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MULTIPLE RECURRENT OUTBREAK
CYCLES IN AN AUTONOMOUS

EPIDEMIOLOGICAL MODEL DUE TO
MULTIPLE LIMIT CYCLE BIFURCATION

Pei Yu1, Maoan Han2,3,† and Wenjing Zhang4

Abstract Multiple recurrent outbreak cycles have been commonly observed
in infectious diseases such as measles and chicken pox. This complex outbreak
dynamics in epidemiologicals is rarely captured by deterministic models. In
this paper, we investigate a simple 2-dimensional SI epidemiological model and
propose that the coexistence of multiple attractors attributes to the complex
outbreak patterns. We first determine the conditions on parameters for the
existence of an isolated center, then properly perturb the model to generate
Hopf bifurcation and obtain limit cycles around the center. We further analyt-
ically prove that the maximum number of the coexisting limit cycles is three,
and provide a corresponding set of parameters for the existence of the three
limit cycles. Simulation results demonstrate the case with the maximum co-
existing attractors, which contains one stable disease free equilibrium and two
stable endemic periodic solutions separated by one unstable periodic solution.
Therefore, different disease outcomes can be predicted by a single nonlinear
deterministic model based on different initial data.

Keywords Epidemiology, infectious diseases, recurrent outbreaks, multiple
attractors, multiple limit cycles.
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1. Introduction
Periodic outbreaks of infectious diseases have been observed worldwide from the
beginning of the twentieth century. In particular, viral infectious diseases such
as measles, rubella, and mumps could exhibit both regular annual or multiannual
cycles and irregular dynamical patterns before [21] and after [25] the introduction
of vaccination programs. The unpredicted erratic periodicities also occur in the
epidemics of bacterial infections like whooping cough and walking pneumonia [25].
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Understanding the dynamics of the re-emergence is crucial for the disease interven-
tion strategies. Many mechanisms of sustain oscillations have been proposed and
studied by using mathematical models [2, 6, 14, 18]. The basic framework of these
models consists of susceptible, infected, and recovered population classes. Many
proposed mechanisms such as environmental changes, school calendar, and interna-
tional travels are modeled as various types of contact rates. Based on compartmen-
tal epidemiological models and dynamical system theory, the irregular oscillatory
phenomena are explained as chaotic behaviors or stochastic-driven switching among
multiple attractors [3, 9, 28].

Seasonality has been well recognized as one of the driven forces for the irregular
periodicities [1,11,30]. The seasonal mechanisms include the external influences on
the host contact rate. This new contact rate can be periodically varying around a
baseline with a seasonal sinusoidal forcing term [1,5,8,10,12,13,23,24,26]. Another
type of contact rate is modeled as a periodic piecewise function [27] to mimic the
school calender. Among these works, the non-autonomous deterministic epidemio-
logical models exhibit multiple attractors leading to chaos through the well-known
period-doubling scenario [4, 7, 8, 22, 23, 29]. An advanced theoretical work using
Melnikov’s method [12] proves the existence of chaotic motion and homoclinic bi-
furcations.

Autonomous epidemiological models with nonlinear incidence rates have been
proved to generate complex dynamical behaviors [17] including multiple equilibria,
periodic motions and homoclinic loops [19, 20]. However, the multiple attractors,
specially the coexisting multiple stable periodic solutions, are barely studied over
the past twenty years. One of the reasons is that the multiple periodic attracts
are generated from small-amplitude limit cycle bifurcations, whose techniques rely
heavily on tedious symbolic computation. The main contribution of this paper
provides analytical proofs and numerical simulations of the coexistance of multiple
periodic attractors in a classical epidemiological model with a general nonlinear
incidence rate.

We consider the standard SIR (Susceptible-Infectious-Recovered) model [20]

dS

dt
= λ− I F (I, S)− dS,

dI

dt
= I F (I, S)− (d+ v) I,

dR

dt
= v I − dR.

(1.1)

Under the measle season, we assume the constant recruitment rate of new suscep-
tibles is λ [9]. Due to the advanced public health care, the infected individuals do
not suffer heavy mortality. The three population classes share the same per capita
death rate d [9]. F (I, S) is the incidence rate with a single infected individual. The
duration of infection is v−1. All parameters take positive real values. Since the
infection of measle viruses gives lifelong immunity [15], model (1.1) is reduced to
the following 2-dimensional system

dS

dt
= λ− I F (I, S)− dS,

dI

dt
= I F (I, S)− (d+ v) I.

(1.2)
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Here, we adopt the assumption in [20] that the incidence rate increases with the
growth of susceptible population. That is F (I, 0) = 0 and ∂F/∂S > 0, for all I.
Further F (I, 0) takes the same form in [20] as F (I, S) = Sq G(I) and q = 1
[17], while G(I) is modified as

G(I) = β0 + k
Ip−1

1 +mIp−1
,

where m > 0 and p > 1. We assume a nonzero infection rate in the absence of
infected individuals, that is, limI→0 G(I) = β0. The incidence rate is monotonically
increasing in terms of infected populations, since dG/dI > 0 for p > 1, and saturated
at (β0 + k/m) I S, since limI→+∞ G(I) = β0 + k/m. System (1.2) can then be
rewritten as

dS

dt
= −I

(
β0 + k

I

1 +mI

)
S − dS + λ,

dI

dt
= I

(
β0 + k

I

1 +mI

)
S − (d+ v) I.

(1.3)

We further introduce

S =
λ

d+ v
X, I =

λ

d+ v
Y, t =

1

d+ v
τ,

and obtain the following dimensionless system,
dX

dτ
= 1−DX −

(
B + AY

Y+C

)
X Y,

dY

dτ
=

(
B + AY

Y+C

)
X Y − Y,

(1.4)

where the new positive parameters are defined as

A =
k λ

m (d+ v)2
, B =

λβ0

(d+ v)2
, C =

d+ v

mλ
, D =

d

d+ v
.

In the next section, we present general solution properties and stability of equi-
libria of system (1.4). In section 3, we give certain conditions under which system
(1.4) does not exhibit bifurcation of limit cycles. Then, in section 4, we first derive
the condition for which system (1.4) has an isolated center and then study the limit
cycle bifurcation around the center. Further, the existence of three limit cycles is
proved and verified by simulation. Finally, conclusion is drawn in section 5.

2. Basic properties of solutions of system (1.4)
We first consider the basic properties of the solutions of system (1.4). For conve-
nience, define the parameter space as

γ = (A,B,C,D) ∈ R4
+, (2.1)

where R4
+ means that all the four parameters take positive real values. We present

a summary of some early results obtained in [32–34] without proof. Define the
following trapping region,

Ω =
{
(X,Y )|X ≥ 0, Y ≥ 0, X + Y ≤ max

{
1, 1

D

}
+ ε

}
, (2.2)

where 0 < ε ≪ 1. Then, we have the following result [32].
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Lemma 2.1. For any set of parameter values belonging to γ, all solutions of sys-
tem (1.4) are non-negative provided the initial conditions are taken non-negative.
Moreover, all solutions are attracted into Ω and so bounded.

