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MODELING AND ANALYSIS OF RECURRENT AUTOIMMUNE
DISEASE∗

WENJING ZHANG† , LINDI M. WAHL† , AND PEI YU†‡

Abstract. Many autoimmune diseases are characterized by a pattern of recurrence and remis-
sion, in which periods of apparent self-tolerance are punctuated by intervals of recurring autoimmu-
nity. We introduce a newly discovered class of terminally differentiated regulatory T cells, HLA-DR+

TReg cells, into an existing autoimmune disease model. Our newly developed 4-dimensional model
exhibits recurrent dynamics, which are preserved in a reduced and rescaled 3-dimensional model
as well. Applying dynamical systems theory, we analyze the dynamics underlying this behavior in
both the 4-dimensional and 3-dimensional models and further prove that the recurrent behavior (or
oscillation) arises due to a Hopf bifurcation or a persistent oscillation rather than from homoclinic
orbits. Numerical simulations are conducted to verify the analytical results and identify the recurrent
parameter region.
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1. Introduction. The adaptive immune system consists of a set of highly spe-
cialized cells and processes that can limit or eradicate the growth of foreign pathogens.
Normally, the immune system must be able to mount responses against pathogens that
invade the host, but avoid attacking the organism’s own tissues; when this discrimi-
nation fails, the result is autoimmunity. Autoimmune diseases are often chronic and
debilitating. They affect 50 million (or one in five) Americans, but are more common
in women (75 percent of cases), according to the American Autoimmune Related Dis-
eases Association [2]. In fact, autoimmune diseases, such as systemic sclerosis and
rheumatoid arthritis, are among the main causes of death of young and middle-aged
women in developed countries [9]. Evidence is also mounting that the prevalence of
autoimmune disease is increasing: for example, a 3% global increase in type 1 diabetes
per year has been reported [30]. Although health care costs related to autoimmune
diseases amount to over a billion dollars each year in the United States alone, pa-
tients are still suffering from misdiagnosis and delayed diagnosis due to a lack of
understanding of autoimmune disease. These facts illustrate the vital need to focus
further research on all autoimmune diseases.

To address autoimmune disease in a mathematical model, we first outline in brief
the normal function of the immune system. The cells of the adaptive immune system
are T- and B lymphocytes: B cells are involved in “humoral immune responses,”
while T cells play a large role in the cell-mediated immune responses. Here, in order
to investigate T cell–mediated autoimmune disease, we focus on the latter response.
Initiation of an adaptive immune response starts when immature dendritic cells (DCs),
which are the most important professional antigen presenting cells (pAPCs), settle
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at a site of infection or inflammation, become activated, and undergo maturation.
Simultaneously, naive conventional T cells, each bearing a specific antigen receptor,
constantly circulate through the peripheral lymphoid tissues, browsing many DCs as
they carry out brief contacts, and receiving two signals: discrimination of the antigen
presented by DCs and interplay with co-stimulatory molecules on the same DCs.
After making a stable interaction with DCs presenting their cognate antigen, naive T
cells can be activated and proliferate into effector T cells. The proliferation phase is
significant and driven by the cytokine interleukin-2 (IL-2), which can be produced by
active conventional T cells themselves and from other sources as well.

Central tolerance is the main mechanism which allows the immune system to
avoid mounting a response against the organism’s own tissues. In this process, auto-
reactive T cells, which have antigen receptors specific to self-antigens, are deleted
during lymphocyte development in the thymus. Nevertheless, the T cells that leave
the thymus are relatively but not absolutely safe. A large body of research has
demonstrated that some auto-reactive T cells are present in the periphery under
normal conditions [43]. In this case, peripheral tolerance is established after T cells
mature and migrate into the periphery, which prevents auto-reactive T cells from
directing an immune response toward self-antigens. One mechanism of peripheral
tolerance is the population of regulatory T (TReg) cells.

Regulatory T cells are a subpopulation of CD4+ T cells that modulate the immune
system, preventing the expansion of auto-reactive T cells and subsequent autoimmune
disease [34]. Evidence [33, 4, 20] has shown that human TReg cells are phenotypically
heterogeneous. Most thymus-derived TReg cells found in the periphery are naive TReg

cells [20, 25, 15], which have not experienced T cell receptor (TCR) stimulation-
mediated maturation and are in a quiescent stage, resistant to apoptosis. Like naive
conventional T cells, in order to participate in an immune response, naive TReg cells
require activation by antigen on pAPCs and possible co-stimulation [1, 23]. IL-2 seems
to be a necessary factor [10, 37, 35] for TReg cell proliferation. Activated conventional
T cells are believed to be the main source of IL-2 [12, 45], although there also exist
other IL-2 sources, such as DCs. Following activation, naive TReg cells become effector
natural TReg (nTReg) cells, which have potent suppressive activity. TReg cells can also
develop from mature conventional T cells outside the thymus; however, the distinction
between these “induced” TReg cells and natural TReg cells is immaterial to our model.

Recently, a new subset of effector nTReg cells has been discovered experimen-
tally [5, 31]. This subset of cells have further matured to become terminally differen-
tiated suppressors, which show more efficient suppression, but have a shorter lifespan,
than nTReg cells. Phenotypic analysis has demonstrated that the expression of the
cell surface receptor denoted HLA-DR in nTReg cells is heterogeneous [32] and dis-
tinguishes this terminally differentiated subpopulation; in particular, HLA-DR+ TReg

cells suppress proliferation of conventional T cells more rapidly than do HLA-DR−

TReg cells. It is believed that activation and expansion of HLA-DR− effector nTReg

cells provoke the generation of this subset of HLA-DR+ TReg cells [5].
Despite these multilayer barriers, self-tolerance mechanisms fail occasionally. Al-

though the activity of auto-reactive T cells in humans is not understood completely,
research in nonhuman primates has indicated that these cells in the periphery can be
activated and may provoke a T cell–mediated attack against self-determinants [41],
causing autoimmune disorders. For example, when auto-reactive T cells attack the
central nervous system [41], acute focal inflammation may cause a relapse of symp-
toms in multiple sclerosis [42]. TReg cells are capable of limiting these attacks, and
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their deficiency can lead to fatal autoimmune disease which affects multiple organs in
mice [6, 14] and human beings [38, 29].

Autoimmune diseases are often chronic, requiring lifelong care and monitoring,
despite the fact that symptoms may disappear occasionally. Many autoimmune dis-
eases are characterized by recurrence, that is, disease relapses (return of symptoms)
followed by remittance (absence of symptoms, possibly for a long period). In sev-
eral autoimmune diseases, this relapse-remission behavior occurs even in the absence
of treatment, for example in multifocal osteomyelitis [16, 21], eczema [13], subacute
discoid lupus erythematosus [27], and psoriasis [11]. In fact, the subtypes of some
diseases are clinically classified based on the patterns of this recurrent behavior [42].
Therefore, an improved understanding of recurrent dynamics in autoimmune disease is
crucial to promoting correct diagnosis, patient management, and treatment decisions.

Recently, the relapse-remission behavior of multiple sclerosis was studied using a
stochastic differential equation model developed by Velez de Mendizabal et al. [40].
The authors investigated cross-regulation interactions, modeled as Hill functions, be-
tween regulatory and auto-reactive effector T cells. A predator-prey system was
adopted in that paper, in which auto-reactive effector T cells act as prey and TReg

cells as predators. The deterministic system derived in this model does not display
recurrent dynamics. However, when the resting auto-reactive effector T cell and rest-
ing TReg cell populations are introduced to the deterministic model using stochastic
pulse trains [44], modeling the probabilistic influx of resting cells, the characteristic
relapse-remission behavior of multiple sclerosis is observed. The paper concludes that
weakness in the negative feedback between effector and regulatory T cells may allow
the immune system to generate the typical recurrent dynamics of autoimmune dis-
ease. This work is similar to recent models of recurrent dynamics in HIV, in which
stochastic inputs or forcing functions are typically necessary to generate recurrent
behavior [49, 50].

Recent models introduced by Alexander and Wahl [1] capture the intrinsic feed-
back cycle of autoimmunity, in which pAPCs present self-antigen, eliciting self-reactive
effector T cells, which in turn attack host tissues. The damage to host tissue results in
increased concentrations of self-antigen, activating further pAPCs. This cycle is kept
in check by the actions of TReg cells, which limit the self-reactive immune response via
several putative mechanisms. These models exhibit equilibria corresponding to toler-
ance and autoimmunity, but bistability is not observed. Instead, a branching process
was used to demonstrate that, from identical starting conditions, states of immune
tolerance or intolerance could be reached probabilistically. Although this set of related
models offers a general approach to autoimmunity and the role of TReg cells, it does
not capture the recurrent behavior which characterizes many autoimmune diseases.

Following the recent experimental discovery of the HLA-DR+ TReg cells described
above, we have chosen to expand the model of Wahl and Alexander to include this
new class of potently suppressive cells. In some parameter regimes, we observe numer-
ically that the expanded model exhibits long periods of self-tolerance, punctuated by
brief episodes of disease recurrence, deterministic dynamics reminiscent of our recent
investigations of viral blips in in-host infection models [49]. In these infection models,
relapse-remission behavior may in some cases arise simply from the nonlinear dynam-
ics of the underlying dynamical system, in the absence of stochasticity, therapy, or
other trigger mechanisms [46, 39]. By taking advantage of dynamical systems theory,
we recently proposed four conditions which guarantee recurrent behavior in determin-
istic viral infection models [49]. Given the importance of recurrence to autoimmune
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disease, here we apply a similar approach to gain an analytical understanding of the
dynamical features underlying recurrence in the autoimmune model.

