bifurcation diagram projected on the b-r plane; (b) a close-up of part (a); (c) simulated time history
y(t) converging to E1 for b = 0.001 with the initial condition (x, y, r)=(178, 46, 73) close to E1; and
(d) simulated time history y(t) converging to a stable limit cycle (blips) for b = 0.001 with the initial
condition (x, y, r)=(1005, 3, 3) close to E0.

(bs1 , rs1) ≈ (−1.49×10−3, 4.18×1013) and (bs2 , rs2 ) ≈ (−5.77×10−3, 3.05×1014), and
a Hopf bifurcation point (bH , rH) ≈ (6.56×10−4, 7.24×1013).

The bifurcation diagram and simulated results are shown in Figure 3.1. All the
conditions (i)–(iv) in Hypothesis 1 are satisfied. Blips do appear since the Hopf
critical point is close to the transcritical point. However, because E0 is not globally
stable, depending on the initial conditions, the oscillation may converge to the stable
equilibrium E1 (see Figure 3.1(c)) or converge to a limit cycle with large amplitude
(blips), as shown in Figure 3.1(d). Convergence to a smaller, regular oscillation due
to the Hopf bifurcation is also possible (not shown in Figure 3.1).

3.2. Identifying the region of parameter space exhibiting viral blips.
Having found viral blip behavior in the simple 3-dimensional infection model (3.1),
we are now further interested in identifying the region of parameter space in which
viral blips may occur. This is particularly useful in applications since in reality, all
parameters are roughly measured. Thus, we need to study the robustness of the
phenomenon to variations in the system parameters. If blips appear only for a very
small region in the parameter space, then the results are not practically useful. The
main idea of identifying the region where blips may occur is to study the instability of
the solutions of the system. Once the unstable region is identified, blips can be found
by using the other conditions in Hypothesis 1. In order to simplify the analysis, we
first introduce state variable scaling and parameter rescaling into system (3.1).
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(a) (b) (c)

Fig. 3.2. (a) Graph of Δ2 = 0 in the A-B-C parameter space, identifying the region yielding
oscillations; (b) cross section of panel (a) where A = 0.364; and (c) cross section of panel (a) where
C=3.94×10−4.

3.2.1. State variable scaling and parameter rescaling. Introducing the
scaling x= c1X, y= c2Y, r= c3R, t= c4τ , where c1=

λx

dy
, c2=

λx

dy
, c3=

λxk
1013d2

y
, c4=

1
dy
,

to (3.1) and letting A= aλx

d2
y
, B= b λx

d2
y
, C=

c d2
y

1012λx k , Dx=
dx

dy
, Dr=

dr

dy
yields the scaled

system
(3.2)

Ẋ = 1−DxX −
(
B +

AR

R+ C

)
XY, Ẏ =

(
B +

AR

R+ C

)
XY − Y, Ṙ = Y −DrR,

which will be used in the following analysis, with the scaled parameter values given
by

(3.3) A = 0.364, C = 3.94× 10−4, Dx = 0.057, Dr = 1000,

and with B treated as a bifurcation parameter.

3.2.2. Equilibrium solutions and their stability. The bifurcation patterns
of the scaled system (3.2) are the same as those of system (3.1). Two equilibrium
solutions are E0 : (Xe0, Ye0, Re0) = (1/Dx, 0, 0), and E1 : (Xe1, Ye1, Re1), where

Xe1 = Re1+C
(A+B)Re1+BC , Ye1 = 1− Dx(Re1+C)

(A+B)Re1+BC , and Re1 is determined from the equa-

tion F3(R) = Dr(A+B)R2+[DrBC+Dx−(A+B)]R+(Dr−B)C=0.
The characteristic polynomial for E0 is P0(ξ) = (ξ +Dx) (ξ +Dr) (ξ − B

Dx
). It is

easy to show that E0 and E1 exchange stability at the transcritical bifurcation point
B = Dx. The characteristic polynomial for E1 is P1(ξ) = ξ3+a1(r)ξ

2+a2(r)ξ+a3(r),
and the Hopf critical point is determined by Δ2 = a1(r) a2(r) − a3(r) = 0. We fix
parameters Dr and Dx and choose A, B, and C as bifurcation parameters. Then we
want to find the parameter region where blips may occur. First, a Hopf bifurcation
is necessary, requiring the condition Δ2(A,B,C) = 0. The graph of Δ2(A,B,C) = 0
is plotted in the 3-dimensional A-B-C parameter space, as shown in Figure 3.2(a),
where the green hypersurface defines a set of points which are Hopf critical points;
and the region bounded by the green surface is unstable for E1, leading to oscillations.
Thus blips may occur within this region and near the boundary as well, depending on
the relative position of the Hopf critical point with respect to the transcritical point.

