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Abstract In this paper, dynamical systems theory and bifurcation theory are applied
to investigate the rich dynamical behaviours observed in three simple disease models.
The 2- and 3-dimensional models we investigate have arisen in previous investigations
of epidemiology, in-host disease, and autoimmunity. These closely related models
display interesting dynamical behaviors including bistability, recurrence, and regu-
lar oscillations, each of which has possible clinical or public health implications.
In this contribution we elucidate the key role of backward bifurcations in the para-
meter regimes leading to the behaviors of interest. We demonstrate that backward
bifurcations with varied positions of turning points facilitate the appearance of Hopf
bifurcations, and the varied dynamical behaviors are then determined by the properties
of the Hopf bifurcation(s), including their location and direction. A Maple program
developed earlier is implemented to determine the stability of limit cycles bifurcating
from the Hopf bifurcation. Numerical simulations are presented to illustrate phe-
nomena of interest such as bistability, recurrence and oscillation. We also discuss
the physical motivations for the models and the clinical implications of the resulting
dynamics.
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1 Introduction

In the mathematical modelling of epidemic diseases, the fate of the disease can be
predicted through the uninfected and infected equilibria and their stability. The basic
reproduction number, R0, represents the average number of new infectives introduced
into an otherwise disease-free system by a single infective, and is usually chosen as
the bifurcation parameter. If the model involves a forward bifurcation in a biologically
meaningful domain, the uninfected equilibrium is in general globally asymptotically
stable (Korobeinikov and Maini 2005), characterized by R0 < 1, and infection fails
to invade in this parameter regime. The threshold R0 = 1 defines a bifurcation (or
critical) point, and when R0 > 1, a stable infected equilibrium emerges. If the infected
equilibrium is globally asymptotically stable, then no complex dynamics can occur.

In contrast, backward bifurcations describe a scenario in which a turning point of
the infected equilibrium exists. If the turning point is located in a region where all
state variables are positive (biologically meaningful), we call this type of backward
bifurcation a positive backward bifurcation. Otherwise, if the turning point is located in
a region where some state variables are negative (mathematically meaningful, but the
solutions do not exist biologically), we call this type of backward bifurcation a negative
backward bifurcation. In the case of a negative backward bifurcation, the region for
which all state variables are positive (i.e., restricted to the biologically meaningful
regime) shows a seemingly forward bifurcation, which can, however, exhibit complex
dynamical behaviours.Moreover,when the positive backward bifurcation also satisfies
R0 < 1, it will induce multiple infected equilibria, disrupting the global stability of
the uninfected equilibrium, and multiple stable states (e.g., bistability) may likewise
appear (Dushoff et al. 1998; Blayneh et al. 2010; Arino et al. 2003; Yu et al. 2015).
In this case, instead of converging globally to the uninfected equilibrium, the solution
may approach an infected equilibrium, depending on initial conditions. Further, when
R0 > 1, Hopf bifurcation(s) may occur from the infected equilibrium, leading to
oscillations or even more complex behaviours.

In practice, the phenomenon of backward bifurcation gives rise to new challenges
in disease control, since reducing R0 such that R0 < 1 is not sufficient to eliminate
the disease (Hadeler and van den Driessche 1997; Brauer 2004). Instead, R0 needs
to be reduced past the critical value given by the turning point (Hadeler and van den
Driessche 1997), since the result given in Yu et al. (2015) shows that the uninfected
equilibrium in positive backward bifurcation is globally stable if R0 is smaller than
the turning point. Furthermore, an infective outbreak or catastrophe may occur if R0
increases and crosses unity, while the upper branch of the infected equilibrium remains
stable (Dushoff et al. 1998; Gomez-Acevedo and Li 2005; Zhang et al. 2013, 2014a).
In addition, oscillation or even recurrent phenomena may occur if uninfected and
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infected equilibria coexist in a parameter range, and both are unstable (Zhang et al.
2013, 2014a). Hadeler and van den Driessche (1997) predicted oscillations arising
from backward bifurcation, and Brauer (2004) pointed out that the unstable infected
equilibrium “commonly arises from Hopf bifurcation”, but did not demonstrate oscil-
lations.

Several mechanisms leading to backward bifurcations have been proposed, such as
partially effective vaccination programs (Brauer 2004; Arino et al. 2003), educational
influence on infectives’ behavior (Hadeler and van denDriessche 1997), the interaction
among multi-group models (Castillo-Chavez et al. 1989a, b; Huang et al. 1992) and
multiple stages of infection (Simon and Jacquez 1992). In this study, we will investi-
gate the emergence of positive/negative backward bifurcations in three simple disease
models which have arisen in the study of epidemiology, in-host disease and autoim-
munity. In each case, we find that backward bifurcation facilitates the emergence of
Hopf bifurcation(s), and Hopf bifurcation in turn underlies a range of complex and
clinically relevant dynamical behaviors.

Our investigation in the central theme of backward bifurcation starts with the role
of incidence rate in the epidemiological and in-host disease models. The incidence
rate describes the speed at which an infection spreads; it denotes the rate at which
susceptibles become infectives. Under the assumptions of mass action, incidence is
written as the product of the infection force and the number of susceptibles. For
example, if S and I denote the susceptible and infective population sizes respectively,
a bilinear incidence rate, f (S, I ) = βSI (where β is a positive constant), is linear in
each of the state variables: S and I .

The possibility of saturation effects (Capasso and Serio 1978; Brown and Hasibuan
1995) has motivated the modification of the incidence rate from bilinear to nonlin-
ear. Saturation occurs when the number of susceptible contacts per infective drops
off as the proportion of infectives increases. A nonlinear incidence rate, therefore,
typically increases sublinearly with respect to the growth of the infective population,
and may finally reach an upper bound. The development of nonlinear incidence was
first investigated in the form β I pSq , where β, p, and q are positive constants, (see,
Liu et al. 1986, 1987; Hethcote et al. 1989; Hethcote and van den Driessche 1991;
Derrick and van den Driessche 1993; Li and Muldowney 1995). Other forms of non-
linear incidence have also been analysed, such as k I pS/(1 + α I l) (Liu et al. 1986),
and kS ln(1 + vP/k) (Briggs and Godfray 1995).

Since the nonlinear incidence functions described above were often developed to
incorporate saturation effects, these functions are typically concave at realistic para-
meter values. Korobeinikov andMaini (2005) used this feature to derive general results
for disease models with concave incidence. They proved that standard epidemiologi-
cal models with concave incidence functions will have globally asymptotically stable
uninfected and infected equilibria for R0 < 1 and R0 > 1, respectively.

More specifically, denoting the incidence rate function as f (S, I, N ), where N is
the population size, the classical SIRS model considered in Korobeinikov and Maini
(2005) takes the form
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dS

dt
= μN − f (S, I, N ) − μS + αR,

dI

dt
= f (S, I, N ) − (δ + μ)I,

dR

dt
= δ I − αR − μR, (1)

whereμ, δ, and α represent the birth/death rate, the recovery rate and the loss of immu-
nity rate, respectively. When α = 0, system (1) becomes an SIR model. Assuming
that the total population size is constant, that is, N = S + I + R, the above system
can be reduced to a 2-dimensional model:

dS

dt
= (α+μ)N− f (S, I, N )−α I−(α+μ)S,

dI

dt
= f (S, I, N )−(δ+μ)I. (2)

Moreover, it is assumed in Korobeinikov and Maini (2005) that the function
f (S, I, N ), denoting the incidence rate, satisfies the following three conditions:

f (S, 0, N ) = f (0, I, N ) = 0, (3a)
∂ f (S, I, N )

∂ I
> 0,

∂ f (S, I, N )

∂S
> 0, ∀ S, I > 0 (3b)

∂2 f (S, I, N )

∂ I 2
≤ 0, ∀ S, I > 0. (3c)

The first two conditions (3a) and (3b) are necessary to ensure that the model is biologi-
cally meaningful. The third condition (3c) implies that the incidence rate f (S, I, N ),
is concave with respect to the number of infectives. It is also assumed that ∂ f (S, I, N )

∂ I
evaluated at the uninfected equilibrium is proportional to the basic reproduction num-
ber R0 (van den Driessche and Watmough 2002), and thus should be a positive finite
number (Korobeinikov and Maini 2005). Korobeinikov and Maini first considered
d I
dt = 0, or f (S, I, N ) − (δ + μ)I = 0, and showed that forward bifurcation occurs
in model (2) with a concave incidence function. They further proved that the unin-
fected equilibrium Q0 = (S0, I0) = (N , 0) and the infected equilibrium Q̄ = (S̄, Ī )
are globally asymptotically stable, when R0 = 1

δ+μ
∂ f (S0, I0, N )

∂ I < 1 and R0 > 1,
respectively.