The rest of the paper is organized as follows. In section 2, we introduce two es-
tablished models [1] describing autoimmune disease. We demonstrate that these two
models do not have Hopf bifurcations, and so cannot exhibit the oscillatory behavior
which underlies recurrence. Based on recent experimental findings, we introduce the
new TReg subtype and establish a new model. In section 3, we first prove that the
new model is well-posed, and then perform mathematical analysis to find equilibrium
solutions and determine their local and global stability. By choosing proper bifurca-
tion parameters, we also identify the transcritical and Hopf bifurcation critical points,
showing that the new model should display the recurrent dynamics characteristic of
many autoimmune diseases. Further, by applying center manifold theory and normal
form theory, we find approximate solutions of the limit cycles and determine their
stability. Then, in section 4, we use numerical simulation to verify the analytical
predictions obtained in section 4. Moreover, a comparison between the analytical and
numerical results for the Hopf bifurcation is given in this section. In order to identify
key factors in the mechanism of recurrence, in section 5 we perform model reduction
under a quasi-steady state assumption. This is achieved by reducing the number of
state variables and parameters, and also by a rescaling of the time variable. Then,
we prove that the original and reduced models exhibit the same dynamical behavior
as long as the parameter values are chosen properly. Based on the reduced model,
three bifurcation parameters are used to classify the parameter ranges for which re-
currence exists. Furthermore, we show that there do not exist homoclinic orbits in
either the original or the reduced models, and so the recurrence phenomenon either
comes from Hopf bifurcation or is due to persistent oscillations. We conclude with a
brief discussion of these results in section 6.

2. Model development. Following recent experimental findings, we sought to
introduce terminally differentiated regulatory T cells as an explicit variable into mod-
els established by Alexander and Wahl [1]. Their models consider two suppressive
mechanisms enacted by TReg cells. Since pAPCs are primarily DCs, which are tar-
gets of nTReg cell suppressive action [26], the first of the suppressive mechanisms is
the direct suppression of pAPCs by TReg cells, effectively removing pAPCs from the
system [18]. The corresponding model is given by

(2.1)

Ȧ = f ṽG− (σ1Rn + b1)A− μAA,

Ṙn = (π1E + β)A− μnRn,

Ė = λEA− μEE,

Ġ = γE − ṽG− μGG,

where the variables A, Rn, E, G represent the populations of mature pAPCs, active
nTReg cells, active auto-reactive effector T cells, and the particular self-antigen of
interest, respectively. All cell populations are specific for a given self-antigen. Param-
eter definitions and their numerical values are listed in Table 1; meaningful numerical
values were carefully chosen in [1] with extended reference to the primary literature.
Model (2.1) assumes that pAPCs undergo maturation at a rate of f ṽ G, while during
this process the antigen uptake rate is ṽ G. The activated auto-reactive effector T
cells (E) are produced at a rate of λE A by resting T cells through an interaction with
mature pAPCs (A). After activation, auto-reactive effector T cells (E) can produce
IL-2, which is required for TReg cell proliferation, while other IL-2 sources also exist.
Thus nTReg cells are activated at a rate of (π1E+β)A, where π1E represents IL-2
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Table 1

Parameter definitions and values used in previous models.

Para. Definition Values

ṽ Per capita rate at which free antigen (G) is taken up
by immature pAPCs

0.0025 /day

f Proportion of antigen molecules that, upon uptake,
lead to maturation of the pAPC to enter population
A

1× 10−4 [A]/[G]

π1 Rate (per A, per E) at which active nTReg cells are
generated from the pool of “naive” TReg cells, due to
encounter with mature pAPCs (A) and influence of
IL-2 from specific effector T cells

0.0160 [Rn]/(day · [E] · [A])

π3 Rate (per A, per E) at which active nTReg cells are
generated from the pool of “naive” TReg cells, due to
encounter with mature pAPCs (A) and influence of
IL-2 from specific effector T cells

0.0256 [Rn]/(day · [E] · [A])

β Rate (per A) at which active nTReg cells are generated
from the resting pool, due to encounter with mature
pAPCs (A) and influence of IL-2 from other sources

200 [Rn]/(day · [A])

λE Rate (per A) at which effector T cells (E) are gen-
erated from the resting pool, due to encounter with
mature pAPCs (A)

1000 [E]/(day · [A])

γ Rate (per E) at which self-antigen (G) is released due
to the actions of effector T cells (E)

2000 [G]/(day · [E])

σ1,3 Rate (per capita, Rn) at which mature pAPCs (A)
and effective T cells are effectively eliminated due to
suppression by specific active nTReg cells (Rn)

3× 10−6 /(day · [Rn])

b1 Rate (per capita) at which mature pAPCs (A) are ef-
fectively eliminated due to suppression by TReg cells
of other specificities or by therapy

0.25 /day

b3 Rate (per capita) at which effective T cells (E) are
effectively eliminated due to suppression by TReg cells
of other specificities or by therapy

0.25 /day

μA Per capita death rate of mature pAPCs 0.2 /day
μE Per capita death rate of effector T cells (E) 0.2 /day
μG Per capita rate at which free antigen (G) is cleared,

for example due to degradation
5 /day

μn Per capita death rate of active nTReg cells (Rn) 0.1 /day
μd Per capita death rate of terminal TReg cells (Rd) 0.2 /day
ξ Proportion of activated nTReg cells 0.025/day
α Rate (per E) at which immature pAPCs become ma-

ture
1× 10−4 [A]/(day · [E])

d Ratio of suppressive effectiveness of nTReg cells to that
of terminal TReg cells

2 [Rn]/[Rd]

c Factor by which matured nTReg cells expand and pro-
liferate to terminal TReg cells

23 = 8 [Rd]/Rn]

produced by active auto-reactive effector T cells (E) and β represents background
sources of IL-2. nTReg cells (Rn) then suppress pAPCs (A) at a rate of σ1RnA, while
b1 represents a level of nonspecific background suppression. Auto-reactive effector T
cells (E) attack the host tissues, causing the release of self-antigen at a rate of γ E,
which in turn triggers the maturation of pAPCs and thus initiates a new cycle of
autoimmunity. Here, the death/clearance rates of the populations A, Rn, E, and G
are μA, μn, μE , and μG, respectively.

By down-regulating IL-2 transcription, Treg cells could suppress effector T cells [43],
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or even kill them [17, 18]. Therefore, another suppressive mechanism is considered in
isolation in [1]; that is, nTReg cells may directly reduce the auto-reactive effector T
cell population. This model is described by

(2.2)

Ȧ = f ṽG− μAA,

Ṙn = (π3E + β)A− μnRn,

Ė = λEA− (σ3Rn + b3)E − μEE,

Ġ = γE − ṽG− μGG,

where the auto-reactive effector T cells are suppressed by nTReg cells and background
suppression at a rate of (σ3 Rn + b3)E. Other terms have the same meanings as their
counterparts in model (2.1).

2.1. No recurrence in models (2.1) and (2.2). Since the main purpose of
this paper is to study recurrence in autoimmune models, we first want to ask whether
the above two models (2.1) and (2.2) can exhibit this behavior. According to the
hypothesis given in [49], a Hopf bifurcation is a necessary condition for recurrence.
In this section, we will show that the two models (2.1) and (2.2) do not have a Hopf
bifurcation. For simplicity, we briefly outline the proof only for model (2.1). One can
prove this for model (2.2) similarly.

First, as usual, we can show that the solutions of model (2.1) are nonnegative if
the initial conditions are nonnegative, and all solutions are bounded. Further, we show
that model (2.1) has two equilibrium solutions: one of them is the trivial equilibrium,

E0 : A0 = Rn0 = E0 = G0 = 0,

and the other is the nontrivial equilibrium,

E1 : Rn1 =
f ṽγλE − μE(b1 + μA)(ṽ + μG)

σ1μE(ṽ + μG)
, E1 =

λE

μE
A1, G1 =

γλE

μE(ṽ + μG)
A1,

where

(2.3) A1 = − βμE

2π1λE
+

√( βμE

2π1λE

)2

+
f ṽγλE − μE(b1 + μA)(ṽ + μG)

σ1π1λE
,

for f ṽγλE − (b1 + μA)μE(ṽ + μG) > 0, and thus A1 > 0.
Then, the stability of E0 and E1 can be determined from the linearized system

of (2.1) and its characteristic polynomials, associated with these two equilibria. The
characteristic polynomial for E0 is obtained as P0(L) = (L+μn)(L

3+a01L
2+a02 L+

a03), where

a01 = b1 + μA + μE + ṽ + μG,

a02 = μE(b1 + μA + ṽ + μG) + (b1 + μA + ṽ + μG),

a03 = μE(b1 + μA)(ṽ + μG)− f ṽγλE .

Further, it is easy to show that

Δ02 = a01 a02 − a03

= (b1+μA)(μE+ṽ+μG)
2 + (μE+ṽ+μG)

[
μE(ṽ+μG) + (b1+μA)

2
]
+ f ṽγλE > 0.

Thus, according to the Routh–Hurwitz criterion, we can conclude that the equilibrium
E0 is stable (unstable) if μE(b1 + μA)(ṽ + μG) − f ṽγλE is > 0 (< 0). The only
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possible bifurcation from E0 is a static bifurcation which occurs at the critical point,
determined by f ṽγλE = μE(b1+μA)(ṽ+μG). Note that when μE(b1+μA)(ṽ+μG)−
f ṽγλE > 0, the equilibrium E1 does not exist.