In the following, we fix either parameterA or parameterC to obtain two-dimensional
graphs, which illustrate more clearly the bifurcations necessary for blips.
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868 WENJING ZHANG, LINDI M. WAHL, AND PEI YU

Fig. 3.3. Bifurcation diagrams corresponding to C = 0.002, 0.012, and 0.018, respectively,
and numerical simulation results for the parameter values (B,C)=(0.06, 0.002)(1), (0.08, 0.002)(2),
(0.10, 0.002)(3), (0.07, 0.012)(4), (0.09, 0.012)(5), (0.08, 0.018)(6).

3.2.3. Parameter A fixed. Fix A = 0.364, which cuts the surface in Fig-
ure 3.2(a) to yield curves, as shown in Figure 3.2(b). The transcritical bifurcation
occurs at B = 0.057, which is denoted by a red line in Figure 3.2(b). A Hopf bifurca-
tion occurs on the green curve, and the region bounded by the green and red curves
indicates where oscillations can happen. It should be noted that the above results are
based on local dynamical analysis; thus blips may also appear outside this bounded
region but close to the green curve.

We take three typical values of C (as the three dotted lines shown in Figure 3.2(b)),
and we obtain the Hopf critical points as follows:

(3.4)

C = 0.002 : (BH , RH) ≈ (1.69×10−1, 7.90×10−4),
C = 0.012 : (BH1 , RH1) ≈ (6.27×10−2, 1.53×10−4),
C = 0.012 : (BH2 , RH2) ≈ (1.06×10−1, 5.31×10−4),
C = 0.018 : No Hopf critical point.

The bifurcation diagrams corresponding to the three lines, C=0.002, C=0.012,
and C = 0.018, are shown in the top three graphs in Figure 3.3. Six simulated
results are also presented in this figure, corresponding to the six points marked on
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the three dotted lines in Figure 3.2(b). It is seen that the values taken from the
points (1)–(4) generate blips; point (5) leads to a regular oscillation, while point (6)
gives a simple stable equilibrium solution, as expected. For this case when parameter
A is fixed, no blips have been found for the values outside the region bounded by
the red and green curves. It should be noted in the top middle figure of Figure 3.3
that there are two Hopf bifurcation points on the equilibrium E1. One of them is
supercritical while the other is subcritical, but the two families of the limit cycles
bifurcating from these two critical points are both stable, since the stability change
is reversed at the two points. In fact, the three eigenvalues along the unstable part
of E1 between the two Hopf bifurcation points contain one negative eigenvalue and
a pair of complex conjugates with positive real part. On the two stable parts, the
real part of the complex conjugate eigenvalues changes sign to become negative. As
the parameter C is increasing from 0.002 to 0.018, the two Hopf bifurcation points
merge to a single point on E1 (corresponding to the turning point on the green curve
(see Figure 3.2(b)), at which the horizontal line is tangent to the green curve); the
corresponding eigenvalues contain a negative eigenvalue and a purely imaginary pair.
This indeed characterizes a degenerate Hopf bifurcation (see, e.g., [44]) different from
the Hopf bifurcation defined by (2.12). A similar discussion applies to the other two
Hopf bifurcation points shown in the top left figure in Figure 3.4.

3.2.4. Parameter C fixed. Now we fix parameter C = 3.94 × 10−4, which
results in curves in the A-B plane by cutting the surface in Figure 3.2(a), as shown in
Figure 3.2(c). The transcritical point is kept the same: B = 0.057. We choose three
typical values of A, and we find the Hopf bifurcation points as follows:

(3.5)

A = 0.025 : (BH1 , RH1) ≈ (5.82×10−2, 9.84×10−5),
A = 0.025 : (BH2 , RH2) ≈ (6.75×10−2, 2.65×10−4),
A = 0.200 : (BH , RH) ≈ (8.32×10−2, 7.33×10−4),
A = 0.364 : (BH , RH) ≈ (3.99×10−2, 7.99×10−4).

The bifurcation diagrams corresponding to the three lines A=0.025, A=0.200,
and A=0.364 are shown in the top three graphs in Figure 3.4. Nine simulated results
are also presented in this figure, corresponding to the nine points marked on the five
dotted lines in Figure 3.2(c). It is observed from these graphs that among the nine
chosen parameter values, seven cases exhibit blips (see the points (2)–(7) and (9) in
Figure 3.2(c) with the corresponding simulated results shown in Figure 3.4). It is
noted that some of these points are not even close to the red line, nor are they in the
region bounded by the red and green curves, suggesting that a simple 3-dimensional
HIV model can generate rich blips.