System (1.4) has two equilibrium solutions: the disease-free equilibrium E0 and
the Endemic equilibrium E1, given by

E0 : (X0, Y0) =
(

1
D , 0), for D > 0,

E1± : (X1±, Y1±) =
(
X1±, 1−DX1±

)
, for 0 ≤ X1± ≤ 1

D ,

(2.3)

where the condition 0≤X1±≤ 1
D comes from Y1±=1−DX1±≥0. X1± is determined

from the quadratic polynomial equation,

F1(X) = D(A+B)X2 − (A+B +D +BC)X + C + 1, (2.4)

given in the form of

X1± =
(A+B +D +BC)±

√
∆

2D(A+B)
, (2.5)

in which
∆ = (A+B +D +BC)2 − 4D(1 + C)(A+B)

= (A+B −D −BC)2 − 4C(A+B)(D −B).
(2.6)

Note that the E0 is a boundary equilibrium (on the X-axis), while the E1 is an
interior (positive) equilibrium. To show the bifurcation diagram, we may choose one
of the parameters as bifurcation parameter and treat others as control parameters.
Moreover, it is easy to define the reproduction number as R0 =

B
D . So according

to R0 < 1, R0 =1 and R0 > 1 (or respectively, B<D, B=D and B>D),we have
the typical three bifurcation diagrams shown in Figure 1, where the parameter A
is chosen as the bifurcation parameter. It should be noted that in the bifurcation
diagrams only the part in the first quadrant and below the red line are biologically
meaningful.

(a) (b) (c)

Figure 1. Bifurcation diagrams for system (1.4) with the equilibria E0 and E1 shown in red and blue
colors, respectively: (a) R0 < 1; (b) R0 = 1; and (c) R0 > 1.
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Lemma 2.2 ( [32]). When R0<1, the disease-free equilibrium E0 is globally asymp-
totically stable if A+B−D−BC−2

√
C(A+B)(D−B)<0, under which the endemic

equilibrium E1 does not exist. Otherwise, there exist two disease equilibria: the E1+

is a saddle while the E1− may be a stable (or an unstable) node or focus. Hopf
bifurcation can occur from the E1−. When R0>1, the E0 is unstable (a saddle), and
the E1− may be a stable (or an unstable) node or focus (the E1+ has no biological
meaning). Hopf bifurcation can occur from the E1−.

When no Hopf bifurcation exists in system (1.4), the endemic equilibrium E1−
is asymptotically stable. But whether or not it is globally stable depends upon ad-
ditional conditions. The conditions for no-existence of limit cycles will be discussed
in the next section. There may exist limit cycles enclosing the equilibrium. When
A≤BC, the disease-free equilibrium E0 is a saddle, and so single (unstable) limit
cycle can not exist since all trajectories converge to the trapping region Ω, which
has only one stable equilibrium inside. Application of Poincaré-Bendixson theory
implies the possible existence of two limit cycles enclosing the E1−, which will be
shown in section 4.

3. Conditions for non-existence of limit cycles
It has been shown in [32] that system (1.4) can exhibit limit cycles for all three
cases, R0 < 1, R0 = 1 and R0 > 1. Now we want to ask under what conditions
on the parameters there do not exist limit cycles. First of all, it is clear that if a
limit cycle exists, it must enclose the equilibrium E1− since the E1+ is a saddle and
the E0 is a boundary equilibrium. Further, the existence of biologically meaningful
equilibria implies Y1 ≥ 0, yielding 0 <X1− < 1

D . Hence, when ∆ < 0, there is no
real solution for the equilibrium E1 and so no limit cycles can exist. A necessary
condition for the above inequality to hold is B<D. When ∆≥0, but X1−≥ 1

D , i.e.,
A+B−D−BC+

√
∆≤0 which is equivalent to D≥max{B,A+B−BC}, the equilibrium

E1− is not in the first quadrant and thus no physically meaningful solutions exist
for limit cycles. Summarizing the above discussions gives the following result.

Theorem 3.1. For system (1.4), if one of the following conditions holds:

(i) ∆ < 0;
(ii) ∆ ≥ 0 and D ≥ max{B,A+B −BC},

then the system either has no equilibrium solutions or has no physically meaningful
equilibrium solutions, and thus no limit cycles exist.

Next, define

H2 = (D−B)(A+B)(C+D)−AD(A+B−C)−BC(DA+DB+BC)

−(DA+DB −BC)
√
∆, (A+B +D + C −

√
∆ > 0).

(3.1)

Then, the remaining case is under the conditions: ∆≥0 and X1−< 1
D which yield

A+B−D − BC +
√
∆ > 0. There are two cases: R0 ≥ 1 and R0 < 1. When

R0 ≥ 1 (i.e., B ≥D), it has been shown in [32] that there must exist limit cycles
if H2 > 0. Thus, for R0 ≥ 1 and H2 ≤ 0, there may exist certain conditions on the
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parameters such that no limit cycles exist. Note that for this case, there are only
two equilibrium solutions: a saddle point on the boundary at the E0 : (

1
D , 0), and a

positive equilibrium at the E1−, which may be a stable focus or node, or a center.
The E1+ is outside the first quadrant when R0 > 1 and coincides with E0 when
R0=1 for which E0 becomes a degenerate saddle. So by Lemma 2.1, there exists a
trapping region in the first quadrant, attracting all trajectories. Hence, the unstable
manifold of the saddle point E0 must converge either to a stable equilibrium or to a
stable limit cycle which encloses the E1−. In order for the system to have no limit
cycles to exist, one needs to find the conditions such that the unstable manifold of
the saddle E0 converges to the stable equilibrium E1−. It should be noted that if
the unstable manifold of the saddle E0 converges to a stable limit cycle, there must
exist two limit cycles enclosing E1− with inner one unstable and outer one stable.
A single (unstable) limit cycle can not exist if R0≥1 and H2≤0, but it is certainly
possible when H2>0 since the limit cycle becomes stable.

The case for ∆ ≥ 0 and R0 < 1 (B < D) is more complicated, since now the
equilibrium E0 is a stable node, and both the two positive equilibria E1+ (which is
a saddle point) and E1− (which may be a focus or node, or a center) are located
in the first quadrant. In this case, the unstable manifold of the saddle E1+ may
converge to the stable node E0, or to the stable equilibrium E1− if H2 < 0, or to
a stable limit cycle which encloses the equilibrium E1−. It should be pointed that
unlike the case R0 ≥ 1 which has limit cycles if H2 > 0, while for this case R0 < 1,
the system may have no limit cycles for H2> 0 since the unstable manifold of the
saddle E1+ can converge to the stable node E0 and the stable manifold of the saddle
E1+ connects the unstable equilibrium E1−, called a heteroclinic orbit.

