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Re-emergence of cholera threatens people’s health globally. However, its periodic re-emerging
outbreaks are still poorly understood. In this paper, we develop a simple ordinary differential
equation (ODE) model to study the cholera outbreak cycles. Our model involves both direct
(i.e., human-to-human) and indirect (i.e., environment-to-human) transmission routes, due to
the multiple interactions between the human host, the pathogen, and the environment. In par-
ticular, we model the pathogen searching distance as a Poisson point process, and then formulate
the host-pathogen encounter (HPE) rate. A thorough mathematical analysis is performed to in-
vestigate local and global dynamics of the model. Necessary and sufficient condition under which
the backward bifurcation occurs is derived. Fold, Hopf, and Bogdanov-Takens bifurcations are
studied with original model parameter values to reveal their relations with model behaviors. One-
and two-dimensional bifurcation diagrams are provided to categorize model dynamics with re-
spect to its parameter values. Analytical and numerical analyses show that our simple model
is sufficient to exhibit complex epidemic patterns of cholera dynamics including bi-stability and
annual and multi-annual periodic outbreak. Our result regarding the backward bifurcation and
complex dynamics of cholera epidemics highlight the challenges in the prevention and control of
the disease.
Keywords: Periodic outbreaks of cholera, Poisson point process, Global stability,
Bifurcation theory

1. Introduction

Cholera is an ancient waterborne disease caused by the bacterium Vibrio cholerae (V. cholerea), which is
generally associated with poor sanitation and contaminated food and water supplies. Historically, seven
cholera pandemics have been documented over the past 200 years. Recent severe epidemics of cholera took
place in sub-Saharan Africa, south and south-east Asia and north America, including the outbreaks in
Zimbabwe (2008-2009), Haiti (2010-2012) and Yemen (2016-2018). A number of epidemics and endemics of
cholera have shown periodic patterns, which usually occurs annually or twice a year in endemic region and
periods with various years for epidemic cycles (e.g., [Islam et al., 2009; Wandiga et al., 2006]). However, the
mechanism behind the short-period endemic and long-period epidemic cycles is still poorly understood. A
better understanding of the epidemic dynamics of cholera can improve the prevention and control of the
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future outbreaks. In this work, we focus on two biological factors, the host susceptibility and the virulence of
V. cholerea in direct and indirect transmission routes, to study the disease dynamics, particularly, periodic
outbreaks.

Human hosts can be infected by ingesting contaminated food/water or direct contact with infected
human individuals. Patients may experience severe diarrhea [King et al., 2008]. One determining factor is
the dose of ingested bacteria. About 108 bacteria per milliliter are needed to cause severe cholera in healthy
individuals [Sack et al., 2004]. Host susceptibility is also closely associated with the immune system’s ability.
Patients with lowered immunity, such as children under malnutrition and HIV infected patients, are more
likely to develop severe illness [Glass et al., 1982]. Clinical studies show that 90% of patients with severe
symptoms infected by the classical biotype can develop protective immunity against subsequent infection
[Glass et al., 1982]. Nevertheless, typically the antibody attributing to the protective immunity declines to
the baseline after 6-9 months of the disease initiation [DiRita, 1995]. Oral cholera vaccines are available
to provide sufficient protection in endemic regions [Organization, 2010]. Through bifurcation analysis, this
paper demonstrates the influence of host responses on transmission rates and decay rates of protective
immunity on disease outcomes, which aims to provide insight into the vaccination program in disease
control.

The transmission of cholera involves direct transmission through human-to-human contacts (e.g., by
shaking hands, or consuming foods prepared by infected people) [Merrell et al., 2002; Morris Jr, 2011] and
indirect transmission though environment-to-human contacts [Morris Jr, 2011]. A number of deterministic
mathematical models have been proposed and analyzed to better understand the transmission dynamics
of cholera (e.g., [Andrews & Basu, 2011; Capasso & Paveri-Fontana, 1979; Tien & Earn, 2010; Robertson
et al., 2013; Ghosh et al., 2004; Tien et al., 2010; Wang & Wang, 2015]). Most existing mathematical
epidemic models are relatively simple autonomous ODE systems. The transmission incidences are often
modeled by the standard mass-action law. If the number of susceptible and infected hosts are denoted as
S and I, and the concentration of bacteria in the water environment is measured by B, the direct and
indirect transmission incidence functions would be βHCHIS and βECEBS, respectively. Here βH and βE
are total transmission rates for direct and indirect transmissions, respectively. Let CH (resp. CE) denote
the probability of direct (resp. indirect) transmission occurring. Widely used incidence functions for this
transmission route are the bilinear form with CH = p (for some 0 ≤ p ≤ 1) [Tien & Earn, 2010; Robertson
et al., 2013; Ghosh et al., 2004; Tien et al., 2010] and a nonlinear form with CE ∼ 1

B+κE
[Codeço, 2001;

Mukandavire et al., 2011; Tian et al., 2013]. However, the corresponding autonomous ODE models usually
can not capture the cyclical pattern in the cholera outbreak, as the endemic equilibrium is globally stable
in the biological parameter space. Whereas, oscillations are often driven by some non-autonomous terms,
such as a sinusoidal infection rate by exogenous force (such as seasonality). Investigating the intrinsic
cause of the periodic outbreak of cholera is usually unavailable due to the lack of oscillation in most of the
existing ODE models. In this paper, we formulate a simple nonlinear incidence function for the indirect
transmission route base on a Poisson point process. The resulting autonomous cholera model is simple, but
it can naturally generate regular and large-period oscillations, as a consequence of the rich behaviors of
the underlying nonlinear system. Additionally, our results indicate that varying amplitudes and phases in
annual or multi-annual cholera outbreaks can be further triggered by exogenous forces, such as seasonality.

The remainder of our paper is organized as follows. In Section 2, a nonlinear incidence function is
derived through the Poisson point process to model the encounter between the pathogen and a host. This
leads to a simple autonomous ODE model. In Section 3, we demonstrate dynamics of the proposed model,
including analytical thresholds and conditions for the number of equilibriums and existence of backward
and forward bifurcations. Global stability analysis on the disease-free equilibrium (DFE) and endemic
equilibrium are presented in Section 4 through Lyapunov function and geometric approach, respectively.
The parameter condition for the globally stable endemic equilibrium is very restricted. When this condition
is violated, it results in rich dynamics. Section 5 explores complex disease dynamics through bifurcation
analysis. More specifically, fold (static), Hopf and Bogdanov-Takens bifurcations are investigated. Two-
parameter bifurcation diagrams are plotted to demonstrate outcomes of the disease in terms of parameter
values. Annual and multi-annual outbreaks are numerically studied in Section 6. Further incorporating the
exogenous seasonal force, the simulated outbreaks exhibit varying amplitudes and frequencies. A conclusion
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is drawn in Section 7.

2. Model Derivation

2.1. Formulation of Probability of Indirect Transmission Occurring

This subsection focuses on the derivation of the indirect transmission probability, CE , for the environmental-
to-human transmission route. We assume that the human hosts are homogeneous. We first define:

(1) a: searching distance of a given pathogen;
(2) event: an encounter between the pathogen and a host;
(3) X(a): total number of encounters (“events”).