Next, similarly we can discuss the stability of E1. The characteristic polynomial
associated with E1 is given by P1(L) = L4 + a11 L

3 + a12 L
2 + a13 L+ a14, where

a11 =
1

μE(ṽ + μG)

[
f ṽγλE + μE(ṽ + μG)(μu + μE + ṽ + μG)

]
,

a12 =
1

μE(ṽ + μG)

{
σ1(ṽ + μG)(π1λE A1 + βμE)A1 + f ṽγλE(μn + μE + ṽ + μG)

+μE(ṽ + μG)
[
μEμn + (μn + μE)(ṽ + μG)

]}
,

a13 =
1

μE(ṽ + μG)

{
σ1(ṽ + μG)

[
λEπ1(ṽ + μG + 2μE)A1 + βμE(μE + ṽ + μG)

]
A1

+μn

[
μ2
E(ṽ + μG)

2 + (μE + ṽ + μG)f ṽγλE

]}
,

a14 = σ1(ṽ + μG)(2π1λE A1 + βμE)A1,

where A1 is given in (2.3). It is easy to see that a1i > 0, i = 1, 2, 3, 4. Moreover, we
can show that

Δ12 = a11 a12 − a13

=
1

μ2
E(ṽ + μG)2

{
μ3
E(ṽ + μG)

2σ1β A1

+μ2
E(ṽ + μG)

2
[
μn(μE + ṽ + μG)

2 + (ṽ + μG)
(
μ2
E + μ2

n + μE(ṽ + μG)
)

+μEμn(μn + b1 + μA)
]

+f ṽγμE(ṽ + μG)λE

[
(μn + ṽ + μG)

2 + μE

(
3(ṽ + μG) + μE + μn

)]
+(f ṽγλE)

2(μn + μE + ṽ + μG)

+μn

[
f ṽγλE + μnμE(ṽ + μG)

][
f ṽγλE − μE(b1 + μA)(ṽ + μG)

]}
> 0,

due to f ṽγλE > μE(b1+μA)(ṽ+μG), as well as Δ13 = (a11a12−a13)a13−a14a
2
11 > 0.

Here the lengthy expression of Δ13 is omitted for brevity. Therefore, E1 is stable if
f ṽγλE − μE(b1 + μA)(ṽ + μG) > 0. Noticing the stability condition for E0, we
can see that E0 and E1 exchange their stability at the critical point, determined by
f ṽγλE = μE(b1 + μA)(ṽ + μG), and only a transcritical bifurcation exists at this
critical point. This implies that there is also no Hopf bifurcation that can occur from
the equilibrium E1.

Further, we can show that the trivial equilibrium of model (2.1) is globally asymp-
totically stable. This can be achieved by first considering the first, third, and last equa-
tions of (2.1), and ignoring the nonlinear term −σ1RnA in the first equation, yielding a
linear system which has the characteristic polynomial P0(L). Thus, by using compar-
ison theory and this linear system (obtained by ignoring the nonlinear term) [24], we
can easily prove that the equilibrium E0 is globally asymptotically stable. Although
we have not proved the global stability of the nontrivial equilibrium, we have tried a
number of numerical simulations, which show that all solutions converge to E1 regard-
less of the initial conditions, as long as the condition f ṽγλE > μE(b1 + μA)(ṽ + μG)
is satisfied. Hence, we conjecture that the two models (2.1) and (2.2) do not have
any persistent solutions, except the two equilibrium solutions E0 and E1. This mo-
tivates the development of new models for studying relapse-remission dynamics in
autoimmune disease.
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2.2. Developing new models. Now, based on the two models (2.1) and (2.2),
we develop new models. First, instead of considering the two immunosuppressive
mechanisms in isolation, we combine them to obtain the following 4-dimensional ODE
model:

(2.4)

Ȧ = f ṽG− (σ1Rn + b1)A− μAA,

Ṙn = (π3E + β)A− μnRn,

Ė = λEA− (σ3Rn + b3)E − μEE,

Ġ = γE − ṽG− μGG,

where the π1 is replaced by π3. Note that the numerical value of either π1 or π3

from [1] could be used; the difference is immaterial to our analysis.
As mentioned in the introduction, phenotypic analysis indicates that the effector

TReg cell subset is heterogeneous in the expression of HLA-DR [33], which identifies
a terminally differentiated subpopulation of effector TReg cells, the HLA-DR+ TRegs.
Therefore, we introduce these short-lived but potently suppressive TReg cells into our
model (2.4), denoted by Rd. Then, we get a 5-dimensional model as follows:

(2.5)

Ȧ = f ṽG− σ1(Rn + dRd)A− b1A− μAA,

Ṙn = (π3E + β)A− μnRn − ξRn,

Ṙd = c ξRn − μdRd,

Ė = λEA− σ3(Rn + dRd)E − b3E − μEE,

Ġ = γE − ṽG− μGG.

For the above model, the possibility remains that HLA-DR− nTReg cells may be ac-
tivated to become terminal HLA-DR+ TReg cells [33]. Therefore, we indicate the
part of HLA-DR− nTReg cells which undergo activation as an output term from
Rn population, with the activation rate ξRn. The activated HLA-DR− nTReg cells
may further experience expansion and proliferation, say three divisions, and thus
c = 23 = 8[Rd]/[Rn], which contributes an input source of HLA-DR+ TReg cells, de-
noted by c ξRn. From the functional point of view, compared to HLA-DR− TReg cells,
HLA-DR+ TReg cells show more effective suppression of effector conventional T cells
and pAPCs and secrete cytokines more rapidly [5]. Therefore, we assume the suppres-
sion rate to pAPCs and effector T cells to be σ1dRdA and σ3dRdE, respectively, and
set d = 2 [Rn]/[Rd]. In healthy adults, HLA-DR is expressed by approximately one
third of effector TReg cells in peripheral blood [3], so here we assume in autoimmune
disease patients that the ratio is one half, implying that the ratio Rd

Rn
is one. We can

use this fact to approximate ξ in the quasi-steady state of the Rd population, that is,
cξRn − μdRd = 0, yielding ξ = 0.025/day. The death and clearance rates μE and μA

are based on the references given in [1] and are much the same here. Effector T cell
lifetimes are approximately 4–5 days [28], so we set μE = 0.2 day−1. The death rate
of mature pAPCs is less certain [22]; we assume that the lifetime of a mature pAPC
is of the same order as that of a mature effector T cell and take μA = 0.2 day−1 as
well [1]. We likewise assume a similar death rate between the effector T cells and
TReg cells, set terminal TReg’s death rate as μd = 0.2 day−1, and set μn = 0.1 day−1,
due to the rapid death rate of terminally differentiated effector HLA-DR+ TReg cells.

To simplify this model, for which the parameter values are shown in Table 1,
we impose a quasi-steady state assumption on the free antigen concentration. In
particular, we know that the decay rate of the free antigen molecules (μG) is much
faster than the dynamics of the effector T cells (E), and we can thus assume that
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the free antigen is in quasi-steady state with (and proportional to) the effector T cell
population. Therefore, in the following, we shall eliminate G from system (2.5) by
setting γE − ṽG − μGG = 0 to obtain G = γ

μG+ṽ E, to reduce system (2.5) by one
dimension. Further, letting α = fṽγ

μG+ṽ = 1 × 10−4[A]/(day · [E]), we obtain a new
model, given by

Ȧ = αE − σ1(Rn + dRd)A− b1A− μAA,(2.6a)

Ṙn = (π3E + β)A− μnRn − ξRn,(2.6b)

Ṙd = c ξRn − μdRd,(2.6c)

Ė = λEA− σ3(Rn + dRd)E − b3E − μEE.(2.6d)

The parameter definitions and their values are given in Table 1. For readability, in
the sections to follow, we will consistently use the units provided in Table 1 and will
not repeat unit values for each parameter. The state variables in (2.6) are defined as
follows [1]:

A : Number of mature pAPCs (professional antigen presenting cells), primarily
mature dendritic cells, which present a particular self-antigen of interest and
express sufficiently high levels of co-stimulatory molecules so as to be capable
of activating T cells.

Rn : Number of activated TReg cells, HLA-DR−, specific for the antigen of interest,
capable of exerting their suppressor function.

Rd : Number of terminally differentiated TReg cells, HLA-DR+, with hypersup-
pressive ability.

E : Number of active auto-reactive effector T cells that are specific for the antigen
of interest. These may be either CD4+ or CD8+ T cells, or even a combination
of these two; the distinction is not important, given the other simplifications
we employ.

In the following sections, we study the new model (2.6) in detail, with particular inter-
est in stability and bifurcation behaviors, and show that the model can exhibit cycles
of relapse, separated by relatively long periods of remission, which are characteristic
of several autoimmune diseases.

3. Well-posedness, equilibrium solutions, and stability of model (2.6).
First, we investigate the well-posedness of the solutions of model (2.6).

3.1. Well-posedness. Due to physical meaning of this autoimmune disease
model, only nonnegative initial conditions are considered, and negative solutions are
not allowed. Likewise the parameters in (2.6) are all positive due to their biological
meaning. More precisely, we have the following result.

Theorem 3.1. All solutions of system (2.6) are nonnegative if the initial condi-
tions are nonnegative. Furthermore, they are bounded.

Proof. Write (2.6a) and (2.6d) as a nonautonomous system:

(3.1)
Ȧ = −[

σ1

(
Rn(t) + dRd(t)

)
+ b1 + μA

]
A+ αE,

Ė = −[
σ3

(
Rn(t) + dRd(t)

)
+ b3 + μE

]
E + λEA.