Next, we present a more general condition applicable for both cases R0≥1 and
R0<1 (∆≥0).

Theorem 3.2. When ∆ ≥ 0 and

B[2D + (B +D)C] +A(D − 1) ≥ 0, (3.2)

there does not exist bifurcation of limit cycles in system (1.4).

Proof. By using the Dulac’s Criterion, we choose the following function

g(X,Y ) =
− (Y + C)

Y
[
(A+B)Y +BC

] < 0, (Y > 0),

and let the vector filed of system (1.4) be denoted as (P,Q)T . Then, we have

∂(gP )

∂X
+

∂(gQ)

∂Y

=
∂

∂X

{X − (1−DX)(Y + C)

Y
[
(A+B)Y +BC

] }
+

∂

∂Y

{ Y + C

(A+B)Y +BC
−X

}
=

(A+B)Y 3+(A+B)(2BC+D)Y 2+C
[
B(2D+BC)+A(D−1)

]
Y+BDC2

Y
[
(A+B)Y +BC

]2 ,

which indicates that ∂(gP )
∂X + ∂(gQ)

∂Y > 0 in the first quadrant of the X-Y plane
if B[2D + BC] + A(D − 1) ≥ 0. Moreover, since all trajectories are attracted
to the trapping region where Y < 1, the condition can be further improved as
B[2D + (B +D)C] +A(D − 1) ≥ 0.
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Remark 3.1. Note that the sufficient conditions given in Theorem 3.2 and in (ii)
of Theorem 3.1 may be overlapped, but most of the parameter regions defined in
Theorem 3.2 are not covered by the condition (ii) of Theorem 3.1.

4. Bifurcation of multiple limit cycles around a cen-
ter

It has been shown in [32] that maximal two limit cycles can bifurcate from in the
equilibrium E1− near a Hopf critical point. In this section, we will show that there
exist conditions for which system (1.4) is integrable with a positive center, and three
limit cycles can bifurcate from the center. To achieve this, we first apply the method
of normal form computation to find the center conditions. In general, suppose the
amplitude equation of normal form of a general dynamical system associated with
a Hopf bifurcation is given by

dr

dτ
= r

[
v0 + v1 r

2 + · · ·+ vk−1 r
2k−2 + vk r

2k +O(r2k+2)
]
, (4.1)

where the focus values vi’s are expressed in terms of the system parameters. We have
the following lemma which can be used to find bifurcation of multiple limit cycles
form Hopf critical point. The proof can be found, for example, in the book [16].

Lemma 4.1. Suppose the focus values vi depend on k parameters, say, µ =
(µ1, µ2, . . . , µk), such that at the critical point defined by µc = (µ1c, µ2c, . . . , µkc),
v0 = v1 = · · · = vk−1 = 0, vk ̸= 0, and

rank

[
∂(v0, v1, . . . , vk−1)

∂(µ1, µ2, . . . , µk)

]
µ=µc

= k.

Then, for any given µ near µc, the dynamical system can have at most k small limit
cycles bifurcating from the origin; and for some µ near µc, the system can have k
limit cycles around the origin.

Now we derive the condition under which system (1.4) is integrable, and have
the following theorem.

Theorem 4.1. When

A =
1

1 +D
, B =

D

1 +D
, C = 1 +D, (4.2)

system (1.4) is integrable, with the first integral given by

H(X,Y ) = X + Y + ln

(
Y 1+D

|1−DX −XY |

)
. (4.3)

Proof. For convenience, we use parameters A and C to solve the two equations:
F1(X) = 0 and Trace(J) = 0, where J is the Jacobian of system (1.4), to obtain

A =
(1−BX)2

−1 +X −BX2
and C =

(1−DX)

−1 +X −BX2
, (4.4)
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where X=X1− is the solution given in (2.5). It follows from A>0 and C>0 that
−1+X−BX2>0 and 1−DX=Y >0. Thus, it requires that 0<X< 1

D and

1−
√
1− 4B

2B
< X <

1 +
√
1− 4B

2B
, 0 < B <

1

4
. (4.5)

Under these conditions, the frequency at the Hopf bifurcation point is given by

ωc =
(1−DX)(1−BX)

(−1 +X −BX2)
√

X(1−D −DX)
> 0, (4.6)

yielding
0 < X <

1

D
− 1, 0 < D < 1.

Further, it is easy to use −1+X−BX2>0 to verify that 1−BX> 1
X > 2B

1+
√
1−4B

>B,
and X>1+BX2>1, which in turn results in D< 1

2 .
Now, introducing the transformationX

Y

 =

 X1−

1−DX1−

+

 1 0

−1
1+X1−

− X1−(1−D−DX1−)
1+X1−

x1

x2

, (4.7)

into system (1.4) yields a system with its linear part in Jordan canonical form, and
then applying the Maple program [31] into (4.7), we obtain the first three focus
values, given by

v1 =
−G1

8X(X + 1)(1−BX)(1−D −DX)(−1 +X −BX2)
,

v2 =
G2

192X3(X+1)4(1−DX)2(1−BX)3(1−D−DX)3(−1+X−BX2)
,

v3 =
G3

18432X5(X+1)8(1−DX)4(1−BX)5(1−D−DX)5(−1+X−BX2)
,

(4.8)

where

G1 = (1−DX)
{
(BX−1+2B)

[
(1+D)(−1+X−BX2)+3D−1−B−BD

]
+B(2B + 2BD − 3D)

}
+B −D +D2,

and the lengthy expressions of G2 and G3 are omitted here for brevity. Here, X
takes the values from the equilibrium E1−.

Next, eliminating X from the three equations G1 =G2 =G3 =0 (i.e. v1 = v2 =
v3=0), we obtain a solution X1=X1(B,D), and two resultants, R12=R0R12a and
R13 = R0R13a, where R12a and R13a are two different polynomials which do not
have common roots, and R0 is given by

R0 = D(D−1)(B−D)(D2+B−D)(BD−D−3)(D−2+2B)(BD+B−D).

Therefore, the center conditions come from R0=0, which gives five solutions:

B = D(1−D), B = D, B =
D + 3

D
, B =

2−D

2
, B =

D

1 +D
.
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By using the solution X=X1(B,D), we can verify that the first solution B=D(1−D)
gives X=X1=

1
D , yielding −1+X−BX2=0; and that the second, third and fourth

solutions of the above result in A < 0 and C < 0. When B= D
1+D , the focus values

v1, v2 and v3 have a common factor, 2−X+D(1−X)2, under which A and C are
reduced to the conditions given in (4.2): A= 1

1+D and C=1+D.
Now under the conditions given in (4.2), system (1.4) can be rewritten as

dX

dτ
=

−XY 2 − 2DXY −D(1 +D)X + Y + 1 +D

Y +D + 1
,

dY

dτ
=

XY 2 +DXY − Y 2 − (1 +D)Y

Y +D + 1
.