In the sections to follow, for an incidence rate function f (S, I ), satisfying (3a) and

(3b), we define f (S, I ) as concave, if it satisfies (3c); as convex, if ∂2 f (S, I )
∂ I 2

> 0,
∀ I > 0; and as convex-concave, if there exist 0 < I1 < I2 ≤ +∞, such that
∂ f (S, I )

∂ I > 0, ∀ I ∈ (0, I2), and
∂2 f (S, I )

∂ I 2
> 0, ∀ I ∈ (0, I1),

∂2 f (S, I )
∂ I 2

= 0, for I = I1,
∂2 f (S, I )

∂ I 2
< 0, ∀ I ∈ (I1, I2).

Several models closely related to system (2) have been previously studied. For
example, by adding a saturating treatment term to model (2) with a concave incidence
rate, Zhou and Fan (2012) showed that this model may yield backward bifurcation and
Hopf bifurcation. With an even more sophisticated nonlinear incidence rate function:
k I pS/(1 + α I l), where p = l = 2, Ruan and Wang (2003) proved that a reduced
2-dimensional SIRS model could exhibit backward bifurcation, Hopf bifurcation, and
even Bogdanov–Takens bifurcation and homoclinic bifurcation. Although the choice
of p = l = 2 was not motivated by a specific physical process, this important result
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demonstrates that a nonlinear incidence rate can induce backward bifurcation, and
further generate complex dynamics in a simple disease model.

One of the focal points of our study will be a convex incidence function which arose
in a 4-dimensional HIV antioxidant therapy model (van Gaalen and Wahl 2009). In
this model, the infectivity of infected cells was proposed to be an increasing function
of the density of reactive oxygen species, which themselves increase as the infection
progresses. In van Gaalen and Wahl (2009), meaningful parameter values were care-
fully chosen by data fitting to both experimental and clinical results. In this parameter
regime, the model was observed to capture the phenomenon of viral blips, that is, long
periods of undetectable viral load punctuated by brief episodes of high viral load. Viral
blips have been observed clinically in HIV patients under highly active antiretroviral
therapy (Collier et al. 1996; Dornadula et al. 1999; Palmer et al. 2003, 2008), and have
receivedmuch attention in the research literature, both by experimentalists (Fung et al.
2012; Garretta et al. 2012; Grennan et al. 2012) andmathematicians (Fraser et al. 2001;
Jones and Perelson 2005; Conway and Coombs 2011; Rong and Perelson 2009a, b).
Nonetheless, the mechanisms underlying this phenomenon are still not thoroughly
understood (Grennan et al. 2012; Rong and Perelson 2009a).

We recently re-examined the model developed in van Gaalen and Wahl (2009),
with the aim of providing new insight into the mechanism of HIV viral blips (Zhang
et al. 2013, 2014a). Focusing on the dynamics of the slow manifold of this model, we
reduced the dimension of the 4-dimensionalmodel by using quasi-steady state assump-
tions. After a further generalization and parameter rescaling process, a 2-dimensional
in-host HIV model (Zhang et al. 2013, 2014a) was obtained, given by

dX

dτ
= 1 − DX −

(
B + AY

Y + C

)
XY,

dY

dτ
=

(
B + AY

Y + C

)
XY − Y, (4)

where X and Y denote the dimensionless concentrations of the uninfected and infected
cells respectively. The constant influx rate of X and the death rate ofY have been scaled
to 1. The death rate of X is D. This 2-dimensional infection model (4), reduced from
the 4-dimensional HIV model (van Gaalen and Wahl 2009), preserves the viral blips
observed in the 4-dimensional HIV model.

Importantly, system (4) is equivalent to the SIRmodel (2), except that the incidence
function is convex, as we will show in Sect. 2.2. This equivalence can be demonstrated
if we set S = e1x , I = e2y, and t = e3τ with e1 = e2 = μN

δ+μ
and e3 = 1

δ+μ
. In this

case, system (2) is rescaled to

dx

dτ
= 1 − μ

δ + μ
x − 1

μN
f (x, y),

dy

dτ
= 1

μN
f (x, y) − y,

which takes the same form as system (4). Therefore, although system (2) arises in
epidemiology and system (4) was derived as an in-host model, they aremathematically
equivalent in this sense. We will refer to both systems (2) and (4) as infection models.

In previous work (Zhang et al. 2013, 2014a), we analyzed the recurrent behav-
ior which emerges in system (4) in some detail. Recurrence is a particular form of
oscillatory behavior characterized by long periods of time close to the uninfected
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equilibrium, punctuated by brief episodes of high infection (Yao et al. 2006). Thus
HIV viral blips are an example of recurrent behavior, but recurrence is a more general
feature of many diseases (Yao et al. 2006; Zhang et al. 2014a). We have demonstrated
that the increasing and saturating infectivity function of system (4) is critical to the
emergence of recurrent behaviour. This form of an infectivity function corresponds to
a convex incidence rate function in the associated 2-dimensional infection model (4),
and can likewise induce recurrence in this model. Convex incidence has been previ-
ously suggested to model ‘cooperation effects’ in epidemiology (Korobeinikov and
Maini 2005), or cooperative phenomena in reactions between enzyme and substrate,
as proposed by Murray (2002).

The rest of this paper is organized as follows. In Sect. 2, we study two 2-dimensional
infection models, both closely related to system (2). We show that system (2) with
either (a) a concave incidence rate and saturating treatment term or (b) a convex
incidence rate as shown in system (4), can exhibit backward bifurcations; we then
identify the necessary terms in the system equations which cause this phenomenon.
In Sect. 3, we demonstrate that in both models, backward bifurcation increases the
likelihood of a Hopf bifurcation on the upper branch of the infected equilibrium.
Studying system (4) in greater detail, we illustrate how the location of the turning
points, and the location of the Hopf bifurcations and their directions (supercritical or
subcritical), determine the possible dynamical behaviors, concluding that backward
bifurcations with varied location of turning points facilitate Hopf bifurcation(s), which
then underly the rich behaviours observed in these models. In Sect. 4, we explore
backward bifurcation further, presenting an autoimmune diseasemodel which exhibits
negative backward bifurcation only. Although this bifurcation introduces two branches
of the infected equilibrium, we demonstrate that, in the biologically feasible area, only
forward bifurcation exists in this model and Hopf bifurcation does not occur. We then
present a modification to this autoimmunemodel, motivated by the recent discovery of
a new cell type, which generates a negative backward bifurcation andHopf bifurcation,
and allows recurrent behavior to emerge. A conclusion is drawn in Sect. 5.

2 Backward bifurcations

In this section, we study backward bifurcation in two 2-dimensional infection mod-
els. In particular, we explore the essential terms and parameter relations which are
needed to generate positive backward bifurcation and negative backward bifurcation.
Furthermore, we examine the convex incidence rate, and reveal its underlying role in
determining the emergence of backward bifurcations.

2.1 Backward bifurcation in an infection model with concave incidence

First, we consider the SIR model with concave incidence, described by the following
equations (Zhou and Fan 2012):

dS

dt
= Λ − βSI

1 + k I
− dS,

dI

dt
= βSI

1 + k I
− (d + γ + ε)I,

dR

dt
= γ I − dR, (5)
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where S, I and R denote the number of susceptible, infective, and recovered indi-
viduals, respectively; Λ is the constant recruitment rate of susceptibles; d, γ , and
ε represent the rates of natural death, recovery, and the disease-induced mortality,

respectively. Note that the function βSI
1+k I is an incidence rate of the form k I l S

1+α I h
(Liu

et al. 1986), when l = h = 1. Here, β is the infection rate, and k measures the inhibi-
tion effect. Since the variable R is not involved in the first two equations, system (5)
can be reduced to a 2-dimensional model as

dS

dt
= Λ − βSI

1 + k I
− dS,

dI

dt
= βSI

1 + k I
− (d + γ + ε)I. (6)

In Zhou and Fan (2012), an additional assumption regarding limitedmedical treatment
resources is introduced to the above model, leading to a model with a saturating
treatment term, given by

dS

dt
= f1(S, I )=Λ− βSI

1+k I
−dS,

dI

dt
= f2(S, I )= βSI

1 + k I
−(d+γ +ε)I− α I

ω + I
,

(7)
where the real, positive parameter α represents themaximal medical resources per unit
time, and the real, positive parameterω is the half-saturation constant. For convenience,
let

f3(S, I ) = βSI

1 + k I
and f4(S, I ) = βSI

1 + k I
− α I

ω + I
. (8)

Further, define the reproduction numbers for systems (6) and (7) as

R(6)
0 = βΛ

d(d + γ + ε)
and R(7)

0 = βΛ

d(d + γ + ε + α/ω)
, (9)

respectively. For convenience, let

g1(I ) = (d + γ + ε)I. (10)

Now, if we do not consider the medical treatment term α I
ω+I and remove it from

system (7), that leads to system (6), which is a typical example of an SIR model
studied in system (2). Actually, it is easy to see that f3(0, I ) = f3(S, 0) = 0;
∂ f3(S, I )