Thus, according to Theorem 2.1 in [36, p. 81], we know that A(t) ≥ 0 and E(t) ≥ 0
for t > 0, provided that A(0) ≥ 0 and E(0) ≥ 0. Then, Rn(t) = Rn(0) exp [−(μn +

ξ)t] +
∫ t

0
[π3E(τ) + β]A(τ) exp[−(μn + ξ)(t − τ)]dτ ≥ 0 for A(t) ≥ 0, E(t) ≥ 0, and

Rn(0) ≥ 0. Further Rd(t) = Rd(0) exp (−μd t) +
∫ t

0
c ξ Rn(τ) exp[−μd(t − τ)] dτ ≥ 0

for Rn(t) ≥ 0 and Rd(0) ≥ 0.
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Next, we prove that all solutions of system (2.6) are bounded. We first consider
two equations, (2.6a) and (2.6d). Let

(3.2)
w1(t) = σ1[Rn(t) + dRd(t)] + (b1 + μA),

w2(t) = σ3[Rn(t) + dRd(t)] + (b3 + μE).

With nonnegative initial conditions, we have w1(t) > 0 and w2(t) > 0 ∀t > 0. We
construct a Lyapunov-candidate-function of the form V1(A, E) = 1

2 (A
2+E2)∀A, E ≥

0. It is easy to see that V1(A, E) > 0 ∀A, E > 0 and V1(0, 0) = 0. Taking the time
derivative of V1 along the trajectory governed by the differential equation (2.6a) and
(2.6d) yields

dV1

dt

∣∣∣∣
(2.6a), (2.6d)

= AȦ+ E Ė = A (−w1A+ αE) + E (λEA− w2E)

= − (A, E) Q(t)

(
A
E

)
,(3.3)

where

(3.4) Q(t) =

[
w1(t) − 1

2 (α+ λE)
− 1

2 (α+ λE) w2(t)

]
.

To consider the positive definiteness of Q(t), first note that w1(t) > 0 and w2(t) >
0 ∀t ≥ 0. For the sign of det(Q(t)), if we assume that Rn(t) is unbounded, i.e.,
limt→+∞ supRn(t) = +∞, then we will arrive at a contradiction. Due to the positivity
of Rd(t), σ1, σ3, d, b1, b3, μA, and μE , it follows from (3.2) that limt→+∞ supw1(t) =
limt→+∞ supw2(t) = +∞, and so limt→+∞ sup det(Q(t)) = +∞, which implies that
limt→+∞ supA(t) = limt→+∞ supE(t) = 0. Then, from (2.6b) we have

lim
t→+∞ sup Ṙn(t) ≤ lim

t→+∞ sup
[
(π3E(t) + β)A(t) − (μn + ξ)Rn(t)

]
≤ lim

t→+∞ sup(π3E(t) + β)A(t) + (μn + ξ) lim
t→+∞ sup

(−Rn(t)
)

≤ 0− lim
t→+∞ inf Rn(t)(3.5)

≤ 0,

leading to limt→+∞ Rn(t) = 0, which is a contradiction with our assumption. Thus,
Rn(t) is bounded, and we define MRn = max{Rn(t), t ≥ 0}.

For the remainder of the proof, we give a general claim first. Suppose that we
have the differential inequality Ṫ ≤ λ − d T (λ, d > 0, T (0) > 0). Then, for Ṫ =
λ − d T , we have the solution T (t) = T (0) e−d t + λ

d (1 − e−d t), which implies that

limt→+∞ supT (t) = λ
d . Thus, from (2.6c), we have Ṙd ≤ c ξMRn − μd Rd, which

yields limt→+∞ supRd(t) =
c ξMRn

μd
, and so Rd is bounded.

Since Rn(t) is bounded, it follows from (2.6b) that A(t) must be bounded. Oth-
erwise, suppose limt→+∞ supA(t) = +∞. Then, (2.6b) yields limt→+∞ sup Ṙn(t) =
+∞, implying thatRn(t) is unbounded, giving a contradiction. Hence A(t) is bounded.
Write MA = max{A(t), t ≥ 0}.

Finally, from (2.6d) we obtain that Ė ≤ λE MA − (b3 + μE)E, which yields
limt→+∞ supE(t) = λE MA

b3+μE
, indicating that E(t) is bounded.

The proof is now complete.
Next, we will consider the equilibrium solutions of system (2.6) and determine

their stability by using the Routh–Hurwitz criterion [19]. When we consider a Hopf
bifurcation, we will use the result given in [48] to determine the Hopf critical condition.
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Fig. 1. (a) Complete bifurcation diagram for model (2.6) projected on the α-A plane, with the
red and blue lines denoting E0 and E1, respectively. (b) Bifurcation diagram in (a), restricted to
the first quadrant. (c) Bifurcation diagram for model (2.6) projected on the α-A-Rn space, with the
red, green, and blue lines denoting E0, the inner branch of E1, and the outer branch of E1, which
is biologically meaningless since Rn takes negative values. Here, the dotted and solid lines indicate
unstable and stable equilibria, respectively.

3.2. Equilibrium solutions. By setting Ȧ = Ṙn = Ṙd = Ė = 0 in model (2.6),
we get two equilibrium solutions: the tolerance equilibrium E0 : (Ā0, R̄n0, R̄d0, Ē0) =
(0, 0, 0, 0), and the autoimmune disease equilibrium E1 : (Ā, R̄n, R̄d, Ē), where

(3.6)

R̄n =

[
π3(b1 + μA)Ā+ βα

]
μd Ā

μdα(μn + ξ)− π3σ1(μd + d c ξ)Ā2
,

R̄d =
c ξR̄n

μd
,

Ē =

[
σ1R̄n(μd + d c ξ) + μd(b1 + μA)

]
Ā

μdα
,

and Ā is a function in terms of the system parameters, particularly α, and determined
by the following fourth-degree equation, in which the parameter values given in Table
1 have been used. Note that the rational numbers given below are obtained using
symbolic computation in which all the parameter values given in digital format (see
Table 1) have been transformed into rational numbers for convenience in computation.

(3.7)

F1(A, α) =
81

38146972656250
A4 − 1521α

625000000
A2 − 81α

10000000
A+

5

8
α2 − 81α

640000
= 0.

It should be noted that the existence condition of the disease equilibrium E1 depends
upon the existence condition of A determined by the fourth-degree polynomial (3.7),
which has already been simplified by substituting the parameter values (except the
bifurcation parameter α) into the equation. This fourth-degree polynomial with all
nonfixed parameters is too involved to determine the existence condition of A.

The graphs of A = 0 and F1(A, α) = 0 as given in (3.7) are shown in Figure 1,
where Figure 1(a) shows the complete bifurcation diagram, while Figure 1(b) depicts
only the part which is biologically meaningful. Figure 1(c) shows a 3-dimensional
plot, indicating why the branch in Figure 1(a) is biologically meaningless.

3.3. Stability of the disease-free equilibrium, E0. For the stability of E0,
we have the following result.

Theorem 3.2. When α < αt =
1
λE

(b1+μA)(b3+μE), the disease-free equilibrium
E0 of the model (2.6) is globally asymptotically stable.
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Proof. In order to examine the stability of equilibria for system (2.6), we compute
the Jacobian matrix of system (2.6), given by
(3.8)

J=

⎡
⎢⎢⎣
−σ1(Rn+dRd)−(b1+μA) −σ1 A −σ1dA α

π3 E + β −(μn+ξ) 0 π3 A
0 c ξ −μd 0
λE −σ3 E −σ3dE −σ3(Rn+dRd)−(b3+μE)

⎤
⎥⎥⎦.

Evaluating the Jacobian (3.8) at E0 : (Ā0, R̄n0, R̄d0, Ē0) = (0, 0, 0, 0) yields J |E0 ,
and then setting det(L I−J |E0) to zero results in a fourth-degree characteristic equa-
tion, which can be factorized as

(3.9)
P0(L, α) = (L+μd)(L+μn+ξ)

[
L2+(b3+μE+b1+μA)L+(b1+μA)(b3+μE)−λEα

]
= 0.

The asymptotic stability of E0 is determined by the sign of the real part of the roots of
(3.9): if all roots of (3.9) have negative real part, then E0 is asymptotically stable; if
at least one root has positive real part, then E0 is unstable. In fact, P0(L, α) contains
three factors: the first two are linear polynomials in L, with positive parameter values
from Table 1, both of them stable (i.e., their roots (eigenvalues) have negative real
part); thus the stability of E0 depends only upon the third factor, which gives a
quadratic equation,

(3.10) L2 + (b3 + μE + b1 + μA)L+ (b1 + μA)(b3 + μE)− λE α = 0.

Using the general formula for solutions of the quadratic equation, we know that
whether the two roots of (3.10) have negative real part is determined by the sign
of (b3 + μE)(b1 + μA) − λE α: the negativity (positivity) of the real part of the two
roots of (3.10) is equivalent to (b3+μE)(b1+μA)−λE α > 0 (< 0); that is, (3.10) has
stable (unstable) roots if (b3 + μE)(b1 + μA)− λE α > 0 (< 0), and a zero eigenvalue
root comes out at

(3.11) αt =
(b1 + μA)(b3 + μE)

λE
.

Here and hereafter, we will use the subscript “t ” for transcritical bifurcation; using
the parameter values from Table 1, the transcritical bifurcation point is obtained as
(αt, At) = (2.025 × 10−4, 0). The equilibrium solution E0 is locally asymptotically
stable (unstable), when α < αt (α > αt).