(4.9)

Then, directly applying the integrating factor γ= Y+D+1
Y (1−DX−XY ) to the above system,

we obtain the first integral H(X,Y ) given in (4.3), and thus the proof is complete.

Figure 2 shows a phase portrait of system (4.9) for D= 3
16 .

0

0.5

1

1.5

2

0 2 4 6 8

Y

X

E1-E1-

E1+

Figure 2. The phase portrait of (4.9) when D= 3
16 .

In the following, we will perturb the integrable system (4.9) to study bifurcation
of limit cycles. System (4.9) has three equilibrium solutions given by (2.3), for
which X1± are now equal to

X1± =
2D + 1±

√
1− 4D

2D
,

(
0 < D <

1

4

)
. (4.10)

For the equilibrium E0, the eigenvalues of the Jacobian of system (4.9) are −D and
−D
1+D , indicating that the E0 is a stable node. Evaluating the Jacobian at the E1±
yields the characteristic polynomial ξ2 + det±, where

det+ =
− 2

√
1− 4D

[
1−

√
1−4D

] [
1−D−

√
1− 4D

][
3−

√
1− 4D

]2 < 0 ∀ D ∈
(
0,

1

4

)
,

meaning that the equilibrium E1+ is a saddle; and

det− =
2
[
(2−D)(1− 4D) + (2− 5D)

√
1− 4D

][
3 +

√
1− 4D

]2 > 0 ∀ D ∈
(
0,

1

4

)
,
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implying that E1− is a center. When D= 1
4 , E1±=(3, 1

4 ) is a nilpotent center.
In order to make the perturbation to the integrable system (4.9) have the same

structure of the system (making it biologically meaningful), we consider the follow-
ing perturbed system:

dX

dτ
=

−XY 2 − 2DXY −D(1 +D)X + Y + 1 +D + ε p(X,Y )

Y +D + 1
,

dY

dτ
=

XY 2 +DXY − Y 2 − (1 +D)Y + ε q(X,Y )

Y +D + 1
,

(4.11)

where
p(X,Y ) = a12XY 2 + a11XY + a10X + a01Y + a00,

q(X,Y ) = b12XY 2 + b11XY + b02Y
2 + b01Y + b00,

(4.12)

in which aij and bij are constant parameters.

Remark 4.1. The coefficients a00 and b00 can be used to make the perturbed
system have a same equilibrium at the E1−. It should be pointed out that if we use
general cubic-degree polynomial perturbations, we will obtain at least seven small-
amplitude limit cycles around the center. However, this would destroy the structure
of the original system, and the result may only have mathematical interests. For
the perturbations given in (4.12), there are two cases.
(A) If b00 = 0, then the structure of the perturbed system is exactly the same

as that of the unperturbed system with the disease-free equilibrium at Ē0 =
( 1+D+ε a00

D(1+D)−ε a10
, 0) which is very close to the unperturbed equilibrium E0 =

( 1
D , 0).

(B) If b00 ̸=0, then the equilibrium Ē0 slightly moves to Ē0=(X̄0, Ȳ0) with Ȳ0≈0.
This makes sense because: (1) in reality this situation can happen as a patient
who may not be completely recovered (implying that Ȳ0 ̸=0); and (2) in this
study we are interested in the dynamical behaviour of this system around the
disease equilibrium E1− and so whether Ȳ0 is exactly equal to zero is not
important.

In the following, we will consider these two cases separately. First, without loss
of generality, introducing another time scaling τ = (Y +D+1)τ1 into system (4.12)
yields the following system:

dX

dτ1
= −XY 2 − 2DXY −D(1 +D)X + Y + 1 +D + ε p(X,Y ),

dY

dτ1
= XY 2 +DXY − Y 2 − (1 +D)Y + ε q(X,Y ).

(4.13)

Remark 4.2. If one uses Melnikov function method to consider bifurcation of
limit cycles in system (4.13), one has to multiply the integrating factor γ to system
(4.12) and thus the resulting vector field becomes rational functions, which will cause
complexity in computation. When we use normal form (or focus value) computation
method, the vector field is still in polynomial form, which greatly simplifies the
computation. The difference is that Melnikov function method can be used for
global limit cycle bifurcation around closed orbits while the focus value computation
method is only applicable for local analysis; but they are equivalent in dealing with
limit cycles bifurcating from a Hopf critical point.
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(A) b00=0. For this case, we have the following result.

Theorem 4.2. For system (4.13) with b00=0, proper perturbations on the param-
eters can yield two small-amplitude limit cycles from a Hopf bifurcation around the
center E1−.

Proof. First, we have noticed from computing the focus values and solving the
polynomial equations that there are only two independent perturbation coefficients
in system (4.13). Although the choice of these coefficients is not unique, we may,
for example, set

a12 = a11 = a10 = a01 = a00 = 0, i.e., p(X,Y ) = 0. (4.14)

In order to make the perturbed system (4.13) still have an elementary center at the
equilibrium E1−, we let

b01 =
1

2D

[
2D(D−1)b12−(2D+1)b11+D(2D−1)b02

−
√
1−4D (2Db12−b11+Db02)

]
,

b02 = − 1

2D

(
1 + 2D −

√
1− 4D

)
b12,

(4.15)

and then the frequency ωc at the Hopf critical point is given by

ω2
c =

1

2

{
(2−D)(1−4D)+(2−5D)

√
1−4D + ε

[
(12D2 − 14D + 3)b12

−(8D − 3)b11 +
√
1− 4D

(
(2D2 − 8D + 3)b12 − (2D − 3)b11

)]}
.

(4.16)

Further, introducing the following affine transformation,X

Y

 =

 X1−

1−DX1−

+

 1 0

− 1+
√
1−4D

2(2+
√
1−4D)

− ωc

2+
√
1−4D

u1

u2

 , (4.17)

into system (4.13) we obtain

du1

dτ1
= ωcu2 +

3∑
i+j=2

(Aij0 + εAij1) u
i
1u

j
2,

du2

dτ1
= −ωcu1 +

3∑
i+j=2

(Bij0 + εBij1) u
i
1u

j
2,

(4.18)

where the coefficients Aij0, Aij1, Bij0 and Bij1 are functions of D, b12 and b11.
Now, applying the Maple program [31] into (4.18) for computing the normal forms
of Hopf and generalized Hopf bifurcations we obtain the focus values:

vi = vi0 + ε vi1, i = 1, 2, . . . , (4.19)

where vi0 = 0, i = 1, 2, . . . since the unperturbed system is integrable, and v11 is
given by

v11 = − D + (1 +D)(1−
√
1− 4D)

16(3 + 4D)(2 +D)2
√
1− 4D

×
{
2(D+2)2b11 −

[
(2D3−6D2−6D + 1) + (2D+1)2

√
1−4D

]
b12

}
.