∂S = β I
1+k I > 0 and ∂ f3(S, I )

∂ I = βS
(1+k I )2

> 0 for all S, I > 0; and ∂2 f3(S, I )
∂ I 2

=
−2βkS(1 + k I )−3 < 0 for all S, I > 0. Therefore, the incidence function f3(S, I ),
satisfies the conditions given in (3). In particular, the function is concave, and can
only have one intersection point with the line (d + γ + ε)I in the I -S plane, as
shown in Fig. 1a. Thus, the uniqueness of the positive infected equilibrium implies
that backward bifurcation cannot occur in this case. Moreover, according to the result
in Korobeinikov and Maini (2005), the uninfected and infected equilibria are globally
asymptotically stable for R(6)

0 < 1 and R(6)
0 > 1, respectively. No complex dynamical

behavior happens in system (6).
For model (7), we can show that f4(S̃, I ) actually has a convex-concave ‘S’ shape,

and may have two positive intersection points with the ray line, g1(I ), in the first

123



954 W. Zhang et al.

(a) (b)

Fig. 1 Graphs of the incidence function f3 in system (5), (6) and function f4 in system (7) with respect to
I , for which S̃ = 50 has been used. The parameter values are chosen as β = 0.01, k = 0.01, α = 6, ω = 7,
d = 0.1, γ = 0.01, ε = 0.02, according to (Zhou and Fan 2012). The solid lines denote f3 in a and f4
in b, while the dashed ray lines in both graphs represent g1(I ) = (d + γ + ε)I . a The incidence function

f3(S, I ) = βSI
1+k I , showing one intersection point with g1; and b the function f4(S, I ) = βSI

1+k I − α I
ω+I ,

showing two intersection points with g1

quadrant; see Fig. 1b. These intersections contribute the two positive equilibrium
solutions that are a necessary feature of backward bifurcation. The detailed analysis
is given in Appendix A.

In summary we may conclude that the necessary terms which should be contained
in system (7) in order to have backward bifurcation are the constant influx Λ, the
infection force β, and the saturating medical treatment α I

ω+I .

2.2 Backward bifurcation in the infection model (4) with convex incidence

Now we consider the 2-dimensional infection model (4) which exhibits viral blips,
studied in Zhang et al. (2013, 2014a). The motivation for this model was a series of
clinical discoveries indicating that viral infection can increase the density of a harm-
ful chemical substance (Gil et al. 2003; Li and Karin 1999; Schwarz 1996; Israel
and Gougerot-Pocidalo 1997), thereby amplifying an associated biochemical reac-
tion (Stephenson et al. 2005), and thus accelerating the infection rate (Gil et al. 2003).
This cooperative phenomenon in viral infection is expressed by an increasing, satu-
rating infectivity function: (B + AY

Y+C ). According to the principle of mass action, the

incidence function is then denoted as (B + AY
Y+C )XY , which is a convex function with

respect to the infectives’ density Y .
To analyze the occurrence of possible backward bifurcation, we first examine the

two equilibrium solutions from the following equations:
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f5(X, Y ) = 1 − DX −
(
B + AY

Y + C

)
XY = 0,

f6(X, Y ) =
(
B + AY

Y + C

)
XY − Y = 0, (11)

where all parameters A, B, C and D are positive constants. Note that the incidence
function of system (4) is given by

f7(X, Y ) =
(
B + AY

Y + C

)
XY. (12)

Similarly, as shown in Appendix B, with appropriate parameter values, f7(Y ) can
have a convex-concave ‘S’ shape, yielding two intersection points with the ray line,
g2(Y ) = Y , in the first quadrant of the X–Y plane, as shown in Fig. 2b. But if we
only consider the second equation in (11), as was done for model (2) in Korobeinikov
and Maini (2005), it results in the graph as shown Fig. 2a, implying that only one
equilibrium solution would exist. The above discussion, as illustrated in Fig. 2, implies
that system (4) can have two positive equilibrium solutions when R0 = B

D < 1, and
thus backward bifurcation may occur.

Remark 1 Summarizing the discussions and results given in this section indicates
that a disease model with a convex-concave incidence function may lead to backward
bifurcation, which in turn implies: (a) the system has at least two equilibrium solutions,
and the two equilibrium solutions intersect at a transcritical bifurcation point; and (b)
at least one of the equilibrium solutions is determined by a nonlinear equation.

(a) (b)

Fig. 2 Graphs of the incidence functions f7(X̃ , Y ) and f7(Y ) for the parameter values A = 0.364,
B = 0.03, C = 0.823, and D = 0.057. The incidence functions are denoted by the solid lines, while
the ray lines, determined by g2(Y ) = Y , are denoted by dotted lines: a the incidence function f7(X̃ , Y ),
showing one intersection point with g2 with an inset, with a fixed value X̃ = 12.54; and b the incidence
function f7(Y ), showing two intersection points with an inset
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3 Hopf bifurcations

In the previous section, we studied backward bifurcation and established the necessary
conditions for the occurrence of backward bifurcation in two models. In this section,
we turn to Hopf bifurcation, since it typically underlies the change of stability in the
upper branch of the infected equilibrium, the key condition in determining whether
a model can exhibit oscillation or even recurrence. Again, we will present detailed
studies for the two models.

3.1 Hopf bifurcation in the infection model (7) with concave incidence

In this subsection, we study two cases of an infection model with concave incidence:
system (6) and (7) and show that Hopf bifurcation only appears in model (7). First,
we discuss the equilibrium solutions and their stability by using the Jacobian matrix,
denoted by J , and examining the corresponding characteristic polynomial,

P|J (L) = L2 + Tr(J )L + Det(J ). (13)

Bifurcation analysis is conducted by choosing Λ as the bifurcation parameter.
First, we consider the case without saturating medical treatment, system (6). This

systemsatisfies the three conditions in (3), and consequently, its uninfected equilibrium
Ē0 = (Λ

d , 0) is globally asymptotically stable if R(6)
0 ≤ 1, while the infected equilib-

rium Ē1 = ( kΛ+d+γ+ε
dk+β

,
βΛ−(d+γ+ε)d
(dk+β)(d+γ+ε)

)
emerges and is globally asymptotically stable

if R(6)
0 > 1. Therefore, for this case the system has only one transcritical bifurcation

point at R(6)
0 = 1 and no complex dynamics can occur. This can also be easily seen

from the solution of the infected equilibrium Ē1 for which S = 1
d [Λ − (d + γ + ε)I ]

and I is determined from a linear equation (d + γ + ε)[d + (dk + β)I ] − βΛ = 0,
which implies that no turning point exists.

Next, with the saturating treatment term, system (7) violates the conditions estab-
lished for model (3), but leads to the possibility of complex dynamical behaviors. In
fact, evaluating the Jacobian matrix J1 = J |(7)(Ē0) at the uninfected equilibrium,
Ē0 = (

Λ
d , 0

)
, yields the characteristic polynomial in the form of (13), denoted by

P|J1(L), withTr(J1) = (− βΛ
d +ε + α

ω
+2d

)
, andDet(J1) = (−βΛ+d2+dε+ αd

ω

) =
Tr(J1) d−d2. This indicates that Det(J1) < 0 when Tr(J1) = 0, and thus Hopf bifur-
cation cannot occur from Ē0. On the other hand, a static bifurcation can occur when
Det(J1) = 0, that is, ΛS = 1

β

(
d2 + dε + αd

ω

)
, where the subscript ‘S’ refers to static

bifurcation. Therefore, Ē0 is stable (unstable) for Λ < ΛS (> ΛS), or R0 < 1(> 1),
with R0 = βΛd−1(d + γ + ε + α

ω
)−1 (Zhou and Fan 2012).

Next, we show that complex dynamical behaviors can emerge in system (7) from
the infected equilibrium Ē1 = (S̄, Ī ). In the Λ-I plane, the bifurcation diagram as
shown in Fig. 3(1–4), indicates a turning point on the curve with appropriate parameter
values, given by
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Fig. 3 Bifurcation diagrams and simulations associated with the five cases given in Table 1, demonstrating
various dynamical behaviors. All insets are simulated time histories of I vs. t where the values of the initial
condition for I and the bifurcation parameter � are indicated by the respective stars

IT = 1

2

[
βΛT

(dk + β)(d + ε)
− ω − d

dk + β
− α

d + ε

]
. (14)

Thus, when IT > 0 (<0), the turning point of the quadratic curve appears above
(below) the Λ-axis, meaning that a positive (a negative) backward bifurcation occurs
for I > 0 (<0). More detailed analysis can be seen in Appendix A. Further, using
the Jacobian matrix evaluated at the infected equilibrium Ē1 shows that the necessary
condition for system (7) to have a Hopf bifurcation from the infected equilibrium Ē1
is that h1(I ) (whose expression, given in (22), and its analysis are shown in Appendix
A) is negative when Tr(J2) = 0.