3.3. 3-dimensional immunological model. In this subsection, we briefly con-
sider an immunological model [28] and apply Hypothesis 1 to show that the model
can have blips. For simplicity, the original 4-dimesional model is reduced (by a quasi–
steady state assumption on the virus particles) to a 3-dismensional model, described
by

(3.6)
ẋ = λ− dx− β(y)xy,
ẏ = β(y)xy − ay − pyz,
ż = cyz − bz,

where x, y, and z represent the densities of the infected cells, uninfected cells, and
CTL, respectively. The system (3.6) with constant β(y) is well known [2, 27] and
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870 WENJING ZHANG, LINDI M. WAHL, AND PEI YU

Fig. 3.4. Bifurcation diagrams corresponding to A = 0.025, 0.200, 0.364, and numer-
ical simulation results for the parameter values (A,B) = (0.025, 0.060)(1), (0.200, 0.060)(2),
(0.200, 0.070)(3), (0.200, 0.085)(4), (0.300, 0.059)(5), (0.300, 0.070)(6), (0.364, 0.060)(7),
(0.364, 0.070)(8), (0.400, 0.060)(9).

does not exhibit blips. In order to generate viral blips, here we choose β(y)=n+ my
y+k ,

where n and m are minimum and maximum infectivity, and k represents the density
of infected cells when the infectivity takes its median value. Since the analysis is
similar to previous models, we omit the details and give only the results as follows.
The system (3.6) has three equilibrium solutions: the infection-free equilibrium, E0,
the infected equilibrium with CTL, E1, and the infected equilibrium without CTL,
E2. There are two transcritical bifurcation points. One, named “transcritical 1” in
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(a) (b)

Fig. 3.5. (a) Bifurcation diagram of system (3.6), showing the equilibrium solutions E0, E1,
and E2 with dashed and solid lines denoting unstable and stable, respectively. (b) Simulated viral
blips in system (3.6) for n = 0.007. Other parameter values used here are λ=k=p=1, d=0.01, m=
b=0.05, a=0.5, c=0.1.

Figure 3.5(a), is at the intersection of E0 and E2: (nt1, yt1) ≈ (0.005, 0), at which
E0 and E2 exchange their stability. The second occurs at the intersection of E1 and
E2: (nt2, yt2) ≈ (−0.01, 0.5), called “transcritical 2” in Figure 3.5(a). However, note
that they only exchange their stability if restricted to a one-dimensional manifold, and
both of them are unstable in the whole space since one of the eigenvalues stays positive
when crossing this transcritical point. E1 becomes stable until n is increased to cross
a Hopf critical point (called “Hopf 1” in Figure 3.5(a)): (n1H , y1H) ≈ (0.206, 0.5).
Another Hopf bifurcation point (called “Hopf 2” in Figure 3.5(a)) happens on E2 at
(n2H , y2H) ≈ (0.0213, 1.81). The limit cycles bifurcating from Hopf 1 are stable,
while those from Hopf 2 are unstable, leading to large oscillating motions when the
values of n are chosen from the interval (nt, n2H). The above results show that all
four conditions in Hypothesis 1 are satisfied, and blips indeed appear. The simulated
blips for n = 0.007 are depicted in Figure 3.5(b).

4. A 2-dimensional in-host infection model. For the generalized 3-dimen-
sional model discussed in section 3, we assume that r is some form of damage to the
host or to the host immune system, which increases with the extent of the infection,
that is, in proportion to the infected cell density. Here, we further assume that there
is a quasi-steady state (as used in (3.1)) between the damage, r, and the infected
cell density y. Thus, the 3-dimensional HIV model can be further reduced to a 2-
dimensional model, given by

(4.1) ẋ = λx − dxx− β(y)xy, ẏ = β(y)xy − dyy.

Note that system (4.1) is now in the form of an in-host infection model, which includes
only uninfected and infected target cell populations and the most basic “birth” and
death rates. However, we now think of the infectivity β(y) as a possible function of y;
other parameters have the same meaning as in (3.6). We will show that this simplified
2-dimensional infection model may also be able to generate blips.

4.1. 2-dimensional in-host model with constant and linear infection
rates. First, we consider the case when the infection rate, β(y), is simply a constant
function; that is, β(y) = β. Taking β itself as a bifurcation parameter, it is easy to
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show that there exist two equilibrium solutions and a transcritical bifurcation point,
but no Hopf bifurcation exists. This violates Hypothesis 1, and therefore no blips can
appear in this case.

Next, suppose the infection rate β(y) is a linear function of the infected cell
density, y, that is, β(y) = b + ay, where the parameters a and b represent the same
constants as before, and a is treated as a bifurcation parameter. In this case, we have
two equilibrium solutions E0 and E1. But E0 is always stable for all values of a though
there exists a Hopf bifurcation on E1. Therefore, no transcritical bifurcation point
exists for this case, which violates Hypothesis 1, implying that blips are not possible
when β(y) is a linear function.