(4.20)
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Note that the zero-order focus value v01 can be obtained from the trace of the
Jacobian of (4.13) evaluated at the equilibrium E1−, given as

v01 = − 1

4

[
(1− 2D +

√
1− 4D)b02 + 2(1−D +

√
1− 4D)b12

]
, (4.21)

which equals zero when the solution b02 given in (4.15) is applied.
Next, solving v11 = 0 for b11 we obtain

b11 =
1

2(D+2)2

[
(2D3−6D2−6D + 1) + (2D+1)2

√
1−4D

]
b12 (4.22)

under which

v21 = − (1+D) b12
96(2+D)3(3+4D)2

√
1−4D

[
56D5 − 542D4 + 30D3 + 148D2 + 8D + 3

+
√
1− 4D(1 + 8D)(18D3 − 26D2 − 10D + 3)

]
,

v31 = − (1+D) b12
9216(2+D)5(3+4D)5(1−4D)(3/2)

[
1471488D11 + 7324928D10

−67872064D9 − 376187472D8 − 352938928D7 + 277539332D6

+289981872D5 − 116995648D4 − 58719439D3 + 25711689D2

+3878172D − 1537218 +
√
1− 4D(2898560D10 + 32705056D9

+77785688D8 − 71347514D7 − 280713858D6 − 80867462D5

+119435772D4+16790531D3−24909963D2−1311336D+1448766)
]
.

(4.23)
Note that all higher-order focus values are given in the form of vk1 = (· · · ) b12,
k=2, 3, · · · . Thus, b12=0 yields b11=b02=b01=0, leading to the integrable system
(4.9). Also, note that the term in the square bracket of v21 does not equal zero for
D ∈ (0, 1

4 ). So v21 ̸=0, implying that at most two limit cycles can be obtained by
perturbing v01 and v11. Further, by direct perturbations on b11 for v11 and on b02
for v01, we can obtain two limit cycles. There are infinitely many solutions since we
have a free parameter D involved in the focus values.

Since the conditions given in Lemma 4.1 are sufficient but not necessary, we
would further ask if we can choose a suitable value of D such that v21 and v31 have
opposite sign and may yield three limit cycles. Without loss of generality, let b12=1.
A direct computation indeed shows that v21 < 0 and v31 > 0, and |v31v21

| reaches its
maximal value at D=0.2014403192 · · · . Thus, we take D=0.2 and obtain

v01 = v11 = 0, v21 = − 0.00182361, v31 = 0.00265213,

yielding v31
v21

=−1.454332. Although |v21| ≪ v31 is not satisfied, it might be possible
to have proper perturbations on b11 and b02, yielding three limit cycles. Taking
perturbations ε1=− 0.002 on b11 and ε2=− 0.00001 on b02, we further get

v01 = − 0.26180340× 10−5, v11 = 0.00028490, v21 = −0.00206177.

Then, the truncated normal form equation, v01+ v11 r
2+ v21 r

4 = 0, gives two
positive solutions: r1 ≈ 0.0994 and r2 ≈ 0.3582 to approximate the amplitudes of
the two limit cycles, with the outer one stable and inner one unstable. If we add



2290 P. Yu, M. Han & W. Zhang

v31 = 0.00294239 to the above truncated normal form equation we would obtain
three solutions: r1≈0.0994, r2≈0.4174, and r3≈0.7188, giving one more unstable
large limit cycle. In order to check if the bifurcation of the three limit cycles is
robust, we further add v41=−0.00592834 to the normal form equation but obtain
only two positive solutions: r1 ≈ 0.0994 and r2 ≈ 0.3911. Therefore, we can not
make a definite conclusion on the existence of three limit cycles.

This finishes the proof for Theorem4.2.
A numerical example for simulation is taken from the above discussion. We take

D = 0.2, b12 = 1, ϵ1 = −0.002, ϵ2 = −0.00001,

and consider two cases: a positive perturbation ϵ = 0.1 and a negative perturbation
ϵ = − 0.1. For these two cases:

b01 = −0.10658741, b02 = −2.38197601, b11 = 0.04474986,

under which the three equilibrium points are:

E0 = (5, 0), Stable Node,

E+ = (4.6180, 0.0764), Saddle,

E− = (2.3820, 0.5236), Focus,

where the focus E− is stable for ϵ = 0.1 and unstable for ϵ = − 0.1.

ϵ = 0.1. For this case, two limit cycles are obtained, which enclose the E− with
outer stable and inner unstable. Simulations are shown in Figure 3(a), where
two gray trajectories converge to a same stable limit cycle (in black loop).
Since E+ is stable focus, there must exist an unstable limit cycle between the
E− and the stable limit cycle, restricted to an invariant center manifold.

ϵ = −0.1. For this case, the system has no limit cycle. As shown in Figure 3(b),
the trajectories inside the separatrix are repelling away from the unstable
focus E−, and they eventually converge to the stable node E0; while while the
trajectories outside the separatrix converge directly to the stable node E0.

(B) b00 ̸= 0. Now we turn to the case b00 ̸= 0, for which we have the following
theorem.

Theorem 4.3. For system (4.13) with b00 ̸=0, proper perturbations on the param-
eters can yield three small-amplitude limit cycles from a Hopf bifurcation around
the center E1−.

Proof. Similar to the case b00 = 0, we may assume p(X,Y ) = 0, and make the
perturbed system (4.13) still have an elementary center at the equilibrium E1− by
choosing

b00 = −1

2

{
(2D2 − 7D + 2)b12 − 2(D − 1)b11 + (2D2 − 4D + 1)b02

−(2D−1)b01−
√
1−4D

[
(3D−2)b12−2b11+(2D−1)b02−b01

]}
,

b01 =
1

2D

{
4D(D − 1)b12 − (2D + 1)b11 + 2D(2D − 1)b02

−
√
1− 4D

[
4Db12 − b11 + 2Db02

]}
,

(4.24)
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Figure 3. Simulation of system (1.4) for D = 0.2, b00 = 0, b01 = −0.10658741, b02 = −2.38197601
and b11 = 0.04474986: (a) ϵ = 0.1, showing two limit cycles with outer stable and inner unstable,
both of them enclosing the stable equilibrium E−; and (b) ϵ = −0.1, showing no limit cycles, with the
trajectories inside the separatrix spiraling from the separatrix and eventually converging to the E0, while
the trajectories outside the separatrix converging directly to the E0.