The number of host-pathogen encounters (HPEs) is assumed to be a stochastic process {X(a), a ≥ 0} in
terms of the pathogen searching distance a, which satisfies the following properties:

(H1) X(0) = 0 a.s.;
(H2) for any 0 ≤ a1 < a2 ≤ a3 < a4, X(a4)−X(a3) is independent of X(a2)−X(a1), where X(a2)−X(a1)
denotes the number of encounters occurred in the interval (a1, a2];
(H3) X(a2 + d)−X(a1 + d) has the same distribution as that of X(a2)−X(a1), for any 0 ≤ a1 < a2, for
all d > 0;
(H4)

(i) P(X(a+ ∆a) = 1|X(a) = 0) = h(B) ∆a+ o(∆a);
(ii) P(X(a+ ∆a) ≥ 2|X(a) = 0) = o(∆a);

where, P denotes probability.

Therefore, the total number of encounters {X(a), a ≥ 0} is a Poisson point process, which is continuous
in searching distance a and discrete in the state space. (H1) indicates that no HPE occurs if pathogens
do not move; (H2) indicates this process has the Markov property; (H3) ensures that this process has
stationary increments in a sense the increment of encounters only depends on the length of the searching
interval; (H4) assumes that the instantaneous transition rate of a new HPE per unit distance is given by
h(B) = b B

B+K , where b > 0 is the searching probability of an individual pathogen per unit of distance,
B measures the bacterial concentration in the water environment and K is the infectious dose in water
sufficient to produce disease in 50% of those exposed. h(B) describes the positive cooperation effect from
peer pathogens on the pathogen of interest. For example, bacteria form biofilm to enhance resistance to
environmental stresses [Silva & Benitez, 2016]. Therefore, we take h(B) as an increasing and saturating
function in the form of Michaelis–Menten equation.

By (H1)-(H4), {X(a)}a≥0 is a simple birth-death process. It is known that

p0(a) = P{X(a) = i} = P{X(a) = 0|X(0) = 0} = e−ah(B). (1)

A derivation of p0(a) is provided in Appendix A for self-completeness.
Moreover, what matters for HPEs is whether an encounter succeeds or not. The probability of having

either no encounter between the pathogen and a host or at least one encounter are given by

P{X(a) = 0} = p0(a) = e−ah(B),

P{X(a) ≥ 1} = 1− p0(a) = 1− e−ah(B),
(2)

respectively. We assume the searching distance a follows an exponential distribution with parameter α1 >
0. The indirect transmission probability CE is defined as the average encounter probability in terms of
searching distance a, which is given by

CE = E [1− p0(a)] = 1− E [p0(a)] =
h(B)

α1 + h(B)
= c0

B

B +K
, (3)

where E denotes the expectation in term of random variable a, and c0 = 1
1+α1

and K = α1KB
1+α1

. One may

generalize h(B) for instance h(B) = Bp

Bp+αp
for p ≥ 1. The form in (3) is also justified in epidemiology [Pon-
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.

Param. Def. Val. Ref.
N Total population size of humans 12347240 p [Mukandavire et al., 2011]
µ Natural death rate of human 1/(43.5× 365) d−1 [WHO]
βH Direct transmission rate estimated

β̂E Indirect transmission rate (0.25× 10−8, 7× 10−8) [Mukandavire et al., 2011]
K Half saturation rate 106 cells ·ml−1 [Hartley et al., 2005]
γ Recovery rate 0.2 d−1 [Hartley et al., 2005]
σ Rate of host immunity loss 1/365 d−1 [Neilan et al., 2010]
δ Bacterial death rate 0.23 d−1 [Hartley et al., 2005]
ξ Shedding rate 10 cells ·ml−1p−1 [Hartley et al., 2005]

ciano & Capistrán, 2011] and ecological modeling, such as mating encounter [Dennis, 1989] and introducing
sterile males in pest control [Costello & Taylor, 1975].

2.2. A Cholera Model

The dynamic model of cholera contains susceptible S, infected I and recovered R human population and
the bacteria (vibrios) B in contaminated water. We assume that the probability of direct transmission
occurring is CH = p for some 0 ≤ p ≤ 1. By (3), the probability of in direct transmission occurring
CE = c0B/(B +K). follows (3). Our new model takes the form

dS

dt
= Λ− µS − βH I S − βE

B

B +K
B S + σ R

dI

dt
= βH I S + βE

B

B +K
B S − (µ+ γ) I,

dR

dt
= γI − (µ+ σ) R,

dB

dt
= ξ I − δ B,

(4)

where the parameter Λ is the recruitment rate of human hosts, and µ is the natural death rate of hosts.
Infected individuals recover at a rate of γ, and wanes at a rate of σ. Upon the loss of the protective immunity,
the recovered individuals join the susceptible group again. The inflow to the bacteria in contaminated water
is only assumed from individuals, at the rate of ξ. Bacteria have a natural death rate δ. Direct and indirect
total transmission rates are denoted as β̂H and β̂E , respectively. For simplicity, we denote βH = β̂Hp and
βE = β̂Ec0. The definition and the base values of the parameters are given in Table 1. The estimated
ranges of βH and βE are provided in Appendix B.

3. Model analysis

3.1. A biologically feasible region for solutions

Let N(t) = S(t) + I(t) +R(t) denote the total population size of hosts. Adding the first three equations of
system (4) leads to dN

dt = Λ− µN . This implies that N(t) is bounded, as

N(t) = N(0)e−µt + S0(1− e−µt) ≤ max{N(0), S0}, with S0 = Λ/µ.

Meanwhile, if B(0) ≤ ξS0/δ, then B(t) ≤ ξ S0

δ
. Hence,

Γ =

{
(S, I, R, B) ∈ R4

+

∣∣∣S + I +R ≤ max{N(0), S0}, B ≤
ξ

δ
S0

}
gives us a biologically feasible region, which is positively invariant and bounded.
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3.2. Thresholds for Existence of Equilibriums and Backward Bifurcation

Setting dS
dt , f1, dI

dt , f2, dR
dt , f3, and dB

dt , f4, equilibrium solutions of system (4) E = (S̄, Ī, R̄, B̄) are
obtained by solving f1 = f2 = f3 = f4 = 0. Hence, we have

S̄ =
Λ + σ R̄

βE
B̄2

B̄ +K
+ βH Ī + µ

, R̄ =
γ Ī

µ+ σ
, B̄ =

ξ Ī

δ
, (5)

where Ī is the root of the following equation

Ī
(
a0 Ī

2 + a1 Ī + a2

)
= 0, (6)

where

a0 = (βE ξ + βH δ) (γ + µ + σ) ξ,

a1 =
1

βH
ξ (µ+ σ) (γ + µ) (βE ξ + βH δ)

(
H − βH S0

γ + µ

)
,

a2 = (γ + µ) (µ + σ) δ2K

(
1− βH S0

γ + µ

)
,

H =
βH δ

βE ξ + βH δ
+

β2
H δ

2K (γ + µ + σ)

ξ (µ + σ) (γ + µ) (βE ξ + βH δ)
.