4.2. A 2-dimensional in-host model with saturating infection rate. Mo-
tivated by our previous results for the 3- and 4-dimensional models, we next assume
that infectivity is an increasing saturating function of the infected cell density, y,
namely, β(y) = b+ ay

y+c . For our numerical work, we take the same values of a and b
as used in section 3.1, while c is taken to be c = 50, obtained by numerical simulation
based on the experimental data given in [39]. Other parameter values are as described
for model (3.1).

4.2.1. Scaling. For convenience in the following analysis, we first simplify sys-
tem (4.1) by the following scaling to reduce the number of parameters. Let x =
e1X, y= e2Y, t= e3τ , where e1=

λx

dy
, e2=

λx

dy
, e3=

1
dy
, and set A= aλx

d2
y
, B= λxb

d2
y
, C=

cdy

λx
, D= dx

dy
. Then, the rescaled system is given by

(4.2)

dX

dτ
= 1−DX −

(
B +

AY

Y + C

)
XY,

dY

dτ
=

(
B +

AY

Y + C

)
XY − Y,

with B treated as a bifurcation parameter. Taking the parameter values from [28],
we have the scaled parameter values A=0.364, C =0.823, andD=0.057 for system
(4.2).

4.2.2. Equilibrium solutions and their stability. By setting Ẋ = Ẏ = 0
in (4.2), we get two biologically meaningful equilibrium solutions, the uninfected
equilibrium solution E0 : (X0, Y0) = (1/D, 0) and the infected equilibrium solu-
tion E1 = (X1, Y1), where X1 =

Y1+C
(A+B)Y1+BC , and Y1 is determined by the equation

F1=(A+B)Y 2+(D+BC−A−B)Y +(D−B)C=0. This indicates that condition (i)
in Hypothesis 1 is satisfied. Similarly, it is easy to find that E0 is stable (unstable) if
B < D (B > D).

4.2.3. Bifurcation analysis. By using the characteristic polynomials at E0 and
E1, we can show that a transcritical bifurcation occurs at the critical point, (Yt, Bt) =
(0, 0.057), which satisfies condition (ii) in Hypothesis 1. E0 and E1 intersect at this
critical point and exchange their stability. Further, a Hopf bifurcation happens at the
critical point (BH , YH) ≈ (0.121, 0.811). E1 is stable (unstable) on the right (left)
side of the Hopf bifurcation point. Therefore, condition (iii) in Hypothesis 1 holds
for this case. If we take a value of B near Bt on the side where both E0 and E1

are unstable, then condition (iv) in Hypothesis 1 is also satisfied and so blips occur.
The bifurcation diagram is shown in Figure 4.1(a), and the simulated viral blips for
B = 0.060 are depicted in Figure 4.1(b).
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Fig. 4.1. (a) Bifurcation diagram projected on the B-Y plane, with the red and blue lines
denoting the E0 and E1, respectively, and dotted and solid lines indicating unstable and stable,
respectively. (b) Simulated time history of y(t) for B = 0.060.

Summarizing the results of this section, we conclude that the simple 2-dimensional
in-host model is sufficiently complex to exhibit viral blips, provided the infectivity
function is an increasing, saturating function of infected cell density. However, for
this model, the range of parameter space in which blips occur is relatively restricted,
compared with the 3-dimensional model, which is established in the previous section.

An interesting question is naturally raised here: Does there exist a more general
function β(y) such that the existence of blips depends upon the general properties
of the function like its maximal values and/or its derivatives? In fact, it has been
found that by choosing the parameter c large enough in the function β, a threshold is
reached beyond which the Hopf bifurcation and hence also the viral blips disappear.

5. Recurrency in a 5-dimensional model. So far, we have considered 2-,
3-, and 4-dimensional in-host infection models with increasing, saturating, infectivity
functions and shown that all these models exhibit blips. Moreover, it has been shown
for the 2-dimensional model (and can be shown for the 3- and 4-dimensional models,
but they are omitted here) that replacing the infectivity function with a constant or
linear function of y will cause blips to disappear. However, in this section we will
show that higher-dimensional systems may have blips even with a constant infectivity
function.

We consider a previously proposed 5-dimensional immunological model in which
recurrent phenomena or viral blips have been observed via numerical simulation [41].
The model describes antibody concentrations and cytotoxic T lymphocytes (CTLs)
explicitly and is described as follows:

ẋ = λ− dx− βxv,(5.1a)

ẏ = βxv − ay − pyz,(5.1b)

ż = cyz − bz + hy,(5.1c)

u̇ = ξz − ηu− kuv,(5.1d)

v̇ = ey − kuv − γxv − qv.(5.1e)

Here x, y, z, u, and v are, respectively, the population densities of uninfected target
cells, infected target cells, CTLs, antibodies, and virions. The parameters λ and
dx represent the uninfected cells’ constant growth rate and death rate, respectively.
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Table 5.1

Parameter values used in model (5.1) [41].