In the remaining part of this subsection, we demonstrate various dynamics which
may happen in system (7) with different parameter values of k, as shown in Table 1.
Taking other parameter values as α = 6, ω = 7, ε = 0.02, γ = 0.01, β = 0.01,
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and d = 0.1, and solving the two equations Tr(J2) = 0 and F (I ) = 0 in (21) gives
the Hopf bifurcation point candidates, (ΛH , IH ), for which h1(IH ) < 0. Since the
formula for the transcritical bifurcation point ΛS has no relation with k, (ΛS, IS) =
(9.87, 0) is a fixedvalue pair inTable 1.Bifurcation diagrams and associated numerical
simulations are shown in Fig. 3 corresponding to the five cases given in Table 1.
The blue lines and red curves represent the uninfected equilibrium Ē0 and infected
equilibrium Ē1, respectively. The stable and unstable equilibrium solutions are shown
by solid and dashed lines/curves, respectively. Positive backward bifurcations occur
in Cases 1, 2, and 3, a negative backward bifurcation appears in Case 4, and no
backward bifurcation occurs in Case 5 (see Table 1), which are illustrated by the
corresponding bifurcation diagrams in Fig. 3(1–5), respectively. For Cases 1 and 2,
only one Hopf bifurcation occurs on the upper branch of the infected equilibrium
Ē1, and this bifurcation point exists at the critical point ΛH < ΛS for Case 1 and
ΛH > ΛS , for Case 2. For Case 1withΛ = 9.78, the simulated time history converges
to Ē0 with initial condition IC = [93.6, 0.44], shown in Fig. 3(1a), but converges to
Ē1 with initial condition IC = [46.8, 10], shown in Fig. 3(1b). This clearly indicates
the bistable behavior when ΛH < ΛS , and an overlapping stable region for both
Ē0 and Ē1 exist (see Fig. 3(1). The recurrent behavior for Case 2 is simulated at
Λ = 9.87 with IC = [50, 5], shown in Fig. 3(2a). For Case 2, ΛH > ΛS , and an
overlapping unstable parameter region for both Ē0 and Ē1 occurs betweenΛS andΛH

(see Fig. 3(2). For Case 3, two Hopf bifurcations occur on the left side of ΛS , and a
stable part in the upper branch of Ē1 exists when Λ passes through the critical value
Λ = ΛS . In this case, although backward bifurcation still exists and the turning point
is also located above the Λ-axis, giving two branches of biologically feasible Ē1, only
regular oscillating behavior is observed. The simulated time history is conducted at
Λ = 10, with initial condition IC = [50, 2], shown in Fig. 3(3a). For Case 4, only
forward bifurcation occurs in the biologically feasible region, and the turning point for
backward bifurcation moves down to the fourth quadrant, that is, negative backward
bifurcation occurs in this case. The whole upper branch of Ē1 in the first quadrant is
stable, therefore, no oscillations (or recurrence) can happen. Finally, further increases
to the value of k change the shape of the red curves, as shown in Fig. 3(5), which
again indicates that no biologically meaningful backward bifurcation or oscillations
can occur. Note that in Fig. 3(5) a Hopf bifurcation point exists on the lower branch of
the equilibrium solution, which is biologically unfeasible since it is entirely below the
horizontal axis. In conclusion, interesting dynamical behaviors can emerge in system
(7) if backward bifurcation occurs.

3.2 Hopf bifurcation in the infection model (7) with convex incidence

In this subsection, we return to system (4), that is, the 2-dimensional HIV model
with convex incidence derived in Zhang et al. (2013, 2014a), and analyze the various
dynamical phenomenawhich system (4) could possibly exhibit. To achieve this, we set
B as the bifurcation parameter, and A as a control parameter; the bifurcation analysis
will be carried out for various values of A. Also, simulated time histories are provided
to illustrate the dynamical behavior predicted in the analysis.
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As shown in Appendix B, the uninfected equilibrium Ē0 = ( 1
D , 0) is stable when

R0 = B
D < 1, loses its stability and becomes unstablewhen B increases to pass through

BS = D (where the subscript S stands for “static bifurcation”), that is R0 > 1, and
no other bifurcations can happen.

Next, we examine the infected equilibrium Ē1 = (X̄ , Ȳ ) and can find the turning
point (BT , YT ) defined as (see Appendix B)

BT = −A + D + 2
√
ACD

C + 1
, YT = A + B − BC − D

A + B
, (15)

where ‘T ’ in the subscript stands for turning point. Further, using the function h2(Y )

given in (26) in Appendix B, we know that Hopf bifurcation can occur from the
infected equilibrium Ē1 if h2(Y ) < 0. It can be shown (see Appendix B) that a Hopf
bifurcation, denoted by (BH ,YH ), can happen only from the upper branch of the
infected equilibrium Ē1.

The various dynamical behaviors which may appear in system (4) have been
classified in Table 2 for different values of the parameter A, with fixed values of
C = 0.823 and D = 0.057. Thus, the transcritical bifurcation point is fixed for all
cases: BS = D = 0.057 and YS = 0. The two solutions Bh1 and Bh2 are solved
from the two equations (25) P|Ē1(λ,Y ) = 0 and (23)F5(Y ) = 0, respectively. They
become a Hopf bifurcation point only if their corresponding Y values (Yh1 and Yh2,
respectively) are in the range such that h2(Y ) < 0. Otherwise, system (4) has a pair
of real eigenvalues with opposite signs at (Bh1, Yh1) or (Bh2, Yh2), which is denoted
by the superscript ‘∗’ (which is actually a saddle point) in Table 2, while the Hopf
bifurcation point is denoted by the superscript ‘H ’ in Table 2.

Next, we further examine the direction of the Hopf bifurcation, that is, check
whether it is a supercritical or subcritical Hopf bifurcation. Since the Jacobian matrix
of the system evaluated at the Hopf bifurcation point has a pair of purely imaginary
eigenvalues, the linearized system (4) does not determine the nonlinear behavior of the
system. Therefore, we take advantage of normal form theory to study the existence of
the limit cycles bifurcating from the Hopf bifurcation point as well as their stability.
As mentioned earlier, Hopf bifurcation can only occur from the upper branch of the
infected equilibrium Ē1, therefore we first transform the fixed point Ē1 to the ori-
gin by a shifting transformation, and, in addition, make the parameter transformation
B = BH + μ; the Hopf bifurcation point is thus defined as μ = μH = 0. Then the
normal form of system (4) near the critical point, μ = μH = 0, takes the form up to
third-order approximation:

ṙ = d μ r + a r3 + O(r5), θ̇ = ωc + cμ + b r2 + O(r4), (16)

where r and θ represent the amplitude and phase of the motion, respectively. The
first equation of (16) can be used for bifurcation and stability analysis, while the
second equation of (16) can be used to determine the frequency of the bifurcating
periodic motions. The positive ωc in the second equation of (16) is the imaginary
part of the eigenvalues at the Hopf bifurcation point. The parameters d and c can be
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Table 2 Parameter values taken to illustrate various dynamics of system (4)

Case A (BT , YT ) h2(Y ) < 0, Y ∈ (Bh1, Yh1)

1 0.80 (−0.1950, 0.5850) (0.0036, 0.9830) (0.0355, 0.8725)H

2 0.71 (−0.1580, 0.5660) (0.0040, 0.9800) (0.0539, 0.0038)∗
3 0.60 (−0.1140, 0.5380) (0.0048, 0.9769) (0.0540, 0.0045)∗
4 0.07 (0.0557, 0.0909) (0.0476, 0.8030) (0.0560, 0.0470)∗

5 0.06 (0.056558, 0.05581) (0.0574, 0.7700) (0.056559, 0.0574)H

6 0.05 (0.05697, 0.01442) (0.0724, 0.7232) (0.0574, 0.0741)H

7 0.04 (0.0569, −0.0358) (0.0986, 0.6507) (0.0592, 0.1071)H

8 0.03 (0.0559, −0.0994) (0.1611, 0.5149) –

Case A (Bh2, Yh2) Dynamics Notes

1 0.80 (0.054, 0.0034)∗ Unstable limit cycle, bistable Bh1 < BS

2 0.71 (0.0574, 0.8650)H Recurrence Bh2 > BS

3 0.60 (0.0819, 0.8530)H Recurrence Bh2 > BS

4 0.07 (0.1015, 0.5612)H Recurrence Bh2 > BS

5 0.06 (0.0961, 0.5225)H Recurrence Bh1 < BS < Bh2

6 0.05 (0.0894, 0.4701)H Recurrence Bh1 < BS < Bh2

7 0.04 (0.0806, 0.3897)H Oscillation Bh1 < BS < Bh2, YT < 0

8 0.03 – Ē1 stable YT < 0

The fixed transcritical bifurcation point: (BS , YS) = (0.057, 0)

easily obtained from a linear analysis, while a and bmust be derived using a nonlinear
analysis, with the Maple program available in, say, (Yu 1998).