Next, we want to prove that E0 is also globally asymptotically stable for α < αt.
To achieve this, we construct a Lyapunov function of the form

(3.12) V2(A, E) =
1

2

(
λEA

2 + αE2
)
,

which is positive-definite and continuously differentiable for all positive bounded val-
ues of A and E; i.e., V2(0, 0) = 0 and V2(A, E) > 0 ∀A, E > 0. Moreover, the time
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derivative of the Lyapunov function V2 satisfies

V̇2 = λE AȦ+ αEĖ

= λE A [αE − σ1(Rn + dRd)A− (b1 + μA)A]

+αE [λE A− σ3(Rn + dRd)E − (b3 + μE)E]

= −λE (b1 + μA)A
2 − α (b3 + μE)E

2 + 2αλE AE

− (λE σ1 A
2 + ασ3 E

2)(Rn + dRd)

≤ −λE (b1 + μA)A
2 − α (b3 + μE)E

2 + 2αλE AE

= − (A E)Q (A E)T ,

which is a quadratic form, with

(3.13) Q =

[
λE(b1+μA) −αλE

−αλE α(b3+μE)

]

being positive definite for (b1+μA)(b3+μE) > αλE . Hence, V̇2 ≤ 0 and V̇2 = 0 if and
only if (A, E) = (0, 0). This yields A(t), E(t) → 0 as t → +∞ for any positive initial
conditions. It follows that (2.6b) becomes an asymptotically autonomous equation
with the limiting equation Ṙn = −(μn + ξ)Rn. By the theory of asymptotically
autonomous systems [7], we know that the solution Rn(t) → 0 as t → +∞. Finally,
using the same theory on (2.6c), we get Rd(t) → 0 as t → +∞. Therefore, under
the condition α < αt, the local stability and the global attractivity of E0 established
above give the global asymptotic stability of E0.

3.4. Stability of the autoimmune disease equilibrium, E1. In order to
examine the stability of E1, we evaluate the Jacobian matrix (3.8) of system (2.6)
at E1, to obtain the characteristic equation det(L I − J |E1) = 0. By straightforward
but tedious computations, the characteristic polynomial of J at E1 is obtained as the
following fourth-degree polynomial:

(3.14) P1(L,A, α) = L4 + a1(A,α)L
3 + a2(A,α)L

2 + a3(A,α)L + a4(A,α) = 0,

where the coefficients, ai(A,α), i = 1, 2, 3, 4, are expressed in terms of A and α, with
other parameter values taken from Table 1, and A satisfies F1(A,α) = 0 (see (3.7)).

The static bifurcation happens at equilibrium E1, when the characteristic polyno-
mial P1(L,A, α) = 0 in (3.14) has zero root (zero eigenvalue). That means a4(A,α) =
0, and A should satisfy F1(A,α) = 0. Thus, we obtain

(3.15) As(αs) = − 21333593750000000α3
s+26617447265625α2

s−49464843750αs+8748000
3525388312500α2

s−4572342000αs+979776 ,

where αs is the root of F2(αs) = αs(13530125αs−2592)×(400000αs−81) = 0. Solving
F2(αs) = 0 , and then substituting the solutions into As(αs) using (3.15), we get three
points. The first is a transcritical bifurcation point, (αt, At) = (2.025 × 10−4, 0),
which is exactly the same as the one we obtained from the tolerance equilibrium E0.
Moreover, at this point, all other Hurwitz arrangements are positive; that is, Δ1 = 49

40 ,
Δ2 = 5863

16000 , and Δ3 = 52767
6400000 . The two equilibrium solutions E0 and E1 intersect

and exchange their stability at this critical point. E1 is stable when α > αt (E1

does not exist for α < αt), as shown in Figure 1. Here, the subscript “t ” stands for
transcritical bifurcation. The second point is a turning point (αTurning, ATurning) =
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(1.9157× 10−4, −1.7097), which has a negative value for A and so is not biologically
interesting (see Figure 1(a)). The third is (αs, As) = (0, 0), which is not allowed
since the parameter α cannot take the value zero.

To check whether a Hopf bifurcation exists from the infected equilibrium E1 of sys-
tem (2.6), we apply the theorem given in [48] to E1 defined by (3.6), where A satisfies
equation F1(A, α) = 0 in (3.7). Based on the fourth-degree characteristic polynomial
P1(L,A, α) in (3.14), we apply the formula in [48], that is, Δ3(A,α) = a1 a2 a3 −
a23 − a21 a4 = 0. Solving Δ3(A,α) = 0 and F1(A, α) = 0, together with the parameter
values given in Table 1, we get two Hopf bifurcation points: (αH1, AH1) = (7.8666×
10−4, 11.4436) and (αH2, AH2) = (5.0387×10−4, −13.1534), as shown in Figure 1(a).
We consider only the biologically meaningful point with two positive entries to obtain
a unique Hopf bifurcation point: (αH , AH) = (7.8666 × 10−4, 11.4436). Here, the
subscript “H ” stands for Hopf bifurcation. At the critical point (αH , AH), other
conditions are satisfied: a1 = 2.0989, a2 = 0.6311, a3 = 0.1145, a4 = 0.0314, Δ2 =
1.2100, Δ3 = −0.1 × 10−18 ≈ 0. Indeed, with these given parameter values, one
can numerically calculate the Jacobian matrix of system (2.6) at E1, which contains
a purely imaginary pair and two negative real eigenvalues: ±0.2335 i, −1.7739, and
−0.325. Thus, as α is varied across the point α = αH , the equilibrium solution E1

becomes unstable and a Hopf bifurcation occurs, leading to a family of limit cycles.
Summarizing the above results gives the following theorem.

Theorem 3.3. When αt < α < αH , the disease equilibrium E1 of model (2.6) is
asymptotically stable.

Now we apply normal form theory and the Maple program developed in [47]
to system (2.6) to analyze the Hopf bifurcation which occurs at the critical point
(αH , AH) = (7.8666 × 10−4, 11.4436) (with other parameters given in Table 1).
Using a series of linear and nonlinear transformations and the Maple program [47],
we obtain the normal form associated with this Hopf bifurcation up to third order,
given by

(3.16) ṙ = r (υ0 μ+ υ1 r
2), θ̇ = ωc + τ0 μ+ τ1 r

2,

where υ0 = 34.2048, υ1 = −2.0161 × 10−12, ωc = 0.2335, τ0 = 132.8998, τ1 =
−1.3186×10−11. Note that μ = α−αH , representing a perturbation of the parameter
α from the critical point α = αH . The steady-state solutions of (3.16) are determined
by ṙ = θ̇ = 0, resulting in r̄1 = 0 and r̄22 = 0.1697× 1014 μ. The equilibrium solution
r̄1 = 0 actually represents the autoimmune equilibrium E1 of model (2.6). A linear
analysis on the first differential equation of (3.16) shows that d

dr (ṙ)
∣∣
r̄=r̄1

= υ0 μ,

and thus r̄1 = 0 (E1) is stable (unstable) for μ < 0 (> 0), as expected. When μ
is increasing from negative values to cross zero, a Hopf bifurcation occurs, and the
amplitude of the bifurcating limit cycles is given by the nonzero steady state solution,

(3.17) r̄(μ) = 0.4119× 107
√
μ (μ > 0).

Since d
dr (ṙ)

∣∣
(3.17)

= 2 υ1 r
2, the negative V1 indicates that the bifurcating limit cycles

are stable for μ > 0. We can get the same stability conclusion from υ1 < 0, implying
that the Hopf bifurcation is supercritical and so the bifurcating limit cycles are stable.
Equation (3.17) gives the approximate amplitude of the bifurcating limit cycles, while
the phase of the motion is determined by θ = ω t, where ω is given by ω = θ̇

∣∣
(3.17)

=

0.2335− 90.8185μ. We summarize the above results, yielding the following theorem.
Theorem 3.4. At the critical point α = αH , a supercritical Hopf bifurcation

occurs, leading to a family of stable limit cycles.
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4. Numerical simulation. In this section, we present some simulation results
to verify the analytical predictions obtained in the previous section. In particular, we
will show the comparison between the analytical and numerical results obtained for the
Hopf bifurcation. For convenience in the simulation, we will fix all parameter values,
except for α (or μ). We will vary α to demonstrate the stable equilibrium solutions
E0 and E1 and the stable limit cycles. Finally, we will also choose a large positive
value of μ, which means that this value is far away from the Hopf critical point αH ,
to show the relapse-remission phenomenon. Note that the mechanism of generating
recurrence in this paper is slightly different from that defined by the conditions in
Hypothesis 1 of [49], in which recurrence is guaranteed to appear near a transcritical
point. In this paper, recurrent oscillations are generated far from the transcritical
point αt = 2.025× 10−4. In other words, the oscillations described in this paper are
determined by more global properties of the system.

Suppose that all parameter values, except for α, are taken from Table 1. Then,
it follows from (3.11) that the equilibrium solution E0 is asymptotically stable for
0 < α < αt = 2.025×10−4. E0 becomes unstable when α is increased to pass through
αt, and bifurcates into the equilibrium solution E1, which is asymptotically stable for
αt < α < αH = 7.8666 × 10−4. E1 becomes unstable at α = αH , and a family of
limit cycles bifurcates from this Hopf critical point. The normal form for the Hopf
bifurcation is given by (3.16). Since υ1 = −2.0161 × 10−12, the Hopf bifurcation is
supercritical, and the bifurcating limit cycles are stable.

Now, we first take α = 1.50 × 10−4 < αt. The simulation result is shown in
Figure 2(a), which clearly indicates that E0 is asymptotically stable, in agreement
with the analytical prediction. Next, choose αt < α = 4.0 × 10−4 < αH , for which
the simulation result is depicted in Figure 2(b), showing that E1 is asymptotically
stable, which again agrees with the analytical prediction. Further, we select a value
of μ = 3.0× 10−12, which implies that we take a postcritical value of α near the Hopf
critical point. This is a perfect Hopf bifurcation, as shown in Figure 3.
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Fig. 2. Simulated time history for system (2.6) with the initial condition A(0) = 17, Rn(0) =
Rd(0) = 48000, E(0) = 12700 for (a) α = 1.50 × 10−4 < αt, converging to E0, and (b) α =
4.0× 10−4, converging to E1.