Parameter Value

λ 104 cellsμL−1 day−1

d 0.100 day−1

β 1.25× 10−5 virion−1 μLday−1

p 10−4 cells−1 μL day−1

c 10−4 cells−1 μL day−1

b 0.200 day−1

h
[
0, 10−4

]
day−1

ξ 10.0 molecules cell−1 day−1

η 0.040 day−1

k 2.50× 10−5 particle−1 μLday−1

e 2.50 virions cell−1 day−1

γ 5.00× 10−5 cell−1 μLday−1

Target cells are infected by virus at rate βxv. The infected cells die at rate ay,
being killed by CTLs at rate pyz. It is assumed that CTLs proliferate at rate cyz
and decrease with the natural death rate bz. Equation (5.1d) describes the antibody
growth rate, ξz, which is proportional to the number of CTLs, the natural death
rate of antibody, ηu, and the binding rate of one antibody with one antigen, kuv. In
(5.1e), viruses are released from infected cells at rate ey and are bound by antibody,
absorbed by uninfected cells, or cleared at rates kuv, γxv, and qv, respectively. The
term hy corresponds to the CTL differentiated from memory T cells [41] and should
be expressed as hMyzM , where zM is the population density of virus-specific memory
T cells, which produce activated CTLs with rate hMy. In [41], zM is assumed to
be a constant, and so we have h = hMzM . We will consider two cases: h = 0 and
h 
= 0; h = 0 is due to the absence of memory T cells (that is, zM = 0) during
the primary effector stage. We will show the relation between the two cases. For
simplicity, without loss of the properties of antibodies, we assume q = 0 according
to [41]. Other experimental parameter values used for studying model (5.1) are given
in Table 5.1.

5.1. Well-posedness of model (5.1). Due to physical meaning, negative val-
ues of the state variables of system (5.1) are not allowed. Only nonnegative initial
conditions are considered, and the solutions of (5.1) must not be negative. The pa-
rameters in (5.1) are all positive due to their biological meaning. Expressing the
solutions of the system (5.1) by variation of constants yields

x(t) = x(0) exp [− ∫ t

0 (d+ βv(s)) ds] + λ
∫ t

0 exp [−
∫ t

s (d+ βv(w)) dw] ds,(5.2a)

y(t) = y(0) exp [− ∫ t

0 (a+ pz(s)) ds](5.2b)

+ β
∫ t

0
x(s)v(s) exp [− ∫ t

s
(a+ pz(w)) dw] ds,

z(t) = z(0) exp [
∫ t

0
(cy(s)− b) ds] + h

∫ t

0
y(s) exp [

∫ t

s
(cy(w) − b) dw] ds,(5.2c)

u(t) = u(0) exp [− ∫ t

0 (η + kv(s)) ds](5.2d)

+ ξ
∫ t

0 z(s) exp [− ∫ t

s (η + kv(w)) dw] ds,

v(t) = v(0) exp [− ∫ t

0 (ku(s) + γx(s) + q)ds](5.2e)

+ e
∫ t

0
y(s) exp [− ∫ t

s
(ku(w) + γx(w) + q)dw]ds.
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Theorem 2. When the initial conditions are taken positive, the solutions of
system (5.1) remain positive for t > 0. Moreover, they are bounded.

Proof. By the initial condition x(0) > 0, it is easy to see from (5.2a) that x(t) >
0 ∀ t > 0. Next, we show that y(t) > 0 ∀ t > 0 by an argument of contradiction.
Suppose, otherwise, that y(t) < 0 for some interval t ∈ (t1, t2), t1 > 0. Since y(0) > 0,
without loss of generality, we may assume t1 is the first time for y to cross zero, i.e.,
y(t) > 0 ∀ t ∈ [0, t1), y(t1) = 0 and y(t) < 0 ∀ t ∈ (t1, t2). Thus, from (5.2e) we have
v(t1) > 0 due to v(0) > 0. On the other hand, it is seen from (5.2b) that v(t) must
cross zero to become negative at some t > t1 since y(t) < 0 ∀ t ∈ (t1, t2). So let t = t3
be the first time for v(t) to cross zero, i.e., v(t3) = 0 and v(t) > 0 ∀ t ∈ [t1, t3). Now,
take t∗ = min(t2− ε, t3), satisfying t∗ > t1, where 0 < ε 	 1. So from the assumption
we have y(t∗) < 0. However, on the other hand, it follows from (5.2b) that

y(t∗) = y(t1) exp [−
∫ t∗

t1
(a+ pz(s)) ds] + β

∫ t∗

t1
x(s)v(s) exp [− ∫ t∗

s
(a+ pz(w)) dw] ds

= β
∫ t∗

t1
x(s)v(s) exp [− ∫ t∗

s
(a+ pz(w)) dw] ds > 0, since v(s) > 0 ∀ t ∈ (t1, t

∗),

leading to a contradiction. Hence y(t) > 0 ∀ t > 0, and it then follows from (5.2c)
and (5.2e) that z(t) > 0 and v(t) > 0 ∀ t > 0. Finally, by the positivity of z(t), (5.2d)
gives u(t) > 0 ∀ t > 0.