Note that the infected equilibrium Ē1 is represented by the fixed point r̄ = 0
of system (16), while the nonzero fixed point r̄ > 0 (satisfying r̄2 = −dμ

a ) is an
approximate solution for a limit cycle or periodic orbit. The periodic orbit is asymp-
totically stable (unstable) if a < 0 (a > 0), and the corresponding Hopf bifurcation
is called supercritical (subcritical). According to the Poincare–Andronov Hopf Bifur-
cation theorem (Wiggins 2003), for μ sufficiently small, there are four possibilities
for the existence of periodic orbits and their stability, which are classified in Table 3,
based on the four sets of the parameter values in the normal form (16). Then we use
the results presented in Table 3 with a nonlinear analysis based on normal form theory
to classify the Hopf bifurcations appearing in Table 2, and the results are shown in
Table 4.

To illustrate the analytical results given in Tables 2 and 4, we provide the bifurca-
tion diagrams in Fig. 4(1–8). These figures depict the uninfected equilibrium Ē0 and
the infected equilibrium Ē1 in blue and red, respectively. The solid and dashed lines
differentiate stable and unstable states of the equilibrium solutions. The bifurcation
points on the equilibrium solutions are highlighted by solid black dots. Moreover,
‘Transcritical’, ‘Turning’, ‘Hopfsub’, and ‘Hopfsuper’, are used to denote Transcritical
bifurcation, Turning point, subcritical Hopf bifurcation, and supercritical Hopf bifur-
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Table 3 Classification of Hopf bifurcations based on the normal form (16)

Class Stability of r̄ = 0 Stability of r̄2 = − dμ
a Hopf bifurcation

μ < 0 μ > 0 μ < 0 μ > 0

(a): d > 0, a > 0 Stable Unstable Unstable – Subcritical

(b): d > 0, a < 0 Stable Unstable – Stable Supercritical

(c): d < 0, a > 0 Unstable Stable – Unstable Subcritical

(d): d < 0, a < 0 Unstable Stable Stable – Supercritical

Table 4 Classification of Hopf bifurcations appearing in Table 2

Case A Hopf bifurcation point
(BH , YH )

d a Stability of
limit cycles

Table 3 class

1 0.8 (0.0355, 0.8725) −1.0722 0.2114 × 10−2 Unstable (c)

2 0.71 (0.0574, 0.8650) −1.0726 0.1424 × 10−2 Unstable (c)

3 0.6 (0.0819, 0.8530) −1.0733 0.6755 × 10−3 Unstable (c)

4 0.07 (0.1015, 0.5612) −1.0307 −0.8791 × 10−3 Stable (d)

5 0.06 (0.056559, 0.0574) 884.27 −0.1019 Stable (b)

(0.0961, 0.5225) −1.0079 −0.8613 × 10−3 Stable (d)

6 0.05 (0.0574, 0.0741) 18.232 −0.3145 × 10−2 Stable (b)

(0.0894, 0.4701) −0.9629 −0.8457 × 10−3 Stable (d)

7 0.04 (0.0592, 0.1071) 4.7242 −0.1577 × 10−2 Stable (b)

(0.0805, 0.3897) −0.8437 −0.8438 × 10−3 Stable (d)

cation, respectively. Simulated time histories are used to validate the analytical results,
and to show different dynamical behaviors in each case listed in Tables 2 and 4. Sub-
critical Hopf bifurcation occurs in Cases 1–3, shown in Fig. 4(1–3). A = 0.8 is used
in Fig. 4(1) for Case 1. Choosing B = 0.036, we have Ē0 = [17.1282566, 0.023689]
and Ē1 = [2.233533, 0.8726886]. The simulated solution converges to E0 or E1, with
initial condition taken as ICd = [17.13, 0.024] or ICc = [2.233, 0.873], shown in
Fig. 4(1d), (1c), respectively. Fig. 4(1a), (1b), on the other hand, show the unstable limit
cycle bifurcating from the subcritical Hopf bifurcation with ICc = [2.233, 0.873].

Figure 4(2) corresponds to Case 2 with A = 0.71. Choosing B = 0.0572 ∈
[BS, BH ] yields recurrence, independent of the initial conditions, see, for example,
the result given in Fig. 4(2b) with ICb = [2.4, 0.5]. However, for B = 0.06 > BH , the
simulated time history converges to Ē1, with an initial condition close to Ē1, such as
ICa = [2.4, 0.6] as shown in Fig. 4(2a); or shows recurrence with an initial condition
far away from Ē1, such as ICc = [2.4, 0.4], as shown in Fig. 4(2c).

Figure 4(3) plots the result for Case 3 with A = 0.6, and shows a broader region
between the transcritical andHopf bifurcation points, associatedwith a larger recurrent
region. Recurrence occurs independent of the initial conditions for B = 0.083 ∈
[BS, BH ], giving Ē0 = [12.048, 0] and Ē1 = [2.576, 0.852], as shown in Fig. 4(3a),
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Fig. 4 Dynamical behaviors of system (4) corresponding to eight cases listed in Tables 2 and 4. All insets
are simulated time histories of Y vs. t . The yellow areas fading to white show regions in which recurrent
behavior occurs and fades to regular oscillations
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(3b), with ICa = [2.7, 0.84] and ICb = [14, 0.1], respectively. But if we choose B =
0.07 > BH , we have Ē0 = [14.286, 0] and Ē1 = [2.67, 0.8478]. The time history
converges to Ē1 with ICc = [2.6, 0.8], or shows recurrence with ICd = [2.6, 0.1], as
shown in Fig. 4(3c), (3d), respectively.

Supercritical Hopf bifurcations occur in Cases 4–7, as shown in Fig. 4(4–7). Fig-
ure 4(4) depicts the result for Case 4 with A = 0.07. Only one supercritical Hopf
bifurcation happens in this case, and gives a large recurrent parameter region between
the transcritical and Hopf bifurcation points. Although the simulated recurrent behav-
ior does not depend on initial conditions, the recurrent pattern will fade out with the
growth of the value of B from the transcritical point to the Hopf bifurcation point, see
Fig. 4(4a), (4b) with the same ICa, b = [8, 0.1], but different values of B: B = 0.06
and B = 0.09, respectively.

Figure 4(5) shows the result for Case 5 with A = 0.06. A transcritical bifurcation
happens between two supercritical Hopf bifurcations. The recurrent region still starts
from the transcritical point and independent of the initial conditions, but is narrower
than that shown in Fig. 4(4). The simulated recurrent behavior for this case is conducted
at IC= [12, 0.1] and B = 0.06. Figure 4(6) corresponds to Case 6 with A = 0.05,
and two supercritical Hopf bifurcations occur on the right side of the transcritical
bifurcation point, which makes the recurrent region even narrower and the recurrent
pattern less obvious, as shown in the simulated time history with IC = [10, 0.1]
and B = 0.06. Negative backward bifurcations occur in Cases 7 and 8, as shown in
Fig. 4(7, 8). Although two Hopf bifurcations are still present in Case 7, see Fig. 4(7),
only a regular oscillating pattern exists. For Case 8, no Hopf bifurcation happens in
the biologically feasible part of Ē1, and therefore no more interesting dynamics occur.

In general, backward bifurcations are much more likely to induce Hopf bifurcation.
AHopf bifurcation can only occur along the upper branch of Ē1, since Ē0 only changes
its stability at a transcritical bifurcation point, and any point on the lower branch of Ē1
is a saddle node (Yu et al. 2015). Moreover, Hopf bifurcation can lead to a change in
the stability of the upper branch of the infected equilibrium Ē1. Thus the system further
develops bistable, recurrent, or regular oscillating behavior, corresponding to Cases
1–7 in Tables 2 and 4, and in Fig. 4(1–7). In particular, bistability happens when both
equilibria Ē0 and Ē1 share a stable parameter region, seeCase 1 in Table 2 and Fig. 4(1).

As for recurrent behavior, we observe that recurrence is more likely to happen if the
following two conditions are satisfied for the upper branch of Ē1: (1) the equilibrium
remains unstable as the bifurcation parameter increases and crosses the transcritical
point, where Ē0 and Ē1 intersect, such that the two equilibria share an unstable para-
meter range; and (2) at least one Hopf bifurcation occurs from Ē1. As shown in Cases
2–6 in Table 2, and the corresponding Fig. 4(2–8), the common recurrent parameter
region for both subcritical and supercritical Hopf bifurcations starts beside the trans-
critical point, and is located entirely in the unstable parameter region of Ē0 and Ē1. The
simulated recurrent pattern becomes more pronounced if the value of the bifurcation
parameter is close to the transcritical point, but approaches an oscillatory pattern as
the parameter diverges from the transcritical point, as shown in Fig. 4(4a), (4b). In this
common recurrent parameter region, recurrence occurs independent of initial condi-
tions; see Fig. 4(3a), (3b). In addition to the common recurrent region, for subcritical
bifurcation, seen in Table 2 for Cases (2) and (3) and Fig. 4(2), (3), recurrence may
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also appear on the stable side of the subcritical Hopf bifurcation point with an initial
condition close to Ē1. Moreover, the subcritical Hopf bifurcation and the transcritical
point should be close to each other for a clear recurrent pattern. When this is not the
case, the periodic solutions show a more regular oscillating pattern, as compared in
Fig. 4(2c), (3d). Although two Hopf bifurcation points occur in Table 2 for Case 5, see
Fig. 4(5), the transcritical point is located inside the unstable range of the upper branch
of Ē1, between the two Hopf bifurcation points. A recurrent pattern still characterizes
the dynamical behavior in this case. However, if the unstable range of Ē1, between the
two Hopf bifurcation points, is located entirely in the unstable range of Ē0, and moves
further away from the transcritical point, the recurrent motion gradually becomes a
regular oscillation, as shown in Fig. 4(6, 7).