The simulations are compared with the analytical predictions in Figure 3, showing
excellent agreement between the two, particularly for smaller values of μ, as expected.
Note that the analytical predictions are obtained through a series of linear and non-
linear transformations, available from the output of the Maple programs [47]. The
details are omitted here for brevity. Finally, we take α = 3.0 × 10−3 > αH , which is
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Fig. 3. Comparison between the simulated time history and analytical prediction for system
(2.6) with μ = 3× 10−12: the red solid line denotes the simulation results, while the black dash-dot
line indicates the analytical predictions, showing stable limit cycles.

not close to αH . For this case, normal form theory is not applicable, since this value
of α is not near αH . In other words, if we apply the above procedure to obtain an
approximation, it would have a very large error. The simulation result is given in
Figure 4, indeed showing the recurrence phenomenon. It should be noted that the
vertical axes in Figure 4(c) and (d) have a logarithmic scale so that the minimum
level of effector T cells (E) can be clearly seen. The reason for this behavior can be
seen from Figure 4(a) and (b) to be that the E population grows very quickly in the
absence of Rn and Rd, and then Rn responds very quickly (EA term) and suppresses
E, but Rn does not last long. This pattern describes, of course, how the adaptive
and innate immune responses work against pathogens, as well. But why is E not
eliminated like a pathogen would be? We speculate that the system is now “torn
between two equilibria,” as described later in the discussion.

5. Model reduction and parameter identification for autoimmune re-
currence. In the previous sections, we have studied the 4-dimensional (4-d) model
(2.6) in detail and found recurrence. Now, we are interested in finding the key factors
which play the most important roles in generating this phenomenon. To achieve this,
a common approach is first to reduce the dimension of the system under a quasi-steady
state assumption, and then identify the main system parameters (usually treated as
bifurcation parameters) which may effectively influence recurrence so that we may
find the mechanism of generating relapse and remission. For model reduction (in
particular, the reduction from the 5-d model (2.5) to (2.6) and a further reduction
from the 4-d model (2.6) to a 3-d model, which will be considered below in detail),
we need to answer a fundamental question: does model reduction alter the dynamical
behavior of the system? We have carefully studied this problem and have shown that,
when proper parameter values are chosen, both the original 5-d and 4-d models as well
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Fig. 4. Simulated time history for system (2.6) when α = 3× 10−3, showing recurrence.

as the reduced 4-d and 3-d models exhibit the same dynamical behavior: recurrence.
(Details will be given in a forthcoming paper.) Therefore, in the following, we will
not consider the 5-d model (2.5) but the 4-d model and its reduction.

5.1. Model reduction. For the model described by (2.6), we assume that at
the site of the autoimmune reaction the influence of IL-2 from other sources, such as
dendritic cells [1], is negligible compared to that of the IL-2 generated by activated
effector T cells. Therefore, we can set β = 0, and the model becomes

(5.1)

Ȧ = αE − σ1(Rn + dRd)A− (b1 + μA)A,

Ṙn = π3EA− (μn + ξ)Rn,

Ṙd = c ξRn − μdRd,

Ė = λEA− σ3(Rn + dRd)E − (b3 + μE)E.

It can be shown that model (5.1) still has two equilibrium solutions. One is the toler-
ance equilibrium, E0 : (A, Rn, Rd, E) = (0, 0, 0, 0), and the other is the autoimmune
equilibrium, E1 = (Ā, R̄n(Ā), R̄d(Ā), Ē(Ā)). We again choose α as the bifurcation
parameter and find that the two equilibrium solutions exchange their stability at the
transcritical bifurcation point (αs, As) = (2.025 × 10−4, 0). That is, as α increases
from α < αs to cross the critical point α = αs, the stable E0 becomes unstable, while
E1 emerges from this critical point and is stable. As α continues to increase, a Hopf
bifurcation occurs from E1 at the critical point (αH , AH) = (6.4729×10−4, 12.4401).
The simulated time history for α = 3 × 10−3 shown in Figure 4 displays recurrent
autoimmunity, as expected.
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Fig. 5. Simulated time history for system (5.1) with the initial conditions A(0) = E(0) = 1,
Rn(0) = Rd(0) = 0, for the bifurcation parameter α = 3 × 10−3: (a) for the transient period and
(b) over a longer interval showing periodic behavior. The rates of change of cell populations, Ȧ,
Ṙn, Ṙd, and Ė, are represented by the red solid, black dotted, blue dotted, and green solid curves,
respectively.

In order to further simplify the analysis on model (5.1), here we will adopt a quasi-
steady state assumption, which is often used in the study of biochemical and biological
systems. The basic idea of the quasi-steady state assumption can be described using
the following system [8]:

(5.2)
ẋ = ε−1f(x, y), x ∈ R

m,
ẏ = g(x, y), y ∈ R

n,

where 0 < ε 
 1, f and g are nonlinear functions, and x and y represent “fast”
and “slow” variables, respectively. We consider the evolution of the system from an
arbitrary initial condition, including a transient period. For the fast variable x, we
may rewrite the first equation of (5.2) as εẋ = f(x, y). Thus, for small ε, setting
ε = 0 results in f(x, y) = 0, from which we obtain an algebraic expression for x in
terms of the slow variables, x = x(y); ẋ �= 0 (see [8] for more details on this topic).
This leads to a differential equation for the slow variable y in the form ẏ = g(x(y), y).
Intuitively, although the slow variable y is changing, the fast variable “catches up” so
quickly that f(x, y) remains close to zero at all times.

Now, we return to consider system (5.1) and carefully compare the coefficients in
the system, finding that the parameter λE = 1000 is greater than all other parameters,
which are on the order of 10−6 ∼ 1. Thus, we may write the fourth equation of (5.1)
as

Ė = λE

(
A− σ3

λE
(Rn + dRd)E − b3 + μE

λE
E

)

= ε−1

(
A− σ3

ε
(Rn + dRd)E − b3 + μE

ε
E

)
,

where ε = 10−3. Then, according to the general formula (5.2), we observe that E is
a fast variable, while A, Rn, and Rd are slow variables, all of the same order. This is
also reflected in the simulated time history for the transient period shown in Figure
5(a), which shows the rapid rate of change in E relative to the other populations;
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simulation over a longer interval is illustrated in Figure 5(b). Therefore, we can make
a quasi-steady state assumption on the fast variable E, yielding

(5.3) E =
λEA

σ3(Rn + dRd) + b3 + μE
,

and so the reduced system is given by

(5.4)

Ȧ =
αλEA

σ3(Rn + dRd) + b3 + μE
− σ1(Rn + dRd)A− (b1 + μA)A,

Ṙn =
π3λEA

2

σ3(Rn + dRd) + b3 + μE
− (μn + ξ)Rn,

Ṙd = c ξRn − μdRd.

5.2. Rescaling on system (5.4). In order to reduce the number of parameters
for convenience in analysis, we further attempt to rescale system (5.4) by scaling the
state and time variables as

(5.5) Rn = e1 x, Rd = e2 y, A = e3 z, t = e4 τ.

Then, with dτ
dt = 1

e4
, the left-hand side of system (5.4) becomes

(5.6)
dRn

dt
=

e1
e4

dx

dτ
,

dRd

dt
=

e2
e4

dy

dτ
,

dA

dt
=

e3
e4

dz

dτ
.

Next, we substitute (5.5) and (5.6) into system (5.4) to yield
(5.7)
dx

dτ
=

e23 e4 λE π3

e21 σ3 x+ e1 e2 σ3 d y + e1 (b3 + μE)
z2 − e4 (μn + ξ)x,

dy

dτ
=

e1 e4 c ξ

e2
x− e4 μd y,

dz

dτ
=

e4 αλE

e1 σ3 x+ e2 σ3 d y + (b3 + μE)
z − e1 e4 σ1 x z − e2 e4 σ1 d y z − e4 (b1 + μA) z.

Further, we set e1 e4 σ1 = 1, e2 e4 σ1 d = 1, e23 e4 λE π3 = 1, and e4 μd = 1 to obtain

(5.8) e1 =
μd

σ1
, e2 =

μd

σ1 d
, e3 =

(
μd

λE π3

) 1
2

, e4 =
1

μd
.

Finally, system (5.4) becomes

(5.9)

dx

dτ
=

z2

A (x+ y) + B − C x,

dy

dτ
= D x− y,

dz

dτ
=

E
F (x+ y) + G z − x z − y z −H z,

where the new parameters are defined as follows: A =
σ3 μ2

d

σ2
1

[Rn] · day−1, B =
μd

σ1
(b3 + μE) day

−1[Rn]
−1, C = μn+ξ

μd
, D = c ξ d

μd
day−2, E = αλE

μd
day−3, F =
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σ3 μd

σ1
day−1, G = b3 + μE day−1, H = b1+μA

μd
day−1. Here, we set E as the bifur-

cation parameter, since α is used as the bifurcation parameter for the original system
(2.6). We then use the parameter values from Table 1 to obtain new parameter
values for system (5.9) as A = 40000

3 [Rn] · day−1, B = 30000 day−1[Rn]
−1, C = 5

8 ,

D = 2day−2, F = 1
5 day

−1, G = 9
20 day

−1, H = 9
4 day

−1. Moreover, it follows from

(5.8) that e1 = 200000
3 , e2 = 100000

3 , e3 =
√
2

16 , and e4 = 5.
The bifurcation patterns of the scaled system (5.9) are the same as that of the

original system (2.6), namely, there exist two equilibrium solutions, Ē0 : (x0, y0, z0) =
(0, 0, 0) and Ē1 : (x1, y1, z1), where y1 = D x1, z1 =

√C x1 [A (1 +D)x1 + B], and
x1 is determined from the equation (1+D)2 F x2+[(G+HF) (1+D)]x−E+HG = 0.