It remains to prove that positive solutions of system (5.1) are all bounded. First,
consider (5.1a), which yields ẋ � λ − dx. Given that the exponential functions have
negative exponents, we show that x(t) for t > 0 is bounded since as t → +∞,

x(t) ≤ exp (−∫ t

0
d ds) [x(0)+λ

∫ t

0
exp (

∫ s

0
d du)ds] = x(0)e−dt + λ

d (1− e−dt) ≤ λ
d .

Thus, denote xmax= limt→+∞ supx(t)= λ
d . It is easy to see that xmin> 0. Next, we

add (5.1a) and (5.1b) together to obtain ẋ+ẏ=λ−dx−ay−pyz � λ−min(d, a)(x+y).
Using the same boundedness argument for x(t), we get x(t)+ y(t) � λ

min(d, a) as

t→+∞, and thus ymax = limt→+∞ sup y(t)� λ
min(d, a) . Now consider (5.1e), yielding

v̇ � eymax−(γxmin+q) v. Similarly, using the same boundedness argument for x(t),
we have limt→+∞ v(t)� eymax

rxmin+q
. To prove boundedness of z(t) ∀ t>0, we use proof by

contradiction. Assume z(t) is unbounded, i.e., limt→+∞ z(t)→+∞. Due to positivity
of x, y, z, and v and boundedness of x, y, and v, it follows from (5.1b) that ẏ<0 for
z>z∗, or for t> t∗> 0 (z∗ and t∗ are finite), which implies limt→+∞ y(t)→0. Then,
from (5.1c) we have ż = (cy−b)z+hy, so for sufficiently large t, cy−b < 0, and so
ż becomes negative (for some z >z∗), implying that z cannot increase unboundedly,
which is a contradiction. Thus, we denote zmax = max{z(t), t � 0}. Finally, from
(5.1d), we have u̇� ξzmax−ηu, which yields u(t)� ξzmax

η as t→+∞. Hence, we have

shown that the solutions of system (5.1) are positive and bounded.
If the initial conditions have some zero elements, it is easy to see from (5.2) that

solutions are nonnegative. Hence, system (5.1) is proved to be a well-posed biological
model, with nonnegative and bounded solutions.

5.2. Equilibrium solutions and their stability. The following results are
obtained based on the assumption q = 0 [41]. The equilibrium solutions of (5.1) are
obtained by simply setting the vector field of (5.1) to zero. There are two equilibrium
solutions, the infection-free equilibrium E0 : (xe0, ye0, ze0, ue0, ve0) = (λd , 0, 0, 0, 0)

and the infected equilibrium E1 : (xe1, ye1, ze1, ue1, ve1), where ve1 = λ−dxe1

βxe1
, ze1 =

ue1(η+kve1)
ξ , and ye1 =

ve1(kue1+γxe1)
e . Further, with h = 10−4 and other parameter
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Fig. 5.1. Bifurcation diagram and simulated viral blips for system (5.1) with the parameter
values taken from Table 5.1 when a = 0.500: (a) Bifurcation diagram for h = 10−4, with the red
and blue lines denoting E0 and E1, respectively, and the dotted and solid lines indicating unstable
and stable, respectively (the lower branch of E1 is biologically meaningless, due to negative values
in the solution); (b) simulated time history of y(t) for h = 10−4; and (c) simulated time history of
y(t) for h = 0.

values taken from Table 5.1, ue1 can be expressed in terms of xe1, and an equation
F4(xe1, a) = 0 is obtained to determine xe1.

The stability analysis for equilibria E0 and E1 is based on the Jacobian matrix
of (5.1). Evaluating the Jacobian at the infection-free equilibrium E0 yields the char-
acteristic polynomial PE0(Ψ) = det [ΨI−J0(E0)] = (Ψ+d)(Ψ+b)(Ψ+η)PE0a, where

PE0a= Ψ2+
(
γλ
d +a

)
Ψ+ (aγ−eβ)λ

d . It is easy to see that the stability of E0 is simply de-
termined by the sign of (aγ − eβ); i.e., E0 is stable (unstable) if (aγ − eβ) > 0 (< 0).
In a similar way, we evaluate the Jacobian at E1 to obtain the 5th-degree characteristic
polynomial, from which the fourth Hurwitz determinant Δ4 can be determined.