Remark 2 It has been proved in Zhang et al. (2014a) that the recurrence appearing
when B > D (i.e., R0 > 1) is not due to homoclinic bifurcation since no homoclinic
orbits can exist for system (4) when R0 > 1. However, it has also been shown in Yu
et al. (2015) that when B < D (i.e., R0 < 1), the system could have Bogdanov–
Takens bifurcation if proper parameter values of A and C are chosen, which may
yield homoclinic bifurcation, leading to another type of mechanism for generating
viral blips. This is not discussed in this paper. Therefore, for the HIV model (4) when
B > D, numerical continuation of the periodic orbits produced by theHopf bifurcation
does not lead to a homoclinic orbit.

Summarizing the results and discussions presented in the previous two sections,
we have the following observations.

1. Due to the fact that Ē0 only changes its stability at the transcritical bifurcation
point, and the fact that any point on the lower branch of Ē1 is a saddle node, Hopf
bifurcation can only occur from the upper branch of Ē1. A Hopf bifurcation may
result in convergent, recurrent, bistable, or regular oscillating behaviors.

2. Backward bifurcation gives rise to two branches in the infected equilibrium Ē1.
Hopf bifurcation is more likely to happen when the turning point of the backward
bifurcation is located on the positive part of the equilibrium solution in the bifur-
cation diagram, as shown in Fig. 4(2–6). This means that we have two biologically
feasible infected equilibria, which is essential to observe bistability, as shown in
Fig. 4(1).

3. However, if the turning point on the infected equilibrium Ē1, or the backward
bifurcation moves down to the negative part of a state variable in the bifurcation
diagram, that is, negative backward bifurcation occurs, then Hopf bifurcation is
very unlikely to happen. Although Fig. 4(7) shows an exceptional case, the para-
meter range for such a Hopf bifurcation is very narrow.

4. The bifurcation diagram for system (4)with A = 0.03, shown in Fig. 4(8), is a typi-
calmodelwith negative backward bifurcation. Such negative backward bifurcation
may occur in higher-dimensional systems. However, by considering more state
variables, which make the systemmore complicated, Hopf bifurcation can happen
in the upper branchof the negative backwardbifurcation.Wewill discuss this possi-
bility inmore detail in the next section by examining an autoimmunediseasemodel.

The results obtained in this section suggest the following summary.
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Remark 3 If a disease model contains a backward bifurcation on an equilibrium solu-
tion, then as the system parameters are varied, there may exist none, one or two Hopf
bifurcations from the equilibrium solution, which may be supercritical or subcritical.
If further this equilibrium has a transcritical bifurcation point at which it exchanges its
stability with another equilibrium, then recurrence can occur between the transcritical
and Hopf bifurcation points and near the transcritical point, where both equilibrium
solutions are unstable, and bistability happens when Hopf bifurcation makes a shared
stable parameter region for both equilibria.

4 An autoimmune disease model with negative backward bifurcation

In the previous section, we examined three cases of negative backward bifurcation:
Table 1Case 4 for system (7) andTable 2Case (7) and (8) for system (4). The analytical
and numerical results showed that solutions typically converge to the infected equilib-
rium in these cases, and the parameter range for Hopf bifurcation is very limited. As
a result, negative backward bifurcation tends to give no interesting behavior. In this
section, however, we shall explore an established autoimmune model (Alexander and
Wahl 2011) in which negative backward bifurcation occurs. We demonstrate that after
modification, the autoimmune model can also exhibit recurrence.

The autoimmune model (Alexander and Wahl 2011) takes the form

dA

dt
= f ṽG − (σ1Rn + b1)A − μA A

dRn

dt
= (π1E + β)A − μn Rn

dE

dt
= λE A − μE E

dG

dt
= γ E − ṽG − μGG, (17)

where mature pAPCs (A) undergo maturation by intaking self-antigen (G), at rate
f ṽ, and are suppressed by specific regulatory T cells, TReg cells (Rn), at rate σ1;
b1 represents additional non-specific background suppression. The TReg cells are
activated by mature pAPCs at a rate proportional to the number of auto-reactive
effector T cells (E) at rate π1, and by other sources at rate β. Active auto-reactive
effector T cells (E) come from the activation process initiated by mature pAPCs,
at rate λE , then attack healthy body tissue and release free self-antigen (G) at rate
γ , which is ready for mature pAPCs to engulf; the antigen engulfing rate is ṽ. The
death rates of the populations A, Rn , E , and G are denoted by μA, μn , μE , and μG ,
respectively.

Following the steps described by Zhang et al. (2014b), system (17), can be reduced
via quasi-steady state analysis to a 2-dimensional system:
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dA

dt
=

[
f ṽγ λE

μE (ṽ + μG)
− b1 − μA

]
A − σ1Rn A,

dRn

dt
=

(
π1λE

μE
A + β

)
A − μn Rn . (18)

For simplicity, we set a = f ṽγ λE
μE (ṽ+μG )

− b1 − μA and b = π1λE
μE

. For the stability

and bifurcation analysis, we define the reproduction number R0 = (b1+μA)(ṽ+μG )μE
λE f ṽγ

.

System (18) has a disease-free equilibrium Ē0 = (0, 0), which is stable if R0 < 1 and
unstable if R0 > 1. Thus a static bifurcation occurs on Ē0 when R0 = 1. The disease
equilibrium is given by Ē1 = ( Ā, R̄n), in which R̄n = (bĀ+β) Ā

μn
, and Ā is given by the

roots of the following equation,

f8(A) = bσ1A
2 + βσ1A − μna. (19)

It follows from (19) that the turning point is given by AT = − β
2b < 0, clearly showing

that this is a negative backward bifurcation.We further examine the characteristic equa-
tion at Ē1, which shares the same form as equation (13), with Tr(J |Ē1) = 1

μn
(bσ1A2+

βσ1A + μ2
n − aμn) := a11 and Det(J |Ē1) = 3bσ1A2 + 2βσ1A − aμn := a12. Solv-

ing f8(A) = 0 and a12 = Det(J |Ē1) = 0, gives the static bifurcation point of Ē1 at
( Ā, a) = (0, 0), which is a transcritical bifurcation point between Ē0 and Ē1. More-
over, Hopf bifurcation can happen if and only if f8(A) = 0 and a11 = Tr(J |Ē) = 0,
which can be satisfied only if μn = 0. This implies that the positive branch of Ē1
is stable for any positive values of μn . Thus, this model cannot exhibit recurrence,
bistability, or even regular oscillation. The same conclusion was obtained in Zhang
et al. (2014b) for the original 4-dimensional model (17).

However, a recent experimental discovery (Baecher-Allan et al. 2006) has revealed
a new class of terminally differentiated TReg cells. As described in detail in Zhang
et al. (2014b), introducing this cell population, denoted Rd , into the model yields the
full system

dA

dt
= f ṽG − σ1(Rn + dRd)A − (b1 + μA)A

dRn

dt
= (π1E + β)A − μn Rn − ξ Rn

dRd

dt
= cξ Rn − μd Rd

dE

dt
= λE A − μE E

dG

dt
= γ E − ṽG − μGG

and quasi-steady state analysis then yields a reduced 3-dimensional model in the form
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dA

dt
=

[
f ṽγ λE

(ṽ + μG)μE
− (b1 + μA)

]
A − σ1(Rn + dRd)A,

dRn

dt
=

(
π1λE

μE
A + β

)
A − μn Rn − ξ Rn,

dRd

dt
= cξ Rn − μd Rd . (20)

Again, here λE is chosen as the bifurcation parameter for stability and bifurcation
analysis. It is easy to show that system (20) still has a disease-free equilibrium Ē0
as (A, Rn, Rd) = (0, 0, 0), and a disease equilibrium Ē1 as ( Ā, R̄n, R̄d), where

R̄d = cξ R̄n
μd

, R̄n = βμE+π1λE Ā
μE (μn+ξ)

Ā, and Ā is determined from the following quadratic
equation:

f9(A) = π1λE A
2 + βμE A

+ μd(μn + ξ)

(ṽ + μG)(cdξ + μd)σ1
[− f γ ṽλE + (b1 + μA)(μG + ṽ)μE ],

which gives two negative roots if R0 > 1 and two roots with opposite signs when
R0 < 1. The critical point is determined by R0 = 1, which is actually the intersection
point of Ē0 and Ē1. The two equilibrium solutions exchange their stability at R0 =
1, leading to a transcritical bifurcation at ( Ā, λE ) = (0, (b1+μA)(μG+ṽ)μE

f γ ṽ
). Note

that the negative backward bifurcation still happens in system (20). Moreover, now
a Hopf bifurcation occurs from the upper branch of Ē1, giving rise to oscillation and
recurrence.