for which the frequency ωc at the critical point is the same as that given in (4.16).
Then, similarly introducing the affine transformation (4.17) into system (4.13) yields
a system in the form of (4.18). Then, applying the Maple program [31] for computing
the normal forms of Hopf and generalized Hopf bifurcations to obtain the focus
values:

vi = vi0 + ε vi1, i = 1, 2, . . . , vi0 = 0 ∀ i,

where v11 and v21 are given by

v11 = − C4

√
2C1

64D2(1− 4D)(2 +D)2(3 + 4D)3 C2
M1,

v21 = − C5

√
2C1

1536D4(1− 4D)2(2 +D)4(3 + 4D)4 C3
M2,

(4.25)

where Ci’s, M1 and M2 are given in Appendix.
It is easy to verify that C4 ̸= 0 and C5 ̸= 0 for D ∈ (0, 1

4 ). Solving M1 = 0 (i.e.
v11 = 0) for b12 we obtain

b12 =
1

4C2C6

{[
3D(2D − 5) +

√
1− 4D(4D2 + 7D + 16)

]
b11

−2(16D3 − 3D2 + 66D − 16)b02
}[
(6D4 +D3 + 126D2 + 36D − 16)

−
√
1− 4D(4D4 − 25D3 − 12D2 − 64D + 16)

]
.

(4.26)

Next, we solve M2 = 0 (i.e. v21 = 0) to get

b11 = − b02
2C7

[
16D9−257D8−1005D7+5568D6−1219D5−4084D4

−394D3 + 276D2 + 58D − 12 +
√
1− 4D

(
123D8 − 107D7

−1744D6+1959D5+1530D4−336D3+308D2+34D−12
)]
.

(4.27)
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Here, C6 and C7 are two polynomials in D, given in Appendix.
It is seen that b02 ̸= 0. Otherwise, b11 = b12 = b01 = b00 = 0, violating

the assumption b00 ̸= 0. It can be shown that for D ∈ (0, 1
4 ), C2 has a root at

D = 0.2416575247 · · · , C6 has a root at D = 0.2399255707 · · · , and C7 has a root
at D = 0.1546928262 · · · ≡ D∗.

Now, suppose C2C6C7 ̸= 0. Then using the above solutions of b11 and b12, we
obtain v31 as follows:

v31 = (1+D)(2C2)
(1/2) b02

1536 (1−4D)2(2+D)2(3+4D)3C7

[
140800D12 − 1196432D11 + 8142296D10

−61780453D9 + 214979896D8 − 301754923D7 + 165060155D6

−7851491D5 − 26270224D4 + 9856018D3 − 1307298D2 + 47052D

+1296−
√
1−4D(9216D12−246224D11+1395936D10−11839219D9

+63083248D8 − 134692245D7 + 110734133D6 − 23671853D5

−13335192D4 + 7556654D3 − 1205790D2 + 49284D + 1296)
]
.

It can be shown that for D ∈ (0, 1
4 ), v31 = 0 has a unique solution at D = D∗,

which cancels the root D∗ of C7. So v31 ̸= 0 for D ∈ (0, 1
4 ), implying that when

C2C6C7 ̸=0, bifurcation of four limit cycles are not possible from the Hopf critical
point. Thus, at most three limit cycles can bifurcate from the E1− due to Hopf
bifurcation. Moreover, it can be shown that at the critical values of b12 and b11,
the following holds:

det

∂v11
∂b12

∂v11
∂b11

∂v21
∂b12

∂v21
∂b11


= 1

768D1(1−4D)2(2+D)2(3+4D)3

[
1056D8−1792D7−1278D6−7773D5−3137D4

+6756D3+9003D2−4320D+432−
√
1− 4D(128D8−800D7+676D6

+703D5+5261D4+7094D3+2949D2−3456D + 432)
]
̸=0 for D∈

(
0, 1

4

)
.

Therefore, by Lemma 3, maximal three limit cycles can bifurcate from the center
E1− for D∈(0, 1

4 ).
The remaining task is to check the cases when C2C6C7 = 0. When C7 = 0,

D=D∗, which yields the following solutions for b11 and b12:

b11 = − 0.1502238811 · · · , b12 = − 0.4126854434 · · · , (4.28)

under which

v11 = v21 = 0, v31 = − 0.0000698862 · · · b02 ̸= 0.

In addition, for this case, we have

det

∂v11
∂b11

∂v11
∂b12

∂v21
∂b11

∂v21
∂b12


D=0.1546928262···

= 0.0026392443 · · · ̸= 0,
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indicating that when C7=0, the system can also have three small-amplitude limit
cycles bifurcating from the E1−. Similarly, we can show that there exist three
small-amplitude limit cycles when C2=0 or C6=0.

This finishes the proof of Theorem 4.3.
To end this section, we present a numerical example to show bifurcation of

three limit cycles. We again choose b02 = 1, but D = 0.1875. Next we need to take
perturbations such that 0 < v01 ≪ −v11 ≪ v21 ≪ −v31 and the truncated normal
form has three positive roots. The choice of the perturbations is straightforward
since it is one by one: perturbing v21 using b11 + ϵ1, then v11 with b12 + ϵ2, finally
v01 by b01 + ϵ3. Letting ϵ1 = 0.0005, ϵ2 = 0.00000003 and ϵ3 = 0.0000000002, we
have

b11 = −0.0965512782, b12 = −0.4031072822, b01 = 0.1584429316,

for which b00 = 0.0187997017. Under these perturbed parameters, the focus values
become

v01 = 0.9997194657×10−15, v11 = −0.4788717627×10−12,

v21 = 0.5062922626×10−10, v31 = −0.9982348927×10−9,

which yields the truncated normal form equation: v10 + v11 r
2 + v21 r

4 + v31 r
6 = 0,

from which we obtain three positive roots:

r1 = 0.0544, r2 = 0.0926, r3 = 0.2103,

to approximate the amplitudes of three limit cycles. Since v31 < 0, the larger and
smaller limit cycles are stable, and the middle one is unstable, all of them enclose
an unstable focus E−. The perturbation parameter takes ε = 0.00001, for which
ω ≈ 0.7016. For these parameter values, the following three positive equilibrium
points are obtained:

E0 : (5.3333, 1.1906× 10−6), Stable Node,

E+ : (5.0000, 0.0625), Saddle,

E− : (2.3333, 0.5625), Unstable Focus.

The simulation is shown in Figure 4. The overall picture looks similar to Fig-
ure 3, but now there exist three limit cycles enclosed by the separatries of the saddle
E+. The large and small stable limit cycles are shown in Figure 4(a) and (b), re-
spectively. In Figure 4(a), two trajectories starting from two different initial points
(plotted in light and dark gray colors) converge towards the large stable limit cycle.
In Figure 4(b), two trajectories starting from two different initial points (plotted in
black and gray colors) converge to the small stable limit cycle. An unstable limit
cycle exists between the large and small stable limit cycles.