5.3. Bifurcation analysis for h �= 0. Now we consider possible bifurcations
which may occur from the equilibrium solutions E0 and E1. First, for the infection-
free equilibrium E0, as discussed in the previous subsection, E0 is stable (unstable)
if (aγ − eβ) > 0 (< 0). The only possible singularity occurs at the critical point,
determined by aγ − eβ = 0, at which one eigenvalue of the characteristic polynomial
becomes zero (and the other four eigenvalues are negative), leading to a static bifur-
cation. The critical point ac0 is solved from aγ − eβ = 0 as ac0 = eβ

γ . Thus, E0 is

stable (unstable) when a > ac0 (a < ac0), and xc0 = λ
d . With the parameter values

in Table 5.1 (with h = 10−4), we have (xc0, ac0)=(0.625, 1.00×105), which actually
holds for both cases h 
= 0 and h = 0.

As for the infected equilibrium E1, one singularity happens when a5(xe1, a) be-
comes zero. Thus, the critical point is determined by the equations a5(xe1, a) =
F4(xe1, a)=0, at which the characteristic polynomial of E1 has a zero root. As a re-
sult, we obtain one biological meaningful solution, (xc1, ac1) =

(
0.625, 1.00× 105

)
.

Comparing this critical point with (xc0, ac0) shows that these two critical points are
identical, implying that E0 and E1 intersect and exchange their stability at this point.
Denote this point as (xt, at) = (0.625, 1.00×105), which is actually identical for all
h 
= 0. The bifurcation diagram projected on the a-x plane is shown in Figure 5.1(a).
It clearly shows a stability exchange between E0 and E1 at the transcritical point.

Now we turn to possible Hopf bifurcation from E1. Since the characteristic poly-
nomial PE1 for E1 cannot be factorized into polynomials of lesser degree, we will
use the Routh–Hurwitz criterion to analyze its stability. The criterion states that
the corresponding equilibrium is asymptotically stable if and only if all the Hurwitz
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determinants are positive [4]. According to [43], the necessary condition for a Hopf
bifurcation to occur from the infected equilibrium E1 is Δ4 = 0, combined with the
equation F4(xe1, a) = 0, since this Hopf bifurcation point is located on the infected
equilibrium. Solving these two equations yields a biologically meaningful Hopf bifur-
cation point (xH , aH) ≈ (8.85×104, 0.617). Note that the Hopf bifurcation point is
above the turning point (xTurning, aTurning) ≈ (8.82×104, 0.604) in the upper branch
of E1 (see Figure 5.1).

Summarizing the above results shows that the case h 
= 0 satisfies all four con-
ditions in Hypothesis 1 to generate recurrent infection, and indeed recurrence occurs
for a ∈ (0, a∗), where a∗ < aH . Moreover, a∗ should not be too close to aH ; oth-
erwise the period of limit cycles bifurcating from the Hopf critical point (xH , aH) is
relatively small. The bifurcation diagram, shown in Figure 5.1(a), indicates that the
Hopf critical point aH is located on the left side of a = at, where the E0 is unstable.
A simulated time course exhibiting recurrent infection is depicted in Figure 5.1(b).

5.4. Bifurcation analysis for h → 0+. Now we consider the special case, h =
0. It is easy to observe from (5.1c) that the solutions of system (5.1) are discontinuous
at h = 0. Therefore, to have continuity, we should regard the special case h = 0 as
the limiting case h → 0+. In calculation, we choose a small enough value of h (e.g.,
h = 10−8) and then do the same analysis as done for the case h 
= 0. We also get two
equilibrium solutions, the infection-free equilibrium E0 and the infected equilibrium
E1, a transcritical bifurcation which occurs at the intersection of the two equilibria,
a Hopf bifurcation emerging from the infected equilibrium E1, and large oscillations
occurring near the transcritical point on the unstable side of the Hopf critical point,
given by (xH , aH) ≈ (8.7511×104, 0.6249). The bifurcation diagram for this case
(h = 10−8) is similar to that shown in Figure 5.1(a), except that the two branches
of E1 are much closer, indicating that the Hopf bifurcation point moves down toward
the turning point in the upper branch of E1, which is also moving down. This implies
that one branch of solution E1 becomes an almost vertical line as h → 0+, and the
Hopf critical point coincides with the turning point.

For h = 0, we treat it as the limit h → 0+. The seemingly vertical line in the
bifurcation diagram for h = 0 disappears, clearly showing the discontinuity of E1 at
h = 0. This causes difficulty in bifurcation analysis. However, if we treat the case
h = 0 as the limiting case h → 0+, the solution E1 continuously depends on h, and the
bifurcation diagram becomes smooth. Therefore, we can still use our theory to explain
the occurrence of blips for the case h = 0, as shown in Figure 5.1(c). In fact, more
precisely, when h = 0, a Bogdanov–Takens bifurcation (double-zero singularity) occurs
at the point where the Hopf and turning points are merged. This is a codimension-2
bifurcation point, which in general needs two unfolding (bifurcation) parameters to
give a complete local dynamical analysis. In our case, the variation of the single
parameter α can be considered as a line (ray) in the two-parameter plane. It is well
known that in the vicinity of a Bogdonov–Takens bifurcation point, there exist a Hopf
bifurcation and a homoclinic bifurcation. Therefore, the motion generated near the
codimension-2 bifurcation point may be due to either the Hopf or the homoclinic
bifurcation. With respect to the blips phenomenon, the motion is large (not the small
motions bifurcating from Hopf or homoclinic bifurcations) and is a globally persistent
motion, and so it is not directly related to the Hopf or homoclinic bifurcations. In
other words, we are more interested in possible large motions near the transcritical
point.