(7)

Clearly, the trivial solution of (6), Ī = 0, leads to a disease-free equilibrium (DFE) E0 = (S0, 0, 0, 0)
of system (6). The existence and number of endemic equilibriums depend on the following two thresholds
in both direct and indirect transmission routes:

βH =
µ + γ

S0
, βHt. (8)

βEt ,
(µ+ γ) (γ + µ+ σ) δ2K

(µ+ σ)S2
0 ξ

2
. (9)

Moreover, the preceding thresholds, βHt and βEt, are two threshold values for the occurrence of tran-
scritical and backward bifurcations.

Theorem 1 [Existence of equilibrium solutions]. There exist at most three biologically feasible equilibria
for model (4) which depend on values of βH and βE. The DFE E0 always exists. Moreover, model (4) admits
only one endemic equilibrium if either (a) βH > βHt or (b) βH = βHt and βE > βEt holds; and two endemic
equilibria coexist if βH is sufficiently close to and smaller than βHt (that is, βH ∈ (βHt − βε, βHt) ∈ R+)
and βE > βEt.

Proof. Equation (6) has a trivial root Ī = 0, which is the DFE for model (4). Positive roots of equation
(6) can be derived from its second factor and if they exist, they take the form

I =
−a1 ±

√
∆

2 a0
, where ∆ = a2

1 − 4 a0 a2, (10)

where a0, a1, and a2 are defined in (7). Since all parameters are positive, a0 > 0. (i) If a2 < 0 that is

βH > βHt =
µ+ γ

N
, equation (10) has only one positive root I =

−a1 +
√
a2

1 − 4 a0 a2

2 a0
for all a1 ∈ R. (ii)

If a2 = 0 that is βH = βHt, the only root I = −a1

a0

∣∣∣
βH=βHt

is positive if and only if a1|βH=βHt
< 0, which

is equivalent to βE > βEt. (iii) If a2 > 0 that is βH < βHt, the existence of real roots requires ∆(βH) ≥ 0.
We notice that ∆|βH=βHt

= (a1|βH=βHt
)2 > 0. Since ∆(βH) is a continuous function at βH = βHt, there

exists a value βε, such that for all βH ∈ (βHt − βε, βHt) ∈ R+, ∆(βH) > 0. Here, we omit the case where
∆|βH=βHt

= 0, since it implies a1|βH=βHt
= a2|βH=βHt

= 0, which yields a zero root. Thus two real roots
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exist and take the form of (10), when ∆ > 0. Then the necessary condition for the positiveness of the two
roots is

H2 =
βHδ

βEξ + βHδ
+

βHδ
2K(γ + µ+ σ)

ξ(µ+ σ)(γ + µ) (βEξ + δβH)
− S0

γ + µ
< 0,

as

a1 =
1

βH
ξ (µ+ σ) (γ + µ) (βE ξ + βH δ)H2, and sign(a1) = sign(H2).

Since H2(βH |βE) is an increasing function, the necessary condition for H2(βH |βE) < 0 when

βH ∈ (0, βHt) is H2(βHt|βE) < 0. Since H2

∣∣∣
βH=βHt, βE=βEt

= 0 and H2 is a decreasing function of βE ,

H2(βHt|βE) < 0 implies βE > βEt. It follows from the continuity of H2 in terms of βH that the assertion
about the coexisitence of endemic equilibria holds. �

The local stability of the DFE is summarized in Lemma 1. Conditions for backward and forward
bifurcations are derived by applying Theorem 2 in [van den Driessche & Watmough, 2002].

Lemma 1. The DFE E0 = (Λ/µ, 0, 0, 0) is locally asymptotically stable in Γ if βH < βHt and unstable if
βH > βHt.

Proof. See Theorem 2. �

Theorem 2 [Conditions of backward and forward bifurcations]. System (4) undergoes a transcritical bi-
furcation at βH = βHt, which further induces a backward bifurcation if βE > βEt and a forward bifurcation
if βE < βEt.

Proof. The theorem is proved by the center manifold of the DFE E0 at one zero eigenvalue point. Here,
parameters βH and βE are set as bifurcation and control parameters. First, we evaluate the Jacobian matrix
of (4) at the DFE E0 and obtain the corresponding characteristic polynomial q0(x):

q0(L) = (L+ µ) (L+ µ+ σ) (L+ δ) (L− S0 βH + γ + µ).

The roots of q0(L) = 0 give the eigenvalues of the DFE E0, which include three negative ones. The single
zero eigenvalue happens when −S0 βH + γ+µ = 0 or βH = βHt in (8). At this point, the DFE E0 becomes
non-hyperbolic equilibrium, whose stability can not be determined by the linear analysis. Next, we project
the three dimensional stable manifold into the center manifold to study the local dynamics of the DFE
E0. The derivation follows the result of the Theorem 4.1 by [Castillo-Chavez & Song, 2004]. The time-
dependent function associated with the center manifold of the DFE E0 at βH = βHt is denoted by c(t).
The expression of its vector field up to the second order can be written as

dc

dt
=
a

2
c2 + bφc, a =

4∑
k,i,j=1

vk wiwj
∂2fk
∂xi ∂xj

(~x, φ)
∣∣∣
(~0,0)

, b =

4∑
k,i=1

vk wi
∂2 fk
∂xi∂φ

(~x, φ)
∣∣∣
(~0,0)

, (11)

where φ = βH − βHt is the new bifurcation parameter, ~x = (x1, x2, x3, x4)T , (S, I, R, B)T ,
(f1, f2, f3, f4)T = (dSdt ,

dI
dt ,

dR
dt ,

dR
dt )T . The DFE E0 is shifted to ~x = ~0. The corresponding Jacobian matrix

evaluated at E0 is denoted as Dx f(~0, φ) =

[
∂fk
∂xi

] ∣∣∣
~x=~0

, which admits a zero eigenvalue at φ = βH−βHt = 0.

Then

Dxf(~0, 0) =


−µ −(µ + γ) σ 0
0 0 0 0
0 γ −(µ + σ) 0
0 ξ 0 −δ

 .
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Obviously, Dxf(~0, 0) has a simple zero eigenvalue with the right eigenvector

~w =

[
−γ + µ+ σ

γ
,
µ+ σ

γ
, 1,

ξ (µ+ σ)

γ δ

]T
,

and the left eigenvector

~v =

[
0,

γ

µ+ σ
, 0, 0

]T
such that ~v · ~w = 1. Hessian matrices Dxxf(~0, 0) and Dxφf(~0, 0) have nonzero elements as follows

∂2f1

∂x1x2
(~0, 0) =

∂2f1

∂x2x1
(~0, 0) = − ∂2f2

∂x1x2
(~0, 0) = − ∂2f2

∂x2x1
(~0, 0) = −βHt = −µ+ γ

S0
,

∂2f1

∂x2
4

(~0, 0) = −∂
2f2

∂x2
4

(~0, 0) = −2βES0

K
, and

∂2f1

∂x2φ
(~0, 0) = − ∂

2f2

∂x2φ
(~0, 0) = −S0,

which yield

a = −(γ + µ+ σ)(µ+ γ)

γS0
+

(µ+ σ)ξ2βES0

γδ2K
=

(γ + µ+ σ)(µ+ γ)

γS0

(
βE
βEt
− 1

)
, b = S0. (12)

The orbit structure of system (4) near the DFE E0 at βH = βHt is qualitatively the same as the orbit
structure of the first of equation in (11) near (c, φ) = (0, 0). Moreover, the first equation in (11) takes a
normal form for the transcritical bifurcation. Since b > 0 in (12), forward bifurcation happens if a < 0
(βE < βEt), and backward bifurcation occurs if a > 0 (βE > βEt). �

4. Global Stability of Equilibrium Solutions

In view of the existence of a backward bifurcation in model (4), we analyze for the global stability of the
DFE and the endemic equilibrium.