5. Conclusion
In this paper, we have rigorously proved and numerically simulated the multiple
attractors in an autonomous epidemiological model. Previous work [32] has shown
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Figure 4. Simulation of three limit cycles in system (1.4) for D = 0.1875, b00 = 0.01879970, b01 =
0.15844293, b11 = −0.09655128 and b12 = −0.40310728: (a) two trajectories starting from two different
initial points (plotted in light and dark gray colors) converging towards the large stable limit cycle; and
(b) two trajectories starting from two different initial points (plotted in black and gray colors) converging
to the small stable limit cycle; an unstable limit cycle between the larger and smaller stable limit cycles
is not shown.

that under proper perturbations on the model parameters, the model can exhibit
at maximal two small-amplitude stable limit cycles around an unstable endemic
equilibrium due to Hopf bifurcation. In this paper, we first find the condition on
the parameters such that the system becomes integrable with the Hopf critical point
becoming an isolated center. Then, we perturb the integrable system to prove the
existence of at least three limit cycles, one more than that obtained in the previous
work. With properly chosen parameter values and perturbations, we simulate the
cases with two and three co-existing limit cycles. This indicates that an autonomous
epidemiological model can indeed yield complex dynamical behaviors due to Hopf
bifurcation, yielding multiple attraction regions in the phase plane.

The significant contribution of this work proves the existence of multiple peri-
odic attractors in an autonomous epidemiological model with a nonlinear incidence
rate. The incidence rate shows a cooperative effect on the contact rate in terms
of infected populations. A large number of scientific and mathematical papers use
non-autonomous models to generate multiple periodic attractors. In their works, in-
corporated with the seasonality, the contact rates are mainly considered as a period
function in terms of time. Therefore, in these works, the multiple periodic attractors
are generated by the periodically forcing functions, rather than an intrinsic effect
from the model itself.

In a fixed set of parameter values, multiple attractors can be obtained in the
autonomous epidemiological model for the case b00 = 0 and ϵ = 0.1, as depicted
in Figure 3(a), showing three attractors: the stable disease-free equilibrium E0,
the stable endemic equilibrium E−, and the interior stable limit cycle. It is seen
from Figure 3(a) that the separatrix from the saddle E+ and the unstable limit
cycle delimit the first quadrant of the phase plane into three regions, and the three
attractors serve as the attraction basins for the three regions. The fate of the
given trajectory is determined by the located region of its initial condition in the
phase plane. The multiple attractors shown in Figure 4 with b00 ̸= 0 include the
stable disease-free equilibrium E0, the large and small stable limit cycles. The
separatrix from the saddle E+ and the sandwiched unstable limit cycle delimit the
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phase plane into three attraction regions. The long-term behavior of a trajectory
depends upon its initial condition. This indicates that for a given situation, where
the corresponding set of parameter values are all fixed, the emerging diseases and
regular and irregular re-emerging diseases can be explained by the bifurcation of
multiple attractors and stochastic influences on the initial conditions. This work
reveals that multiple attractors may be an intrinsic dynamical property causing
disease outbreak, and the uncertainty may be due to stochastic influences.

Appendix
The coefficients Ci, i = 1, 2, . . . , 7 and Mi, i = 1, 2 appearing in (4.25), (4.26) and
(4.27) are listed below.

C1 = (2−D)(1− 4D) + 2(2− 5D)
√
1− 4D,

C2 = 16D3 − 3D2 + 66D − 16,

C3 = 8667136D12 + 70179840D11 + 188075664D10 + 253157560D9

+569648881D8 + 371959898D7 − 686359313D6 − 219639484D5

+359819686D4 − 66535644D3 − 22647216D2 + 8665056D − 767232,

C4 = 3(12D3 −D2 + 36D − 8)−
√
1− 4D(8D3 −D2 + 44D − 24),

C5 = 196608D11 + 1684928D10 + 4878000D9 + 6643588D8 + 12804625D7

+11335371D6 − 10115074D5 − 7081422D4 + 5306400D3 + 2592D2

−445824D + 62208−
√
1− 4D(47104D11 + 353088D10

+825552D9 + 957388D8 + 2368023D7 − 929295D6 − 7763042D5

−848562D4 + 3912768D3 − 515808D2 − 321408D + 62208)

C6 = D5 − 12D4 + 30D3 + 77D2 + 105D − 30,

C7 = 64D8−239D7−16D6−163D5+1060D4+2318D3+1852D2−307D−6.

(A.1)
and

M1 =
[
6D4 +D3 + 126D2 + 36D − 16 +

√
1− 4D(4D4 − 25D3

− 12D2 − 64D + 16)
]
b12 −D

[
3D(2D − 5) +

√
1− 4D(4D2

+ 7D + 16)
]
b11 + 2D(16D3 − 3D2 + 66D − 16) b02,

M2 =
[
4914176D13 + 32647008D12 + 88586400D11 + 417874814D10

+ 1593001381D9+1518340548D8−1040169293D7−1165887064D6

+ 488922714D5 + 236953996D4 − 111309384D3 − 6177216D2

+ 7231680D − 767232 +
√
1− 4D(2119680D13 + 6539072D12

− 59843696D11 − 335897508D10 − 551815205D9 − 588557084D8

− 139985579D7 + 700716498D6 + 144173902D5 − 346709104D4
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+ 71027280D3 + 21222048D2 − 8563968D + 767232)
]
b12

−D
[
D(1899520D10 + 19756896D9 + 21875360D8 − 145331234D7 (A.2)

− 196046379D6 + 117328922D5 + 110799955D4 − 62366370D3

− 3512182D2 + 5643432D − 708048) +
√
1− 4D(2119680D11

+ 18917184D10 + 72180880D9 + 150942940D8 + 192972587D7

+ 40461460D6 − 167903599D5 − 48012698D4 + 65467990D3

− 3302376D2 − 5025456D + 767232)
]
b11

+ 2D(8667136D12 + 70179840D11 + 188075664D10

+ 253157560D9 + 569648881D8 + 371959898D7 − 686359313D6

− 219639484D5 + 359819686D4 − 66535644D3 − 22647216D2

+ 8665056D − 767232) b02.

Acknowledgments
This work is supported by the Natural Sciences and Engineering Research Council
of Canada (NSERC No. R2686A02) and the National Natural Science Foundation
of China (NNSF No. 11931016 & 11771296).

References
[1] S. Altizer, A. Dobson, P. Hosseini, P. Hudson, M. Pascual, P. Rohani, Season-

ality and the dynamics of infectious diseases, Ecol. Lett., 2006, 9(4), 467–484.
[2] R. M. Anderson, R. M. May, B. Anderson, Infectious Diseases of Humans:

Dynamics and Control, Oxford University Press Inc, New York, 1992.
[3] J. L. Aron, Multiple attractors in the response to a vaccination program, Theor.