D
ow

nl
oa

de
d 

09
/1

0/
18

 to
 1

29
.1

18
.3

3.
13

9.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

878 WENJING ZHANG, LINDI M. WAHL, AND PEI YU

6. Conclusion and discussion. In this paper, the problem of recurrent infec-
tion (viral blips) in in-host infection models is studied via the qualitative analysis
of dynamical systems. A 4-dimensional HIV antioxidant-therapy model [39], which
produces viral blips, is investigated in detail using bifurcation theory. A hypothe-
sis consisting of four conditions for the emergence of viral blips is proposed. These
conditions describe two equilibrium solutions which intersect at a transcritical bifur-
cation point, with a Hopf bifurcation which originates from the equilibrium solution.
Under these conditions, blips appear for values of the bifurcation parameter near the
transcritical point, where equilibrium solutions are unstable.

Guided by the proposed hypothesis, we propose several simpler in-host infection
models that can also generate viral blips. We develop a 3-dimensional in-host model
with an increasing, saturating, infection rate similar to the HIV antioxidant-therapy
model and show that all four conditions in the hypothesis are satisfied, leading to blips.
Further, stability and bifurcation analyses determine all possible regions in parameter
space where blips may occur. We then investigate an even simpler 2-dimensional in-
host model. This very simple model can also exhibit blips, as long as the infection
rate is an increasing, saturating function of infected cell density. We also apply the
hypothesis to study a standard HIV model with CTL response [28] and find blips by
using an increasing, saturating, infection rate function.

Overall, our results suggest that simple ODE models of in-host infection dynamics
are sufficient to describe transient periods of high viral replication, separated by long
periods of quiescence. Rather than needing an exogenous trigger such as stochastic
stimulation of the immune system, the natural dynamics of such systems may be
sufficiently rich, in many cases, to exhibit viral blips. One key to obtaining this
rich behavior is to propose an infection rate which increases, but saturates, with
the extent of the infection. This is a natural assumption if the infection itself (high
density of infected target cells) makes the host more vulnerable to further infection.
Such an assumption is certainly natural for HIV, where the primary target cells are
T lymphocytes.

All the simulated oscillating motions and blips presented in this paper show con-
stant amplitudes and frequencies. This is because all parameter values are fixed in
these simulations. We note, however, that nonlinear, deterministic systems can indeed
generate oscillations with varying amplitudes and phases, called “amplitude modula-
tion” and “frequency modulation” due to nonlinearity. This can be seen from (2.13),
where both amplitude and phase are functions of the parameter μ. Since in reality
parameters are not constant, time-varying parameters can be seen as analogous to the
variation due to random perturbations in stochastic models. Although deterministic
models with fixed parameter values cannot generate varying amplitude and phase,
deterministic models can generate such variation if the system is nonlinear and some
parameters vary with time. For example, Figure 6.1 shows the result of changing
the fixed α used in Figure 2.3(c) to a time-varying deterministic function, clearly
demonstrating that a deterministic model can generate blips of varying magnitude,
frequency, and duration.

We note that mathematically, a system of delay differential equations (DDEs)
could also generate oscillatory behaviors similar to viral blips. However, in this case,
the inherent delay would need to be of the same order as the interval between blips,
that is, on the order of several months. Since it is difficult to suggest a physiological or
immunological process that would impose a delay of this magnitude, it seems unlikely
that DDEs are the most natural approach for modeling viral blips.

While we are able to show that linear or constant infection rates do not lead
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Fig. 6.1. Simulated viral blips of system (2.1) with varying amplitude and frequency when
using a time-varying function α(t) = αT +

[ − 0.31 + 0.3e−3 cos(t/50) cos(t/100)
] × 1013, where

αT = 4.58×1013 is the transcritical bifurcation value.

to blips in the 2-, 3-, or 4-dimensional models we have studied, further study of a
5-dimensional immunological model reveals that a system with a constant infection
rate can also generate blips. This suggests that the use of an increasing, saturating,
infection rate function is not necessary but is effective in low-dimensional models.
The results presented here provide a useful tool for the mathematical study of viral
blips or other examples of recurrent infection. The conditions in our hypothesis may
also be used or generalized to study recurrent phenomena in other physical systems.
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