4.1. Analysis via Lyapunov Function

Theorem 3. If βH < βHtG, the DFE E0 of (4) is globally asymptotically stable in Γ, where

G , 1− βE S0 ξ

δ (µ+ γ)
. (13)

Proof. We only need to consider solutions of system (4) in the bounded positive invariant set Γ, that is
(S(t), I(t), R(t), B(t)) ∈ Γ. Then we have the following two inequalities

0 ≤ B

B +K
≤ 1, 0 ≤ S ≤ S0. (14)

Considering V (t) = δ I(t) + βE S0B(t) as a Lyapunov function along the solution of (4) in Γ, we have

dV

dt
= δ

dI

dt
+ βE S0

dB

dt

= δ βH I S + δ βE B S − δ (µ + γ) I + βE S0 ξ I − βE S0 δ B

≤ δ βH I S0 − δ(µ+ γ) I + βE S0 ξI

= δI(µ+ γ)

[
βH S0

µ+ γ
+

βE S0 ξ

δ (µ+ γ)
− 1

]
= δI(µ+ γ)

(
βH
βHt
−G

)
≤ 0, if βH < βHtG,

(15)
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by applying two inequalities in (14). If dV
dt = 0 then I = 0 as βH < βHtG. We define Λ ={

(S, I, R, B) ∈ Γ|dVdt = 0
}
⊆ {(S, I, R, B) ∈ Γ|I = 0}. Since V (t) decreases along a solution of system

(4) according to (15), the omega-limit set of the solution is contained in the set Λ. The omega-limit set
is also contained in the largest invariant subset K, since it is invariant. A solution stays in Λ satisfies
limt→+∞ I(t) = limt→+∞B(t) = 0, which follows with limt→+∞R(t) = 0 and limt→+∞ S(t) = S0. Hence,
the largest invariant subset K = {E0}. Therefore, the global asymptotic stability of E0 follow from LaSalle’s
Invariance Principle [Li, 2018] when βH < βHtG. �

Biologically, Theorem 3 provides a sufficient condition for cholera elimination; that is

R2 ,
βHS0

µ+ γ
+
βE S0

µ+ γ

ξ

δ
< 1. (16)

The preceding threshold indicates that an infected individual can produce βH ·S0 · 1
µ+γ (resp. βE ·S0 · 1

µ+γ ·
ξ
δ )

secondary infection through direct (resp. indirect) transmission on average.

4.2. Global Stability Analysis by Geometric Method

Li and Muldowney developed a geometric approach [Li & Muldowney, 1995, 1996], which generalizes the
Bendixson criterion for 2-dimensional ODE model and provides an approach to derive a global-stability
result for a general nonlinear ODE system. This geometric approach is widely applied to ecological models
(e.g., [Ballyk et al., 2005; Lu & Lu, 2012]) and infectious disease models (e.g., [Smith et al., 2001; Arino
et al., 2003; Feng et al., 2015; Lu & Lu, 2017]).

In this subsection, we employ the geometric approach based on the second additive compound matrix
[Muldowney, 1990; Li & Muldowney, 1995] to analyse the endemic global stability of our model. A brief
summary of this technique is provided in Appendix C.

Proposition 1. If βH > βHt, the system (4)is uniformly persistent in the interior of Γ.

Proof. By Theorem 1, model (4) always admits the DFE E0 Moreover, E0 is unstable when βH > βHt.
Combine with Theorem 4.3 from [Freedman et al., 1994], the instability of E0 is equivalent to the uniform
persistence of model (4) in the interior of Γ. �

Proposition 1 implies that there exists c > 0 such that ∀x0 ∈ Γ̄, the solution x(t, x0) of system (4)
satisfies lim inf

t→∞
d(x(t, x0), ∂Γ) > c, where d(·, ·) denotes the Euclidean distance. Biologically, this result

implies uniform persistence of the disease, since the infected population I(t) and the bacterium population
B(t) will stay above a positive level c for all sufficiently large time. By the boundedness of Γ, the uniform
persistence of model (4) implies the existence of a compact absorbing set K ⊂ Γ̄. Furthermore, by assuming
K is the largest compact absorbing set, each compact set K0 ⊂ Γ̄ satisfies the omega limit set ω(K0) ⊂ K
[Li & Muldowney, 1996; Smith et al., 2001]. By Theorem 1, the endemic equilibrium E1 is unique in Γ̄
when βH > βHt. Therefore, the assumptions in Theorem 5 are valid. Next, we find the condition for the
inequality (43) to be satisfied when βH > βHt.

The Jacobian matrix J = ∂f
∂x and its corresponding second compound matrix J [2] = ∂f

∂x

[2]
[Li &

Muldowney, 1995] can be calculated as follows:

J =


−B2βE
B+K − βHI − µ −βHS σ −J2

βHI + B2βE
B+K βHS − γ − µ 0 J2

0 γ −µ− σ 0
0 ξ 0 −δ


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and

J [2] =


J1 0 J2 −σ J2 0
γ J3 0 −βHS 0 J2

ξ 0 J4 0 −βHS σ
0 J5 0 J6 0 −J2

0 0 J5 0 J7 0
0 0 0 −ξ γ J8

 ,

where,

J1 = −B2βE
B+K + (S − I)βH − 2µ− γ, J2 = βESB(B+2K)

(B+K)2
,

J3 = −B2βE
B+K − βHI − 2µ− σ, J4 = −βEB

2

B+K − βHI − δ − µ,

J5 = βHI + βEB
2

B+K , J6 = βHS − γ − 2µ− σ,

J7 = βHS − δ − γ − µ, J8 = −µ− σ − δ.