Popul. Biol., 1990, 38(1), 58–67.
[4] J. L. Aron, I. B. Schwartz, Seasonality and period-doubling bifurcations in an

epidemic model, J. Theor. Biol., 1984, 110(4), 665–679.
[5] K. M. Bakker, M. E. Martinez-Bakker, B. Helm, T. J. Stevenson, Digital epi-

demiology reveals global childhood disease seasonality and the effects of immu-
nization, Proc. National Academy of Sciences, 2016, 113(24), 6689–6694.

[6] M. S. Bartlett, Measles periodicity and community size, J. Royal Statistical
Soc., Series A (General), 1957, 120(1), 48–70.

[7] B. Bolker, B. Grenfell, B. Chaos and biological complexity in measles dynamics,
Proc. R. Soc. Lond. B 251, 1993, (1330), 75–81.

[8] B. Buonomo, N. Chitnis, A. d’Onofrio, Seasonality in epidemic models: a
literature review, Ricerche di Matematica, 2017, 67(1), 1–19.

[9] D. J. Earn, P. Rohani, B. M. Bolker, B. T. Grenfell, A simple model for complex
dynamical transitions in epidemics, Science, 2000, 287(5453), 667–670.

[10] S. Ellner, B. Bailey, G. Bobashev, A. Gallant, B. Grenfell, D. Nychka, Noise
and nonlinearity in measles epidemics: combining mechanistic and statistical
approaches to population modeling, AM Naturalist, 1998, 151(5), 425–440.



Multiple recurrent outbreak cycles. . . 2297

[11] S. D. Fretwell, Populations in a Seasonal Environment, Princeton University
Press, Princeton, 1972.

[12] P. Glendinning, L. P. Perry, Melnikov analysis of chaos in a simple epidemio-
logical model, J. Math. Biol., 1997, 35(3), 359–373.

[13] N. C. Grassly, C. Fraser, Mathematical models of infectious disease transmis-
sion, Nat. Rev. Microbiol., 2008, 6(6), 477–487.

[14] B. Grenfell, J. Harwood, (Meta)population dynamics of infectious diseases,
Trends Ecol. Evol., 1997, 12(10), 395–399.

[15] D. E. Griffin, Immune Responses During Measles Virus Infection, Springer,
Berlin, Heidelberg, 1995, 117–134.

[16] M. Han, P. Yu, Normal forms, Melnikov functions and bifurcations of limit
cycles, Vol. 181, Springer-Verlag, London, 2012.

[17] H. W. Hethcote, P. van Den Driessche, Some epidemiological models with non-
linear incidence, J. Math. Biol., 1991, 29(3), 271–287.

[18] S. A. Levin, B. Grenfell, A. Hastings, A. S. Perelson, Mathematical and compu-
tational challenges in population biology and ecosystems science, Science, 1997,
275(5298), 334–343.

[19] W. M. Liu, H. W. Hethcote, S. A. Levin, Dynamical behavior of epidemiological
models with nonlinear incidence rates, J. Math. Biol., 1987, 25(4), 359–380.

[20] W. M. Liu, S. A. Levin, Y. Iwasa, Influence of nonlinear incidence rates upon
the behavior of sirs epidemiological models, J. Math. Biol., 1986, 23(2), 187–
204.

[21] W. P. London, J. A. Yorke, Recurrent outbreaks of measles, chickenpox and
mumps: I. seasonal variation in contact rates, AM J. Epidemiol., 1973, 98(6),
453–468.

[22] L. F. Olsen, W. M. Schaffer, Chaos versus noisy periodicity: alternative hy-
potheses for childhood epidemics, Science, 1990, 249(4968), 499–504.

[23] L. F. Olsen, G. L. Truty, W. M. Schaffer, Oscillations and chaos in epidemics:
a nonlinear dynamic study of six childhood diseases in Copenhagen, Denmark,
Theor. Popul. Biol., 1988, 33(3), 344–370.

[24] V. E. Pitzer, C. Viboud, W. J. Alonso, T. Wilcox, C. J. Metcalf, C. A. Steiner,
A. K. Haynes, B. T. Grenfell, Environmental drivers of the spatiotemporal
dynamics of respiratory syncytial virus in the united states, PLoS Pathogens,
2015, 11(1), e1004591.

[25] W. G. Van Panhuis, J. Grefenstette, S. Y. Jung, N. S. Chok, A. Cross, H. Eng,
B. Y. Lee, V. Zadorozhny, S. Brown, D. Cummings, D. S. Burke, Contagious
diseases in the united states from 1888 to the present, New Engl. J. Med., 2013,
369(22), 2152–2158.

[26] W. M. Schaffer, B. Kendall, C. W. Tidd, L. F. Olsen, Transient periodicity and
episodic predictability in biological dynamics, IMA J. Math. Appl. Med. Biol.,
1993, 10(4), 227–247.

[27] D. Schenzle, An age-structured model of pre-and post-vaccination measles trans-
mission, IMA J. Math. Appl. Med. Biol., 1984, 1(2), 169–191.



2298 P. Yu, M. Han & W. Zhang

[28] I. B. Schwartz, Multiple stable recurrent outbreaks and predictability in season-
ally forced nonlinear epidemic models, J. Math. Biol., 1985, 21(3), 347–361.

[29] H. Smith, Subharmonic bifurcation in an sir epidemic model, J. Math. Biol.,
1983, 17(2), 163–177.

[30] J. Wingfield, G. Kenagy, Natural Regulation of Reproductive Cycles, In Verte-
brate Endocrinology: Fundamentals and Biomedical Implications (Eds. P. K. T.
Pang and M. P. Schreibman), Vol. 4, Part B, 181–241, 1991.

[31] P. Yu, Computation of normal forms via a perturbation technique, J. Sound
and Vib., 1998, 211(1), 19–38.

[32] P. Yu, W. Zhang, L. M. Wahl, Dynamical analysis and simulation of a 2-
dimensional disease model with convex incidence, Commun. Nonlinear Sci. Nu-
mer. Simulat., 2016, 37, 163–192.

[33] W. Zhang, L. M. Wahl, P. Yu, Conditions for transient viremia in deterministic
in-host models: viral blips need no exogenous trigger, SIAM J. Appl. Math.,
2013, 73(2), 853–881.

[34] W. Zhang, L. M. Wahl, P. Yu, Viral blips may not need a trigger: How transient
viremia can arise in deterministic in-host models, SIAM Rev., 2014, 56(1),
127–155.


	Introduction
	Basic properties of solutions of system (1.4)
	Conditions for non-existence of limit cycles
	Bifurcation of multiple limit cycles around a center
	Conclusion