Theorem 5.1. The solutions of system (5.9) are nonnegative and bounded, pro-
vided that the initial conditions are nonnegative.

Proof. For the nonnegativeness, we write the solutions for z and y of system (5.9)
by using the method of constant variations as

(5.10) z(τ) = z(0) exp

[∫ τ

0

( E
F [x(s) + y(s)] + G − x(s)− y(s)−H

)
ds

]

and

(5.11) y(τ) = y(0)e−τ +D
∫ τ

0

e−(τ−s) x(s) ds.

There are two cases.
Case 1. z(0) = 0. Then, it follows from (5.10) that z(τ) ≡ 0 ∀τ ≥ 0. Thus, the first

equation of system (5.9) is reduced to dx
dτ = −Cx, which yields the solution

x(τ) = x(0)e−Cτ . Therefore, x(τ) ≥ 0 ∀τ ≥ 0 if x(0) ≥ 0. Then, we use
(5.11) to obtain y(τ) ≥ 0 ∀τ ≥ 0 if y(0) ≥ 0.

Case 2. z(0) > 0. It is easy to see from (5.10) that z(τ) > 0 ∀ τ ≥ 0. We need to
discuss four subcases.
Case 2.1. x(0) > 0 and y(0) > 0. To prove y(τ) > 0 ∀ τ > 0, we adopt

the argument of contradiction. Since y(0) > 0, we assume that the first
time at which y(τ) becomes negative is τ1; i.e., y(τ) > 0 ∀τ ∈ [0, τ1),
y(τ1) = 0, and y(τ) < 0 ∀τ ∈ (τ1, τ2). Then, since y(0)e−τ > 0, (5.11)
implies that there should exist an interval (τ3, τ4) ⊂ [0, τ1) such that
x(τ) < 0 ∀ τ ∈ (τ3, τ4) (τ1 may equal τ4). With x(0) > 0, we may,
without loss of generality, assume τ3 is the first time x(τ) become zero;
that is, x(τ3) = 0 and x(τ), y(τ) > 0 ∀τ ∈ (0, τ3). On the other hand,

(5.12)
dx

dτ
=

z2

A (x + y) + B − C x > −C x for τ ∈ [0, τ3].

By the comparison principle, we have x(τ3) > x(0)e−Cτ3 > 0 for x(0) >
0, which contradicts that x(τ3) = 0. Therefore, there is no time for y(τ)
to be zero and then become negative; that is, y(τ) > 0 ∀τ ≥ 0. Then,
using a similar argument on (5.12), we can prove that x(τ) > 0 ∀ τ ≥ 0.

Case 2.2. x(0) = y(0) = 0. Due to the continuity of the solutions and

the conditions A > 0 and B > 0, for the term z2

A (x+y)+B , there exists

τ5 > 0 such that, for τ ∈ [0, τ5],
z(τ)2

A [x(τ)+y(τ)]+B > 0. Then, dx
dτ =

z2

A (x+y)+B − C x > −C x ∀ τ ∈ (0, τ5]. Therefore, x(τ) > x(0)e−Cτ = 0
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for τ ∈ [0, τ5]. Moreover, the solution of y(τ) = D ∫ τ

0
e−(τ−s) x(s) ds

indicates that y(τ) > 0 for τ ∈ [0, τ5]. Hence, we obtain x(τ5) > 0 and
y(τ5) > 0. So we can take τ5 as the initial point and use the conclusion
obtained in Case 2.1 to show that x(τ) > 0 and y(τ) > 0 for τ ≥ τ5.
Combining the above two steps proves that x(τ) > 0 and y(τ) > 0 for
τ > 0.

Case 2.3. x(0) = 0 and y(0) > 0.
Case 2.4. x(0) > 0 and y(0) = 0.

For Cases 2.3 and 2.4, we can apply arguments similar to those used for
proving Cases 2.1 and 2.2 to prove that the solutions of system (5.9)
with these initial conditions are nonnegative.

The remainder of the proof is devoted to the boundedness of solutions. Sup-
pose that y(τ) is unbounded; that is, limτ→+∞ sup y(τ) = +∞. Then, accord-
ing to the second equation in (5.9), we have limτ→+∞ supx(τ) = +∞ and further
obtain limτ→+∞ z(τ) = 0 by using the third equation in (5.9), and then obtain
limτ→+∞ x(τ) = 0 from the first equation in (5.9). This leads to a contradiction,
and so y(τ) is bounded. Now applying the boundedness of y(τ) to the second equa-
tion in (5.9) yields the boundedness of x(τ). Finally, with bounded x(τ) and y(τ),
the first equation in (5.9) shows that z(τ) must be bounded as well. Hence, all the
solutions of system (5.9) are bounded. The proof is complete.

The characteristic polynomial for Ē0 is P0(L) = (L+1) (L+C) (LG−E+HG)/G,
from which it is easy to show that Ē0 is asymptotically stable for E < Es = HG and
becomes unstable at the critical point Es = HG, from which Ē1 appears. Further, we
can use the characteristic polynomial for Ē1 to show that the two equilibrium solutions
exchange their stability at the transcritical bifurcation point Es = HG. Further, we
have the following result for Ē0.

Theorem 5.2. The trivial equilibrium E0 : (x0, y0, z0) = (0, 0, 0) is globally
asymptotically stable for E < Es = HG.

Proof. We construct the Lyapunov function, V (x, y, z) = 1
2 (x

2 + ρ1y
2 + ρ2z

2)
for system (5.9), where ρ1 = 3C

D2 , and ρ2 = 1
B . V is continuously differentiable for all

positive bounded values of each variable and positive definite with positive parameter
values; i.e., V (0, 0, 0) = 0 and V (x, y, z) > 0 ∀ x, y, z > 0. Then, the derivative of
the Lyapunov function V with respect to time, along the solution trajectory of system
(5.9), yields

dV

dτ

∣∣∣∣
(5.9)

= x
dx

dτ
+ ρ1y

dy

dτ
+ ρ2z

dz

dτ

= x

[
z2

A (x+ y) + B − C x

]
+ ρ1y [D x− y]

+ ρ2z
2

[ E
F (x+ y) + G − x− y −H

]

=

[
1

A (x+ y) + B − ρ2

]
xz2 − C

(
x− ρ1D

2C y

)2

− ρ1

(
1− ρ1D2

4C
)
y2

+ ρ2z
2

[ E
F (x+ y) + G −H

]
− ρ2xz

2 − ρ2yz
2,

(5.13)

which implies that dV
dτ < 0 ∀x, y, z > 0 due to E < HG. The proof is complete.

The characteristic polynomial for Ē1 is P1(L) = L3+a1(x1)L
2+a2(x1)L+a3(x1).

a3(x1) = 0 defines the transcritical point E = Es. The Hopf bifurcation point can
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Fig. 6. Bifurcation diagrams for the scaled system (5.9) in 2-d C − E and D − E parameter
spaces, where (a) D = 2 and (b) C = 5

8
: red lines and blue curves denote the transcritical and

Hopf bifurcations, respectively. Points (1)–(9) in (a) and (b) show parameter value pairs chosen for
simulation. The simulated time histories are displayed in Figures 7 and 8.

be determined from the Hurwitz arrangement Δ2 = a1(x1) a2(x1) − a3(x1) = 0. In
general, we may take three parameters, say, C, D, and E , as the bifurcation parameters.
Therefore, the stability boundary, based in particular on the Hopf critical condition,
can be displayed in the 3-d parameter space as a surface. We then try to identify the
region in the 3-d parameter space where recurrence may occur. For a clear view of
the stability boundary, we use C = constant or D = constant to intersect the surface
to obtain planes, as shown in Figure 6. The curves shown in Figure 6 are the stability
boundary determined by the Hopf critical condition. The graphs of Δ2(C, E) = 0 and
Δ2(D, E) = 0 are plotted in the 2-d C − E and D − E parameter planes in Figure 6.
Recurrence may occur on the right side (stable side for bifurcating limit cycles) of the
Hopf critical curves. Moreover, in these planes, we select several fixed values for C or
D to obtain the horizontal lines, as shown in Figure 6. Then, we choose the points
(according to the values of E) on these lines to perform simulation. Two sets of nine
simulated results are presented in Figures 7 and 8, corresponding to the nine points
marked on the five solid lines in each panel of Figure 6. It is seen from Figure 7 that
recurrence becomes more visible when the notation number of the points increases.
That is, as D is fixed, reducing the value of C (see Figure 6(a)) causes more dramatic
recurrence, while changing E in this case does not change the pattern. Figure 8, on
the other hand, shows that when C is fixed at an appropriate value, the changes of D
and E (see Figure 6(b)) do not play a significant role in determining recurrence. These
parameter studies provide us with information regarding which parameters play an
important role in generating recurrence: while some parameters mainly change the
frequency of the motion, others only affect amplitude.

Finally, we would like to ask a question: since the recurrent pattern (or periodic
solution) occurs at parameter values which are far away from the Hopf critical point,
is there any factor other than the Hopf bifurcation contributing to the oscillation?
More specifically, do homoclinic orbits exist? The answer is negative, given in the
following theorem.