We set A = (aij) as a 6 × 6 matrix, whose nonzero elements are a11 = a22 = a34 = 1/I and a43 = a55 =

a66 = 2/B. Setting f = (dSdt
dI
dt

dR
dt

dB
dt ), the matrix

B = AfA
−1 +A

∂f

∂x

[2]

A−1 (17)

can be written in the following block form:

B =


B11 B12 B13 0
B21 B22 0 B24

B31 0 B33 B34

0 B42 B43 B44


where,

B11 = −βHI − µ− βEB
2

B+K −
βESB

2

I(B+K) , B12 = [0 − σ], B13 =
[
BJ2
I

BJ2
I

]
,

B21 =

[
γ
0

]
, B22 =

[
−βHI − βHS + γ − µ− σ − βEB

2

B+K (1 + S
I ) −βHS

J5 −µ− σ − βESB
2

I(B+K)

]
, B24 =

[
BJ2
I

BJ2
I

]
,

B31 =

[
ξI
B

0

]
, B33 =

 −βEB
2

B+K − (βHI + µ) B
B+K −

(KβH+ξ)I+µK+KξI
B(B+K) − βHS

J5 βHS − γ − µ− ξI
B

 , B34 =

[
σ

0

]
,

B42 =
[
0 − ξI

B

]
, B43 =

[
0 γ
]
, B44 = −µ− σ − ξI

B .

We choose the vector norm in R4 ∼= R(42) as

| (v1, v2, v3, v4, v5, v6) |= max{| v1 |, | v2 + v3 |, | v4 + v5 |, | v6 |}.

The Lozinskĭi measure, M(B) = max
i

(
Bii +

∑
j 6=i |Bij |

)
, with respect to the above defined vector norm

has the following relation [Martin Jr, 1974; Muldowney, 1984]:

M(B) ≤ max{g1, g2, g3, g4}.

Following the formula gi = M(Bii) +
∑

j 6=i |Bij |, we have

g1 = B11 + |B12|+ |B13| = −βHI − µ+ σ − βEB
2

B+K −
βESB

3

2I(B+K)2
< −µ+ σ = −µ+ b1;

g4 = B44 + |B42|+ |B43| = −µ− σ + γ + ξI
B = −µ+ b4 + Ḃ

B ;
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If −2
(
βHI + βEB

B+K

)
+ γ ≥ 0, then M(B22) = (B22)(1,1) + |(B22)(1,2)| and hence

g2 = (B22)(1,1) + |(B22)(1,2)|+ |B21|+ |B24| = −βHI − βEB
2

B+K − µ− σ + 2γ − βESB
3

2I(B+K)2

< −µ− σ + 2γ = −µ+ b2,

g3 = (B33)(1,1) + |(B33)(1,2)|+ |B31|+ |B34| = −βEB
2

B+K − βHI + βHS − µ+ σ + ξI
B+K + ξKI

B(B+K)

< βHS − µ+ σ + ξI
B < βHS0(1 + ξ

σ )− µ+ σ + δ + Ḃ
B = −µ+ b3 + Ḃ

B .

If −2
(
βHI + βEB

B+K

)
+ γ < 0, then M(B22) = (B22)(2,2) + |(B22)(2,1)| and in this case,

g2 = (B22)(2,2) + |(B22)(2,1)|+ |B21|+ |B24| = βHI + βEB
2

B+K − µ− σ + γ − βESB
2

I(B+K) + βESB
2(K+B/2)

I(B+K)2

< βHI + βEB − µ− σ + γ < (βH + βE)S0(1 + ξ
σ ) + γ − µ− σ = −µ+ b̃2,

g3 = βEB
2

B+K + βH(S + I)− γ − µ− ξI
B + σ + ξI

B < (2βH + βE)S0(1 + ξ
δ )− γ − µ+ σ = −µ+ b̃3;

where,

b1 = σ, b2 = 2γ − σ, b̃2 = (βH + βE)S0(1 + ξ
σ ) + γ − σ

b3 = βHS0(1 + ξ
σ ) + σ + δ, b̃3 = (2βH + βE)S0(1 + ξ

δ )− γ + σ, b4 = γ − σ < b2.

We choose

b = max{b1, b2, b̃2, b3, b̃3}, (18)

then have

g1 < −µ+ b, g2 < −µ+ b, g3 < −µ+ b+
Ḃ

B
, g4 < −µ+ b+

Ḃ

B
,

and

M(B) < max{g1, g2, g3, g4} < −µ+ b+
Ḃ

B
.

Along each solution x(t, x0), for x0 ∈ Γ and t > T > 0, we have

1

t

∫ t

0
M(B)ds <

1

t

∫ T

0
M(B)ds+

1

t
ln
B(t)

B(T )
− (µ− b) t− T

t
,

and

q̄ = lim sup
t→∞

sup
x0∈Γ

1

t

∫ t

0
M [B(x(s, x0))]ds < lim sup

t→∞
sup
x0∈Γ

(−bt− T
t

) ≤ −(µ− b) < 0, if µ > b.

A Bendixson criterion q̄ < 0 [Li & Muldowney, 1995] is verified and followed the global stability result for
endemic equilibrium E1:

Theorem 4. If βH > βHt and µ > b in (18), the system (4) is globally asymptotically stable.

Theorem 4 provides a strong condition for the global stability of the endemic equilibrium.

5. Bifurcation Analysis on the Endemic Equilibrium

Although the global stability analysis of the DFE and the endemic equilibrium (Theorems 3-4) provides
some useful information on disease dynamics, it only covers some extremely cases. We now apply the bifur-
cation theory to further investigate the disease dynamics. Our concern is the influence of two transmission
routes, environmental bacteria surviving and host immune response to the disease on the disease dynamics.
We, therefore, focus on direct and indirect transmission rates (βH and βE), host recovery rate (γ), host
immunity losing rate (σ), and bacteria death rate (δ).
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The changing rates of S, I and R are much more slower than that of B (e.g., humans have longer life
span than bacteria). Model (4) is a stiff system, which usually cause inefficiency or even failure of numerical
solvers. So we first do appropriate scaling, and then analyze stiff systems by using bifurcation theory and
numerical bifurcation methods [Yu, 2005, 1998].

5.1. Bifurcation Diagrams

First, we use bifurcation diagrams to categorize the dynamical behaviors of our model. Write model (4) as

dx

dt
= f(x, α), x = (S, I, R, B) ∈ R4

+, α = (βH , βE) ∈ R2
+, (19)

where the other fixed parameter values are taken from Table (1). Suppose that at α = α0, system (19)
has a positive equilibrium xE = (S̄, Ī, R̄, B̄) in (5). Then bifurcation conditions for xE at α = α0 give
bifurcation diagrams in the (βH , βE) plane, along which the system shows corresponding bifurcations. To
avoid the complexity involved in model dimension and parameter values, we derive closed-form expressions
of bifurcation conditions for system (19) by using the results from [Yu, 2005]. First, we evaluate the
Jocobian matrix of system (19) at a equilibrium xE = xE(α), which yields J(α) = Df |x=xE(α). Then the
corresponding characteristic polynomial is given as

P4(λ) = det[λI − J(α)] = λ4 + c1(α)λ3 + c2(α)λ2 + c3(α)λ+ c4(α), (20)

and the corresponding Hurwitz arrangements

∆1 = c1, ∆2 = c1c2 − c3, ∆3 = (c1c2 − c3)c3 − c2
1c4, ∆4 = (c1c2 − c3)c3c4 − c2

1c
2
4. (21)

According to the Theorems 1 and 2 from [Yu, 2005], we have that the necessary and sufficient condition
for the system (19) to exhibit

(1) a static bifurcation, if c4 = 0 and ∆i > 0 for i = 1, 2, 3;
(2) a Bogdanov-Takens bifurcation, if c4 = c3 = 0 and ci > 0 for i = 1, 2;
(3) a Hopf bifurcation, if ∆3 = 0, ∆i > 0 for i = 1, 2 and c4 > 0;

The results are summarized in bifurcation diagrams Figures 2 and 1. In these figures, “T”, “SN”, and
“H” denote transcritical, saddle-Node, and Hopf bifurcation curves, respectively. 2-dimensional bifurcation
diagrams in terms of δ-βH , γ-βH , σ-βH , γ-σ, and βE-βH are plotted. Model (4) exhibits one, three, and
two equilibrium solutions displayed in green, yellow and red parameter regions, respectively, which are
delimited by saddle-node and transcritical bifurcation curves. Hopf bifurcation is a source for oscillation,
which will be further investigated.