Realistic parameter values have been obtained in Zhang et al. (2014b), and are given
as follows:

f = 1 × 10−4, ṽ = 0.25 × 10−2, σ1 = 3 × 10−6, b1 = 0.25,

μA = 0.2, π1 = 0.016,

β = 200, μn = 0.1, μE = 0.2, γ = 2000, μG = 5, μd = 0.2,

c = 8, d = 2, ξ = 0.025.

For the above parameter values, the Hopf critical point is obtained at (AH , λEH ) =
(5.6739, 1691.6414), while the turning point is at (AT , λET )=(−1.4205, 879.9848),
indeed showing a negative backward bifurcation, and the transcritical bifurcation point
is at (AS, λES) = (0, 900.45). These three bifurcation points and the stability of
equilibrium solutions are shown in the bifurcation diagram given in Fig. 5a, and the
simulated recurrent time history is plotted in Fig. 5b for λE = λEH + 1000.

In summary, when a negative backward bifurcation occurs, that is, when the turning
point is located in the negative state variable space, less complex dynamical behavior
will be present. Hopf bifurcation in a biologically feasible area does not happen in
the reduced 2-dimensional system (18), nor in the original system (17) (Zhang et al.
2014b). However, if we increase the dimension of the system, Hopf bifurcation and
complex dynamical phenomena can emerge, as shown in our results for system (20).
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(a) (b)

Fig. 5 Dynamics of system (20): a bifurcation diagram; and b simulated time history forλE = λEH +1000

5 Conclusion and discussion

In this paper, we demonstrate that the occurrence of turning points in bifurcation dia-
gramsmay give rise to backward bifurcations, which induce rich dynamical behaviors.
The existence of a turning point implies a nonlinear form (typically quadratic) of the
equilibrium solution in terms of at least one state variable. We use the location of
the turning point—above or below the horizontal axis in the bifurcation diagram—to
define whether the backward bifurcation is “positive” or “negative”. Both types of
backward bifurcation are capable of yielding stability changes in the positive endemic
equilibrium solution, for example through Hopf bifurcation. The emergence of one
or two Hopf bifurcation(s) can contribute regular oscillations or even large-amplitude
oscillations, namely recurrence, to the system behavior. In fact, a turning point actu-
ally defines a saddle-node bifurcation on a one-dimensional manifold embedded in the
whole system. In the case of positive backward bifurcation, two endemic equilibrium
solutions exist, one of which is a saddle point (Yu et al. 2015), and bistability can
occur.

Three simple models are analyzed in this paper, describing problems in epidemi-
ology, in-host viral dynamics and immunology. The in-host model is shown to be
mathematically equivalent to a well-studied population level SIR model. In this gen-
eral infectious disease model, different nonlinear incidence functions are examined.
A concave incidence function which includes a saturation effect in terms of the num-
ber of infectives generates a forward bifurcation, and globally stable disease-free and
endemic equilibria emerge for reproductive number R0 < 1 and R0 > 1, respec-
tively (Korobeinikov and Maini 2005). However, this global stability is broken when
an extra term denoting saturating treatment or hospital resources is added to a system
which has the above property (Zhou and Fan 2012).

A convex incidence with respect to the number of infectives, on the other hand,
enables backward bifurcation to occur on the positive branch of the disease equi-
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librium solution. In general, the appearance of backward bifurcation increases the
parameter range for Hopf bifurcation, leading to recurrent, bistable and regular oscil-
lating behaviors. These dynamics are determined by the location and direction of the
Hopf bifurcation(s), as determined by parameter values.

For the autoimmune disease model in Zhang et al. (2014b), conventional forward
bifurcation appears in the first quadrant of the bifurcation diagram, however this branch
of the solution is actually determined by a quadratic equation and has a turning point
below the horizontal axis in the bifurcation diagram—anegative backward bifurcation.
Moreover, a Hopf bifurcation could occur in the positive endemic equilibrium solution
in the first quadrant and serve to switch stability of the equilibrium. Oscillation and
recurrence are possible as well.

Biologically, a convex incidence function implies a cooperative effect in disease
spread or disease progression, that is, the infection rate increases superlinearlywith the
number of infectives. In an SIR model, this effect occurs when health care resources
saturate (Zhou and Fan 2012). In an in-host model, this occurs when existing infection
makes the host more vulnerable to further infection. For example, HIV infection pro-
duces high levels of reactive oxygen species (ROS) (vanGaalen andWahl 2009),which
in turn accelerate viral production by infected cells. Similarly, the autoimmune model
we investigate shows cooperative effects. In particular, the suppressors, natural TReg
cells, are activated to generate the terminal TReg cells with higher suppressive capabil-
ity. Both natural and terminal TReg cells work together to enhance immune regulation
of the auto-reactive T cells, which are responsible for T cell mediated autoimmune
diseases.

The main implication of our work from a disease perspective is that cooperative
infections can yield systems capable of bistability and recurrence. We predict that
these complex behaviours may be displayed by any disease in which, as with HIV
or autoimmune disorders, the host becomes more vulnerable to further infection as
the disease progresses. Such diseases are likely to display bistability and relapse-
remission cycles. Thus infections which appear to be cleared may recur after a long
interval, and patients for whom R0 has been reduced below unity by drug therapy may
nonetheless continue in a symptomatic state. Our work suggests that in many diseases
which are known to display cycles of relapse and remission, a cooperative or convex
infection term should be sought as the underlying cause. A more positive implication
of this work is that it may be possible, in such diseases, to move the patient to a stable
infection-free equilibrium state through a parameter change or through a perturbation
to one of the state variables.

Backward bifurcation has also been observed in amulti-group compartmentalAIDS
model in Dushoff et al. (1998), which reveals the effect of a core group on disease
transmission. Similarly, by considering multiple groups in a mosquito population, the
properties of a traditional vector-born infectious disease model of malaria are altered
and show backward bifurcation and multiple Hopf bifurcations (Ngonghala et al.
2014). The bifurcation diagrams of these models are similar to Fig. 4(6). Here, the
positive endemic equilibrium becomes stable, oscillating, and then stable again as the
bifurcation parameter increases. Thus, these system behaviors indicate that incomplete
malaria treatment could suppress clinical symptoms, but a disease outbreak is still
possible if certain conditions are satisfied. Rich dynamical behaviors are also shown in
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a predator-prey food chain system including an inorganic resource as a state variable.
The Nitrogen–Chlorella–Brachionus model (Fussmann et al. 2000) undergoes two
Hopf bifurcations on the positive equilibrium and likewise exhibits stable, oscillating,
and stable equilibria as the bifurcation parameter, indicating the nutrition enrichment
rate, is varied.

Our results demonstrate that systems involving backward bifurcations, with turning
points that occur either in positive or negative state variable space, can exhibit rich
behaviors, including bistability and recurrence. Relevant systems cover a broad range
of research problems including infectious disease models at both the population and
in-host levels, immunological models, and ecological models. We show that convex
incidence functions and cooperative effects contribute to these behaviors.

Appendix A

The equilibrium solutions of system (7) are obtained by solving the following algebraic
equations: f1(S, I ) = 0 and f2(S, I ) = 0, from which the disease-free equilibrium
can be easily obtained as Ē0 = (Λ/d, 0). For the infected equilibrium Ē = (S̄, Ī ), S̄
is solved from f1 = 0 as S̄(I ) = Λ(1+k I )

(dk+β)I+d . Then, substituting S = S̄(I ) into f2 = 0
yields a quadratic equation of the form

F (I ) = A I 2 + B I + C = 0, (21)

which in turn gives two roots: Ī1, 2 = −B±√
B2−4A C
2A , where,A = (d+γ +ε)(dk+

β),B = [(dk+β)ω+d](d+γ +ε)+(dk+β)α−βΛ,C = [(d+γ +ε)ω+α]d−βΛω

for system (7). Since all parameters take positive values, we have A > 0. To get the
two positive roots essential for backward bifurcation, it is required that B < 0 and
C > 0. Noticing that β, Λ, ω > 0, we can see that the infection force, β, the constant
influx of the susceptibles,Λ, and the effect ofmedical treatment α I

ω+I are indispensable
terms for backward bifurcation. The number of positive infected equilibrium solutions
changes from two to one when the value of C passes from negative to positive, which
gives a critical point at C = 0, that is, [(d + γ + ε)ω + α]d = βΛω, which is
equivalent to R(7)

0 = 1.
On the other hand, we may infer the emergence of backward bifurcation without

solving the equilibrium conditions.Whenwe introduce the loss of the infectives due to
medical treatment, the dynamics of system (7) differ greatly from system (6). In par-
ticular, backward bifurcation emerges and complex dynamical behaviors may occur.
To clarify this effect, we obtain the function f4(S, I ) from the equation d I

dt = 0 of (7).