Theorem 5.3. There exist no homoclinic orbits in the 3-d scaled system (5.9) or
the 4-d system (2.6). Thus, the stable limit cycles either come from Hopf bifurcation
or are due to persistent oscillations.
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Fig. 7. Numerical simulation for the parameter values (E, C) taken as (1) (13, 1.0), (2)
(8.5, 0.8), (3) (10, 0.8), (4) (5, 0.625), (5) (6, 0.625), (6) (3, 0.4), (7) (4, 0.4), (8) (2, 0.2), and
(9) (3, 0.2).

Proof. First, for the 3-d scaled system (5.9), note that existence of homoclinic
orbits needs a saddle or a saddle-focus point, which requires E > HG. Evaluating
the characteristic polynomial at Ē0 : (0, 0, 0) yields three eigenvalues: λ1 = −C,
λ2 = −1, and λ3 = E−HG

G . Their corresponding eigenvectors are V1 = (1−C
D , 1, 0)�,

V2 = (0, 1, 0)�, and V3 = (0, 0, 1)�, starting from Ē0. Then, since for Ē0 the
eigenvalue λ3 is positive, while the other two eigenvalues λ1 and λ2 are negative, Ē0

is a saddle point. If a homoclinic orbit exists, it must connect the saddle point to
itself, leaving in the direction tangent to V3 at Ē0 and coming back along a convergent
trajectory to Ē0, which is located in the stable manifold of system (5.9). It is easy
to show that the two eigenvectors V1 and V2 actually construct the stable manifold,
which is the first quadrant of the x-y plane, denoted by S1. The solution on the
stable manifold can be expressed as v = T1v1 + T2v2 for T1, T2 ∈ R

+, where v1 =
(1−C

D e−Cτ , e−Cτ , 0)� and v2 = (0, e−τ , 0)�. Then it is obvious that S1 is invariant if
we verify that the solution v satisfies system (5.9). The complementary space of S1

is the z-axis, which is tangent to the unstable manifold. Thus if a homoclinic orbit
exists, it must connect the unstable and stable manifolds. However, this is impossible
since there is no singular point on S1 (expect for Ē0), and so the homoclinic orbit
cannot intersect S1 due to the uniqueness of solutions. Therefore, no homoclinic orbits
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Fig. 8. Numerical simulation for the parameter values (E, D) taken as (1) (8, 1.5), (2) (10, 1.5),
(3) (5, 2), (4) (7, 2), (5) (4, 3), (6) (6, 3), (7) (3, 4), (8) (5, 4), and (9) (2.5, 5).

exist in system (5.9), and thus the stable limit cycles in system (5.9) either come from
Hopf bifurcation or are due to persistent oscillations.

Next, we consider the 4-d system (2.6). Note that system (2.6) also has two equi-
librium solutions, E0 : (Ā0, R̄n0, R̄d0, Ē0) = (0, 0, 0, 0) and E1 : (Ā, R̄n, R̄d, Ē),
where Ā is determined by (3.7) and the other three components are given in (3.6). E0

and E1 exchange their stability at a transcritical bifurcation point α = αt, defined in
(3.11). When 0 < α < αt, E0 is globally asymptotically stable and E1 does not exist;
when αt < α < αH , E0 becomes unstable while E1 is asymptotically stable, where αH

is a Hopf bifurcation point at which limit cycles bifurcate from E1. When α > αH ,
E1 also becomes unstable.

The existence of homoclinic orbits requires the existence of a saddle or a saddle-
focus point, yielding the condition α > αt =

1
λE

(b1+μA)(b3+μE). The characteristic
polynomial for E0 is given by (3.9), from which we obtain four eigenvalues:

(5.14)

L1 = −(μn + ξ),
L2 = −μd,

L3 = 1
2

{
−(b1 + b3 + μA + μE)−

√
(b1 + b3 + μA + μE)2 + 4λE(α− αt)

}
,

L4 = 1
2

{
−(b1 + b3 + μA + μE) +

√
(b1 + b3 + μA + μE)2 + 4λE(α− αt)

}
.
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Since α > αt and we have L3 < 0 and L4 > 0, we conclude that E0 is a saddle
point when α > αt. The eigenvectors corresponding to the two negative eigenvalues
L1 and L2 are V1 = (0, μd−μn−ξ

cξ , 1, 0)� and V2 = (0, 0, 1, 0)�, respectively. It is

easy to verify that the solutions v1 = V1 e
−(μn+ξ)t and v2 = V2 e

−μdt satisfy system
(2.6). Further, it can be shown that the general solution, (A, Rn, Rd, E)

�
= T1v1 +

T2v2, also satisfies system (2.6), where T1, T2 ∈ R
+. This implies that the subspace

determined by A = E = 0, i.e., the first quadrant of the Rn-Rd plane, is a 2-d invariant
stable submanifold, denoted by S2. Hence, if a homoclinic orbit exists in system
(2.6), it cannot return to E0 via S2; otherwise, it would contradict the uniqueness
of solutions. So, the remaining possibility for a homoclinic orbit to appear is in the
complementary space of S2, which is the first quadrant of the A-E plane, denoted by
C : {(A, Rn, Rd, E) |A, E ≥ 0, Rn = Rd = 0}, on which the dynamics are described
by Ȧ = αE − (b1 + μA)A, Ė = λEA − (b3 + μE)E. However, this system is linear.
So no homoclinic orbits can exist in system (2.6), and thus the stable limit cycles in
system (2.6) either come from Hopf bifurcation or are due to persistent oscillations.
The proof is complete.

In this section, we have made two reductions, one based on a quasi-steady state
assumption and the other based on rescaling. It should be noted that these two
reductions have a fundamental difference. The latter actually generates an equivalent
system, i.e., system (5.9) is equivalent to system (5.4), while the former yields system
(5.4), which is different from system (5.1). However, system (5.4) still keeps the
basic interesting dynamic behavior (recurrency) of the original system (5.1) under
the quasi-steady state assumption.

6. Conclusion and discussion. Adaptive immunity in vertebrates comprises
an extremely complex dynamical system, and much remains to be elucidated, partic-
ularly with respect to the role and action of regulatory T cells. In this contribution,
we have demonstrated that the addition of a newly discovered subclass of TReg cells,
the terminally differentiated HLA-DR+ class [5, 31], alters the dynamical behavior of
a general model of autoimmune disease [1]. In particular, rather than being restricted
to stable equilibria corresponding to self-tolerance and autoimmunity, the system
now displays long periods of quiescence, punctuated by brief bursts of autoimmune
activity. These cycles of relapse and remission, characteristic of many autoimmune
diseases, arise naturally from the dynamical behavior of the system, without the need
for stochastic input or exogenous environmental triggers.

As an intuitive explanation for this phenomenon, we argue that the dynamical
system is “torn between two equilibria,” one of which is the trivial equilibrium cor-
responding to immune tolerance (self-reactive populations at zero), the other corre-
sponding to a full-blown autoimmune reaction. As a result, after the Hopf bifurcation
the model populations remain close to the tolerance equilibrium for long intervals,
during which immune regulation (the TReg population) gradually wanes. When regu-
latory populations are sufficiently small, the autoreactive effector population escapes
immune regulation, and a brief episode of autoimmune disease, a relapse, occurs.

Although the cycles of relapse and remission observed in this system occur at
regular intervals, we note that even slight fluctuations in the parameter values, or
deterministic changes in parameters over time, can result in highly variable intervals
between relapse episodes, as demonstrated in [49]. We also note that in any organism,
self-antigen is likely to be continually present at low levels. Thus, even if the relevant
populations reach extremely low densities during the cycles of remission predicted
here, pAPCs specific for self-antigen are likely to be periodically generated, renewing
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the relapse-remission cycle if they are activated when the TReg populations have
waned. This could be a further factor contributing to variable intervals between
relapse episodes.

The bifurcation parameter α reflects the number of activated pAPCs generated
per day through damage and subsequent antigen release caused by a single auto-
reactive T cell. The best available numerical value for this parameter is about α =
1× 10−4 [A]/day/[E] for a normal adult [1]. Keeping other parameters constant, we
find that recurrence emerges at α = 3×10−3. While it is difficult to estimate whether
this difference is within the range of natural variation in this parameter, we note that
α itself is a compound parameter reflecting the product of a number of process. Also,
smaller changes in α will presumably produce recurrence if other parameter values
change simultaneously.

Previous work has suggested that the cause of recurrence, at least in multiple
sclerosis, may be a weakness in the negative feedback loop between effector and regu-
latory T cells [40]. In contrast, our work suggests that increases to α, either through
increasing the activation rate of pAPCs or increasing the damage induced by auto-
reactive T cells, will make recurrence more likely. Increases to the parameter λE ,
the rate at which effector T cells are activated by pAPCs, will have a similar effect.
Of the compound parameters in our reduced model, C, D, and E had the greatest
impact on recurrence: these parameters reflect both α and λE , as well as the produc-
tion and elimination rates of terminally differentiated TReg cells. Thus, in general our
model points towards factors that increase the positive feedback loop between antigen
presenting cells and auto-reactive effector T cells as a pathway to recurrence.

Clearly, the models we analyze are extreme simplifications of the mechanisms of
immune regulation. As the precise mechanisms of action of regulatory T cells are fur-
ther elucidated, more accurate and predictive models should be possible. Nonetheless
we hope that the main insight of this paper, that recurrence in autoimmune diseases
can arise naturally from the complex interplay of dynamic populations, will serve as a
starting point for further research both in dynamical systems theory and in theoretical
immunology.
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