Biologically, green, yellow, and red parameter regions in 2-dimensional bifurcation diagrams indicate
the model behavior representing disease elimination, dose-dependent effects, and periodic outbreaks, re-
spectively. To eliminate the disease, efforts should be made in increasing bacteria decay rate (δ) and host
recovery rate (γ), but reducing the two transmission rates (βE and βH). Since the condition of transcritical
bifurcation (8) does not involve δ, βH , or γ, the transcritical bifurcation curves in Figure 1 (a), (b), and
(c) are independent of the bacteria decay rate, environment-human transmission rate, and host recovery
rate. Notice that colliding points between saddle-node and transcritical curves in sub-figures (a), (c), and
(d) serve as thresholds for backward bifurcations. The increase in host immunity loss rate σ can lead to
backward bifurcation, which can trigger the bi-stability in cholera epidemic dynamics (see yellow region in
Figures 1 c).

Next, we focus on infection rates corresponding to two transmission routes to investigate the oscillations
due to Hopf bifurcations. Taken three values of parameter βE , the corresponding 1-dimensional bifurcation
diagrams are shown in sub-figures (b), (c), and (d). The bifurcation critical points in Figure 2 are

(1) Transcritical bifurcation: xE = (1.234724 × 107, 0, 0, 0) and βH = 0.16203 × 10−7 for all three βE
values in sub-figures (b), (c), and (d);

(2) Saddle-Node bifurcation: xE = (9.847801 × 106, 34542, 2.464896 × 106, 0.1480368 × 107), βH =
7.5261 × 10−7 for the sub-figure (b); xE = (8.082416 × 106, 58939, 4.205884 × 106, 2.525971 ×
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106), βH = −2.13007× 10−8 for the sub-figure (c); xE = (7.194440 × 106, 71211, 5.081588 ×
106, 3.051902× 106), βH = 5.289225× 10−8 for the sub-figure (d);

(3) Hopf bifurcation: xE = (3.810309×106, 117979, 8.418951×106, 5.056256×106), βH = 3.4615×10−8 and
the first focus value v1 = 2.191×10−17 for the sub-figure (b); xE = (2.443584×106, 136867, 9.766789×
106, 5.865741×106), βH = 2.69503×10−8 and the first focus value v1 = 2.851×10−17 for the sub-figure
(c); xE = (1.975475 × 107, 143336, 1.0228428 × 106, 6.1429927 × 106), βH = 9.1302 × 10−9 the first
focus value v1 = 4.433× 10−17 for the sub-figure (d).

Therefore, Hopf bifurcations in these three cases are all subcritical and generate unstable limit cycles.
Other than a small parameter region in case (d),the DFE is unstable. It indicates the existence of a stable
attractor between the bifurcated unstable limit cycle and the unstable DFE. This prediction is proved to
be true in the next subsection.

δ

βH

T

SN H

(a)

γ

βH

SN

T

H

β

γ

σ

H

T

SN

Fig. 1. Two-parameter bifurcation diagrams in terms of the bacteria decay rate (δ), host recovery rate (γ), host immunity
loss (σ), and direct transmission rate (βH).

5.2. Computation of a normal form to a Hopf bifurcation

Chosen βE = 2.5× 10−9, system (4) exhibits a Hopf bifurcation at

x0
E = (1.975475× 106, 143336, 1.0228428× 106, 6.1429927× 106), β0

H = 9.1302× 10−8.

We then choose this critical point to carry out a Hopf bifurcation analysis. First, we introduce the following
parameter transformation

βH = β0
H + ε, (22)
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14

T

SN

H

Fig. 2. Bifurcation diagrams of model (4). (a) A two-parameter bifurcation in terms of two infection rates βE and βH . (b)-(d)
displays bifurcation diagrams of I as a function of βH with varied βE . Here DFE and endemic equilibriums are in blue and
red, respectively. Stable and unstable equilibrium solutions are denoted in solid and dashed curves, respectively.

where ε the bifurcation parameter. The corresponding equilibrium is x̄E = (S(ε), I(ε), R(ε), B(ε)), with

S(ε) = 1975475.4681− 19991382557872.0476ε,
I(ε) = 143336.4974 + 276278423548.2317ε,
R(ε) = 10228428.0344 + 19715104134323.8159ε,
B(ε) = 6142992.7462 + 11840503866352.7877ε.

(23)

Introduce the state variable transformation

x = x̄E + T1Z, (24)

where z ∈ R4
+ and T1 as follows,

T1 =


−5.0868× 10−2 0.11095 2.0827× 10−2 1.0657× 10−2

2.2988× 10−2 3.8775× 10−3 −1.1809× 10−2 1.9928× 10−2

2.7881× 10−2 −0.11483 −0.86206 −9.2718× 10−3

0.98519 0 −0.506239 −0.99970

 . (25)
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Then the system (4) is transformed into a new system

dz

dt
= J1z +H1(Z; ε), (26)

where J1 in Jordan canonical form

J1 =


0 0.039358 0 0

−0.039358 0 0 0
0 0 −6.2982× 10−5 0
0 0 0 −0.43268

 , (27)

and

H1(Z; ε) =


H11

H12

H13

H14

 =


−361466.6608z1ε+ 609227.5836z2ε+ h1(z1, z2, z3, z4, ε)
−59002.8003z1ε+ 99445.2251z2ε+ h2(z1, z2, z3, z4, ε)

h3(z1, z2, z3, z4, ε)
h4(z1, z2, z3, z4, ε)

 . (28)

Functions hi(z1, z2, z3, z4) for i = 1, 2, 3, 4 are polynomials with the rest of higher order terms. The
associated Hopf bifurcation normal form truncated at the third order term can be written as

dr

dt′
= r(v0ε+ v1r

2),

dθ

dt′
= ω0 + τ0ε+ τ1r

2.