Note that f4(S, I ) is not an incidence rate. But, if we fix S = S̃ > 0, there exist 0 <

I1 < I2 < +∞, such that ∂ f4(S̃, I )
∂ I = 1

(1+k I )2(ω+I )2
[β S̃(ω + I )2 −αω(1+ k I )2] > 0,

∀ I ∈ (0, I2); and
∂2 f4(S̃, I )

∂ I 2
= −2kβ S̃(1+k I )−3+2αω(ω+ I )−3 > 0, ∀ I ∈ (0, I1),

∂2 f4(S̃, I )
∂ I 2

= 0, for I = I1,
∂2 f4(S̃, I )

∂ I 2
< 0, ∀ I ∈ (I1, I2). Thus, f4(S̃, I ) actually has

a convex-concave ‘S’ shape, and may have two positive intersection points with the
ray line, g1(I ), in the first quadrant.
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The infected equilibrium of (7) is denoted as Ē1 = (S̄, Ī ), where Ī is solved from
the equationF (I ) = 0 in (21). The turning point is determined by both the quadratic
equation (21) and the relation dΛ

dI = − ∂F
∂ I /∂F

∂Λ
= 0, which is equivalent to ∂F

∂ I = 0.

Solving ∂F
∂ I = 0 yields the expression of the turning point of I , given in (14). To

find the stability of the infected equilibrium Ē1, evaluating the Jacobian matrix at Ē1,
and further denoting it as J2 = J |(7)(Ē1), we obtain the characteristic polynomial
in the form of (13), with Tr(J2) = a11/[(ω + I )2(k I + 1)(dk I + β I + d)] and
Det(J2) = a21/[(ω + I )2(k I + 1)(dk I + β I + d)], where a11 = a1a − a1b and
a21 = a2a − a2b, with a1b = βΛ(ω + I )2 and a2b = da1b, and a1a and a2a only
contain positive terms (their expressions are omitted here for brevity). Determining
whether a Hopf bifurcation can occur from Ē is equivalent to finding whether Det(J2)
remains positive when Tr(J2) = 0. Consider the following expression:

h1(I ) =
[
Tr(J2) − 1

d
Det(J2)

]
(ω + I )2(k I + 1)(dk I + β I + d)

= a11 − 1

d
a21 = a1a − 1

d
a2a

= 1

d
(dk I + β I + d)[(k I + 1)d2(ω + I )2 − βε I (ω + I )2 − αβωI ],

(22)

where the expressions of a1a and a2a have been used. This indicates that h1(I ) may
take negative values, for which Det(J2) > 0.

Appendix B

It is easy to find the uninfected equilibrium of model (4), Ē0 = (X̄0, Ȳ0) = ( 1
D , 0),

whose characteristic polynomial has two roots: λ1 = −D < 0, and λ2 = B
D − 1,

which gives R0 = B
D . Consequently, Ē0 is stable (unstable) for R0 < 1 (>1). To find

the infected equilibrium solution, setting f6(X, Y ) = 0 yields X̄1(Y ) = Y+C
(A+B)Y+BC ,

which is then substituted into f5(X, Y ) = 0 to give the following quadratic equation:

F5(Y ) = (A + B)Y 2 + (BC + D − A − B)Y + C(D − B) = 0. (23)

In order to have two real, positive roots, two conditions must be satisfied, that is,
BC + D − A − B < 0 and D − B > 0, or in compact form, 0 < D − B < A − BC .
The condition D − B > 0 is equivalent to 0 < R0 = B

D < 1, which is a necessary
condition for backward bifurcation. Moreover, the positive influx constant, having
been scaled to 1, is a necessary term for the positive equilibrium of Y . Therefore,
the positive influx rate term and the increasing and saturating infectivity function are
necessary for backward bifurcation.

We further examine the incidence function, f7(X, Y ) defined in (12), without solv-
ing for the equilibrium solutions. The incidence function f7 obviously satisfies the
condition (3a), as well as the condition (3b) since ∂

∂X f7(X, Y ) = [B + AY (Y +
C)−1]Y > 0 and ∂

∂Y f7(X, Y ) = ACXY (Y + C)−2 + [B + AY (Y + C)−1]X > 0
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for all X, Y > 0. However, the second partial derivative of f7(X, Y ) with respect to
Y , ∂2

∂Y 2 f7(X, Y ) = 2AC2X (X +C)−3 > 0 for all X, Y > 0, showing that f7(X, Y )

is a convex function with respect to the variable Y . Consequently, f7(X, Y ) can only
have one intersection with g2(Y ) = Y , implying that only one equilibrium solution
would exist if we only consider the second equation in (11), as shown Fig. 2a. How-
ever, when considering both conditions given in (11) for equilibrium solutions, we
will have two intersection points between f7 and g2. According to the first equation
in (11), that is f5(X, Y ) = 0, we can use Y to express X in the equilibrium state
as X̄(Y ) = (Y + C)[(A + B)Y 2 + (BC + D)Y + DC]−1. Substituting X̄(Y ) into
f7(X, Y ) in (12), we obtain

f7(Y ) = Y [(A + B)Y + BC][(A + B)Y 2 + (BC + D)Y + CD]−1, (24)

and ∂
∂Y f7(Y ) = D[(A+ B)Y 2 + 2(A+ B)CY + BC2][(A+ B)Y 2 + (BC + D)Y +

CD]−2 > 0 for all X, Y > 0. However, the sign of ∂2

∂Y 2 f7(Y ) = −2D[(A+ B)2Y 3 +
3C(A + B)2Y 2 + 3(A + B)BC2Y + (B2C − AD)C2][(A+ B)Y 2 + (BC + D)Y +
CD]−3, could alter at the inflection point from positive to negative as Y increases.
Therefore, with appropriate parameter values, f7(Y ) can have a convex-concave ‘S’
shape.

If we choose the parameter B as the bifurcation parameter, then R0 = B
D = 1

defines BS = D where the ‘S’ in subscript stands for static bifurcation. Further, it can
be proved that this is a transcritical bifurcation. Therefore, Ē0 is stable when B < D
(or R0 < 1), loses its stability and becomes unstable when B increases to pass through
BS = D, that is B > D (or R0 > 1), and no other bifurcations can happen.

Next, we examine the infected equilibrium Ē1 = (X̄ , Ȳ ). Since X̄(Y ) =
Y+C

(A+B)Y+BC , Ȳ is determined by the quadratic equation (23), which gives the turn-
ing point (BT , YT ), as given in (15). We perform a further bifurcation analysis on its
corresponding characteristic polynomial (13), which takes the form

P|Ē1(λ,Y )=λ2+ a1a
[(A+B)Y+BC](Y+C)

λ+ a2a
[(A+B)Y+BC](Y+C)

, where

a1a = (A + B)2Y 3 + (2BC + D)(A + B)Y 2 + (B2C2 + ACD + 2BCD

−AC)Y + BC2D,

a2a = (A + B)2Y 3 + 2(A + B)BCY 2 + (B2C − AD)CY. (25)

Therefore, the sign of the subtraction between the trace and determinant is determined
by h2(Y ) = a1a − a2a = D(A + B)Y 2 + [2CD(A + B) − AC]Y + BC2D. Here
the equilibrium solution of Y and other parameters satisfy the quadratic equation (23),

which leads to an explicit expression, given by B̄ = − AY 2+(D−A)Y+CD
Y 2+(C−1)Y−C

. Substituting

B = B̄ into h2(Y ), we obtain

h2(Y )|B=B̄ =a1a−a2a = [AC(D − 1) − D2]Y 2 − [AC(D − 1) + 2CD2]Y − C2D2

Y − 1
.

(26)
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Hopf bifurcation may occur when the trace is zero, while the determinant is still pos-
itive. This implies h2(Y ) < 0, which is possible with appropriately chosen parameter
values. Hence, by solving a1a = 0 in (25) together with the quadratic equation (23), we
get two pairs of points denoted by (Bh1, Yh1) and (Bh2, Yh2), which are candidates for
Hopf bifurcation. Then validating the above two points by substituting them back into
the characteristic polynomial (25), respectively, we denote the Hopf bifurcation point
as (BH , YH ) if this validation confirms their existence. According to Yu et al. (2015),
Hopf bifurcation can happen only from the upper branch of the infected equilibrium Ē1.
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