(29)

Here, t′ is a new time variable, ω0 = 0.039358, v0 and τ0 are determined as follows

v0 =
dα(ε)

dε
|ε=0 =

1

2

(
∂2H11

∂z1∂ε
+
∂2H12

∂z2∂ε

)
zi=0, ε=0

= −131010.7179, (30)

where[α(ε) + iω(ε)]|ε=0 = iω0 is one of pure imaginary eigenvalue pair at Hopf critical point. Setting the
system (26) with ε = 0 as input functions to the normal form computation program from [Yu, 1998], we
have

v1 = 4.4335× 10−17, τ1 = −1.3073× 10−19. (31)

The equilibrium solutions of the first equation of (29) are r̄0 = 0 and r̄1. Here r̄1 is determined by

f1(r; ε) = v0ε+ v1r
2 = 0 ⇒ r2 = −v0 ε

v1
. (32)

Since v0 < 0 and v1 > 0, the positiveness of r2 asks ε > 0. The stability is determined by the derivative of
the right side of the first equation in (29). Since

d(r f1(r; ε)) =
d

dr
(v0εr + v1r

3) = 3r2v1 + εv0 = −2 ε v0 > 0, ε > 0. (33)

unstable limit cycles bifurcate from the subcritical Hopf bifurcation on the ε > 0 direction. With the
presence of unstable DFE, stable endemic equilibrium, and unstable limit cycle, solutions either converge
to stable equilibrium or a stable limit cycle. The persistence of the oscillation allows model (4) to exhibit
multi-annual outbreak cycles. Numerical simulations are presented in Figure 3.

5.3. Bogdanov-Takens bifurcation computation

Taking parameter values from Table (1), model (4) exibits a Bogdanov-Takens bifurcation at the equilibrium
(SBT , IBT , RBT , BBT ), where

SBT = 1.216982139× 107, IBT = 2451.903051, RBT = 174966.6997, BBT = 105081.5593, (34)

when bifurcation parameters are

βEBT
= 6.498914739× 10−11, βHBT

= 1.617442248× 10−8. (35)
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Fig. 3. Infected population size either stabilized on a relative high level (dashed line) with a high initial bacterium level
6 × 106, or outbreaks (solid curve) every one or two years with a low initial bacterium level 10. Simulation parameter values
are taken from Table 1 and βH = 1.57 × 10−7, βH = 1.2 × 10−7, βH = 8 × 10−8, respectively.

Take state variable transformation


S
I
R
B

 = T


y1

y2

y3

y4

+


SBT
IBT
RBT
BBT

 ,
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where

T =


−1.68316706827 −1.693704558668 −1.68839762629 −1.31985415006453
0.023334226076 0.0233324305641 0.023333445456 0.0233961316797
1.6598328421939 1.67037212810428 1.6650641808346 1.296458018384829

1 1 1 1

 . (36)

System (4) at (βEBT
, βHBT

) is transformed to

ẏ = G(y) = Ay +
1

2
B(y, y) +O(‖y‖3), (37)

where y = (y1, y2, y3, y4)tr,

A =


−0.629822075264 0 0 0

0 −0.2393996333732 0 0
0 0 0 6.4389141840704× 10−4

0 0 0 0

 ,
and the row elements of B(y, y) are Bi(x, y) =

∑n
j,k=1

∂2Gi(η)

∂ηj∂ηk

∣∣∣∣
η=0

xjyk. System (37) has equilibrium y = 0

with two eigenvalues λ1,2 = 0, which shows a Bogdanov-Takens bifurcation. For two zero eigenvalues, two
real gneralized eigenvalues, satisfying Aq0 = 0 and Aq1 = q0, are calculated as q0 = (0, 0, 1, 0)T and
q1 = (0, 0, 0, 1553.056884)T . Moreover, similar vectors for the transposed matrix AT , satisfying AT p1 = 0
and AT p0 = p1, are

p0 = (0, 0, 1, 0)tr, p1 = (0, 0, 0, 0.0006438914184)tr. (38)

The selected vectors satisfies < p0, q0 >=< p1, q1 >= 1 and < p0, q1 >=< p1, q0 >= 0, where < ·, · > is
the inner product. Applying the formulas in [Kuznetsov, 2005], we have

B(q0, q0) =


0.000672187022394
0.000612772889621
−0.001284244046664
−7.1586363562× 10−7

 , B(q0, q1) =


0.0024558963333
0.00223882249795
−0.0046921009117

−2.615420515341× 10−6


ã2 =

1

2
< p1, B(q0, q0) >= −0.2304692258637× 10−9,

b̃2 =< p0, B(q0, q0) > + < p1, B(q0, q1) >= −0.0012842457307.

(39)

Therefore, system (4) has a generic Bogdanov-Takens bifurcation at the equilibrium (SBT , IBT , RBT , BBT )
with bifurcation parameters taking (βEBT

, βHBT
) and other parameters taking from Table 1. Its local

unfolding is topologically equivalent to the canonical family

ζ̇1 = ζ2, ζ̇2 = β̃1 + β̃2ζ1 + ã2ζ
2
1 + b̃2ζ1ζ2. (40)

6. Infected peak in outbreaks

6.1. The influence from transmission rates

The reported infected cases in 2008–2009 Zimbabwe cholera epidemic is 98, 585, that is approximately 106

[Cuneo et al., 2017]. Due to the asymptomatic infected cases, which are approximately half of the total
infected cases[Nelson et al., 2009], the total infected population peak can be approximately in the order of
106. We also investigate the control in the human-to-human transmission route by examining the relation
between the transmission rate βH and infected population peak. Numerical simulations on infected peak
vs βH are plotted in Figure 4. The simulation indicates that the peak of the outbreak increases as the
infection rate βH increases and then becomes saturated.
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Fig. 4. Infected peak vs βH

6.2. Seasonal influence on the environment-human transmission pathway

Transmission rate can be driven by many factors, such as the environmental variations for the growth of
the bacterium [Pascual et al., 2000, 2002] and human immune competence against the bacterium invasion
[Greenwood, 1999; Sultan et al., 2005]. Seasonal transmission rates therefore are assumed to be sinusoidal
for the mathematical convenience [Grassly & Fraser, 2006] as

βE(t) = βE (1 +AE sin(ωt)) , (41)

where AE ∈ [0, 1] denotes the strengths of seasonal forcing and measures the amplitude of the seasonality
in environment-human transmission pathway. ω is approximately taken (2π/365) as in [Posny & Wang,
2014]. Simulated infected population in Figure 5 shows that environmental seasonality affects the outbreak
amplitudes.
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Fig. 5. Outbreaks influenced by seasonality in environmental-to-human transmission route. Here βH = 3 × 10−8 and βE =
(1 + sin 2π t

365 ) × 2.5 × 10−9.
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7. Concluding Remarks

In this work, we formulate a simple ODE model for cholera transmission to recover periodic re-emerging
outbreak patterns in cholera endemic region. The model is an extension of the classical SIRS model including
a bacterial compartment B. The model incorporates direct human-to-human transmission in the simple
mass-action form and indirect environmental-to-human transmission considering the non-homogeneous
interaction. Specifically, the host-pathogen encounter is modeled by a pure birth process to account for the
randomness in the encounter-searching distance. This novel encounter rate results in a non-linear incidence
rate, which is a special case of a general nonlinear incidence form proposed by [Hethcote & Van den
Driessche, 1991]. Consequently, the developed model (4) not only exhibits disease-free and persist stages
of the infection, but also shows oscillating re-emerging outbreaks with long quiescent periods. Therefore,
this modeling framework provides a new approach to study periodic outbreaks for cholera and emergence
and re-emergence for other infectious diseases with multiple transmission routes.

Model (4) is thoroughly analyzed. Our results show that there exist two threshold values, βH = βHt
and βE = βEt, for direct and indirect transmissions to determine the number of equilibrium solutions and
critical conditions for transcritical and backward bifurcations. Particularly, model (4) allows at most three
biologically feasible equilibria. βH = βHt is the critical value for a transcritical bifurcation, at which the
model further induces a backward bifurcation when βE > βEt and a forward bifurcation when βE < βEt.
Moreover, the global stability of the DFE and endemic equilibirum are established by using Lyapunov
function method and geometric metric approach, respectively. Since the occurrence of backward bifurcation
indicates the existence of bi-stability, model (4) may exhibit the bi-stable behavior in epidemiology. Our
analytical results indicate that environmental reservoir of Vibrio cholerae is a cause of the disease outbreak.
Additionally, the existence of environmental-living pathogens rises up the difficulty of disease elimination,
since the disease-completely-eliminating threshold R2 in (16) is a positive function of the bacteria shedding
rate ξ. The global stability of disease-free state is more difficult to reach. Besides, the global stability of
endemic equilibrium also rarely happens, which in turn leads to complex dynamical behaviors of our model,
such as oscillations and multiple stability. The global stability analyses are presented in Theorems 3 and
4.

Complex dynamics are further demonstrated in 2-dimensional bifurcation diagrams. Saddle-node, tran-
scritical, and Hopf bifurcation curves delimit 2-dimensional parameter planes into three parts. In these three
parameter regions, model (4) admits one, three, and two equilibrium solutions, which correspond to globally
stable DFE, bi-stable state, and coexisting state of an endemic equilibrium and unstable DFE, respectively.
Moreover, our simple model (4) exhibits backward, Hopf, and Bogdanov-Takens bifurcations, which is due
to the novel formulation of transmission probability between the bacteria and human hosts. The Hopf
bifurcation, particularly, provides an oscillatory source and captures multi-annual disease outbreaks. How-
ever, the period and amplitude of the periodic outbreaks are uni-variant, as these behaviors are generated
intrinsically from an autonomous model. Varying outbreak periods and amplitudes can be achieved by fur-
ther considering exogenous forces, such as seasonality. Our results highlight we underscore the gap between
the complex mechanism of cholera transmission and our current quantitative understanding and control
strategies for this disease.

Although we have considered demographic and environmental variability, there are other factors of
variability that could be incorporated in a more comprehensive model. An important example among
these is the individual heterogeneity in shedding density and the possibility of super-shedding and hyper-
infectivity of the bacteria. The impact of such individual heterogeneity in shedding and infectivity on
cholera epidemics will provide an interesting topic in future research.
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Appendix A

A derivation of (1): By (H1), the probability density function of discrete random variable X(a) is

pi(a) = P{X(a) = i} = P{X(a) = i|X(0) = 0}

and the transition probability

pij(a) = P{X(a) = i|X(0) = j}.

Hence pi0 = pi(a). It follows from (H1)-(H3) that

p00(a+ ∆a) = p0(a+ ∆a)
= P{X(a) = 0, X(a+ ∆a)−X(a) = 0}
= P{X(a) = 0}P{X(a+ ∆a)−X(a) = 0}
= P{X(a) = 0}P{X(∆a)−X(0) = 0}
= P{X(a) = 0}P{X(∆a) = 0},

Hence,

p0(a+ ∆a) = p00(a+ ∆a) = p0(a) p0(∆a) = p0(a) [1− h (B) ∆a+ o(∆a)] .

For the previous equation, subtracting p0(a) from both sides and dividing by ∆a yields

p0(a+ ∆a)− p0(a)

∆a
= −h(B)p0(a) +

o(∆a)

∆a
p0(a).

Taking the limit as ∆a→ 0 leads to the following first-order differential equation

dp0(a)

da
= −h(B)p0(a),

with initial condition p0(0) = P{X(0)} = 1. The solution of the preceding linear differential equation is

p0(a) = e−ah(B).

Appendix B

Estimate parameter ranges for βH and βE : Public awareness and improved sanitation efforts are prompted
control strategies to prevent cholera spreading. Therefore, βH is set as a free parameter (or bifurcation

parameter) and examined for its influence on the cholera dynamics. As to β̂E , the value of βE = c0 β̂E
is estimated by the indirect transmission rate βe [Mukandavire et al., 2011] from the 2008-2009 cholera
outbreak in Zimbabwe. Since the model [Mukandavire et al., 2011] takes the density-dependent contact
rate, we have βe/(B̄ + K) = O

(
βE B̄/(B̄ +K)

)
and βe ∈ (0.075, 2.1). The infected population size is

stabilized at Ī = 1× 105 cases. Then the estimated stablized bacterial concentration is B̄ = ξ
δ Ī = 3× 107

cell · L−1. The estimated range for βE is (0.25× 10−8, 7× 10−8).
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Appendix C: The Geometric Approach

We summarize the main result of the geometric approach based on the second additive compound matrix,
originally developed by Li and and Muldowney [Li & Muldowney, 1996].

For a 4× 4 matrix M = (mij), its second additive compound matrix is

M [2] =


m11 +m22 m23 m24 −m13 −m14 0

m32 m11 +m33 m34 m12 0 −m14

m42 m43 m11 +m44 0 m12 m13

−m31 m21 0 m22 +m33 m34 −m24

−m41 0 m21 m43 m22 +m44 m23

0 −m41 m31 −m42 m32 m33 +m44


The readers can refer to a survey of general compound matrices [Muldowney, 1990].
Consider a dynamical system

dX

dt
= f(X) (42)

where f : D 7→ Rn is a C1 function and D ⊂ Rn is a simply connected open set. Let X 7→ A(X) be a(
n
2

)
×
(
n
2

)
matrix-valued C1 function in D, and set

B = AfA
−1 +AJ [2]A−1 ,

where Af is the derivative of A (entry-wise) along the direction of f , and J [2] is the second additive
compound matrix of the Jacobian J(X) = Df(X) . Let M(B) be the Lozinskǐi measure of B with respect
to a matrix norm; that is,

M(B) = lim
h→0+

|I + hB| − 1

h
,

where I is the identity matrix. Define a quantity q̄2 as

q̄ = lim sup
t→∞

sup
X0∈K

1

t

∫ t

0
M
(
B(X(s, X0))

)
ds , (43)

where K is a compact absorbing subset of D. Then the condition q̄ < 0 provides a Bendixson criterion in
D . Consequently, the following theorem holds:

Theorem 5.

Suppose that there exists a compact absorbing set K ⊂ D and the system (42) has a unique equilibrium
point X∗ in D . Then X∗ is globally asymptotically stable in D if q̄ < 0 .


