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Abstract The first mathematical models for an argasid tick are developed to
explore the dynamics and identify knowledge gaps of these poorly studied ticks.
These models focus on Ornithodoros moubata, an important tick species throughout
Africa and Europe. Ornithodoros moubata is a known vector for African swine
fever (ASF), a catastrophically fatal disease for domesticated pigs in Africa and
Europe. In the absence of any previous models for soft-bodied ticks, we propose
two mathematical models of the life cycle of O. moubata. One is a continuous-
time differential equation model that simplifies the tick life cycle to two stages, and
the second is a discrete-time difference equation model that uses four stages. Both
models use two host types: small hosts and large hosts, and both models find that
either host type alone could support the tick population and that the final tick density
is a function of host density. While both models predict similar tick equilibrium
values, we observe significant differences in the time to equilibrium. The results
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demonstrate the likely establishment of these ticks if introduced into a new area
even if there is only one type of host. These models provide the basis for developing
future models that include disease states to explore infection dynamics and possible
management of ASF.

1 Introduction

Unlike the well-studied hard-bodied (ixodid) ticks, soft-bodied (argasid) ticks exist
in relative obscurity. Perhaps due to the argasid tick’s comparatively complex life
cycle and its (as yet) limited impact on human health, no species of soft-bodied
tick has been mathematically modeled. In contrast, the life histories and population
dynamics of ixodid ticks, the vectors for diseases such as Rocky Mountain spotted
fever and Lyme disease, have been characterized quantitatively [13, 14]. This
void is not trivial; soft-bodied ticks such as Ornithodoros moubata are vectors of
devastating human and animal diseases including African swine fever (ASF) in
domesticated pigs [16, 37] and African relapsing fever in humans [11]. ASF and its
vector O. moubata are of particular concern because, although the disease has thus
far only emerged in Africa and Europe, global spread seems inevitable [9]. ASF is
especially difficult to eradicate due to the absence of available vaccines, multiple
wild reservoirs, and limited knowledge of the vector’s complex life cycle [31].

Like many argasid tick species [18], O. moubata are opportunistic feeders. The
ticks typically inhabit warthog burrows and feed on animals that also occupy the
burrows, such as warthogs, mice, rats, and mongooses [17, 30]. Ticks and wild
suids infected with the ASF virus experience minimal physiological effects and
therefore serve as natural reservoirs for the virus [4]. However, when domesticated
pigs become infected with the virus through contact with infected objects, ticks, or
other infected pigs or wild suids, the disease can kill an entire livestock herd in a
matter of days [6, 35]. Given that no vaccines are available, farmers typically impose
a strict quarantine of unaffected pigs and culling of exposed pigs [24, 29]. Since O.
moubata are capable of surviving extended periods of time without blood meals,
this management strategy may be ineffective due to the infeasibility of removing
smaller hosts (i.e., mice or mongooses) from the affected area for prolonged periods
of time. Therefore, it is imperative to quantitatively understand the complex life
cycle of this tick. By modeling soft ticks, we aim to better understand what drives
soft tick population expansion in order to control the spread of both the ticks and
the diseases they carry.

This paper develops two exploratory mathematical models to capture the dynam-
ics of the argasid tick. Using O. moubata as the motivation, both a discrete-time
and continuous-time model are developed. We incorporate features of the unique
life history of soft ticks, including the effects of host type on life history events
that depend on blood meals, such as reproduction. Specifically, our models use two
generic host types: a large host representing suids such as warthogs or domestic
swine, and a less beneficial small host, such as mongooses or other small mammals.
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Since current ASF control strategies involve removing swine from the affected area
for several years [29], in future work this type of model formulation will allow us to
examine the effectiveness of this strategy on disease eradication.

We first introduce a continuous-time model of tick and host dynamics that
reduces the complex system to two stages, which allows us to analytically examine
how tick population dynamics are impacted by host type. This model serves as
a minimal mathematical model of argasid tick dynamics. With limited field data,
we produce qualitative and (limited) quantitative predictions for tick growth with
two host types. We then present a discrete-time model of tick and host dynamics
that enables us to track multiple nymph life stages and examine the effects of
circumventing late nymph stages following a sufficient blood meal from a large
host. This model captures more unique features of the argasid tick life cycle, and
therefore it requires more field data to produce quantitative predictions.

2 Ornithodoros moubata Biology

Argasid ticks have a complex and variable life history. Unlike ixodid ticks, who
have a strict three-stage life history [36], O. moubata may progress through up to
six nymphal stages before molting to their adult life stage [1]. Figure 1 shows the
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Fig. 1 Life cycle of O. moubata. (a) The full life cycle of O. moubata includes the egg and larval
stage (E/L), then a variable number of instars (Ni ) based on quality and quantity of blood meals,
and finally the adult stage (A). (b) The discrete-time model simplifies the O. moubata life history to
four life stages. The first nymphal stage, N1, represents the summation of the egg/larval stage plus
the first two instars. The second nymphal stage, N2, includes the biological instars three through
five. Individuals may transition out of stage N2 by molting into an adult, A, given a sufficient blood
meal. Insufficient blood meals result in molting to an additional nymphal instar, Nx . Adults, A, then
reproduce and the females lay eggs. (c) The continuous-time model simplifies the O. moubata life
history traits even more by combining all immature stages in one class, N . Immature individuals
either remain as nymphs or move to the adult stage, A, depending on timing and the sufficiency of
blood meal
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complete life history of O. moubata (Fig. 1a) and the mathematical simplifications
made for the discrete-time (Fig. 1b) and continuous-time (Fig. 1c) models presented
in this paper. Eggs hatch to their larval stage then molt into the first nymph stage
without completing a blood meal, and then advance through the nymph stages and to
the final adult stage upon successful completion of a blood meal at each stage [23].
When an individual reaches a fifth nymphal stage, it has the ability to transition to
its adult stage but must complete a large, high quality blood meal to do so. If that
blood meal is either small or low quality, the nymph may delay its adult molt and
instead transition to a sixth nymph stage [25, 26].

A single adult female can lay up to three clutches in her lifetime [17]. Clutch
size is dependent on the quality of the blood meal consumed by the adult female
before oviposition. While O. moubata do not appear to exhibit a host preference
when feeding, significant differences in clutch size have been observed when adult
ticks feed on different hosts. Female O. moubata have been shown to produce 500
eggs per clutch when fed on warthogs and between 100 and 200 eggs per clutch
when fed on small hosts [3, 5, 25].

All blood meals taken by O. moubata are completed within an hour, and each
meal can come from a different individual of unique host species [17]. A blood
meal can be interrupted by the host (i.e., the host scratches at the tick or moves,
causing the tick to detach) (A. Bastos, pers. comm.). During feeding, O. moubata,
like all argasid ticks, excretes excess fluid during blood meals rather than returning
fluids to the host, potentially causing host death by exsanguination [2].

Their extremely long lifespan adds to the complexity of the O. moubata life cycle.
In a laboratory setting, O. moubata has been shown to complete its life cycle in a
minimum of 76 days, completing each nymph stage in approximately 2 weeks, but
to have a potential lifespan of 18 years [23]. In particular, an adult tick can survive
up to 5 years without feeding while each nymph stage can survive up to 2 years
without feeding [17].

The differences in life history events (i.e., the seemingly optional sixth nymph
stage) depend on host type, suggesting that we must consider the availability of
various hosts in order to understand the dynamics of an O. moubata population.
In addition to host considerations, difficulties in modeling population dynamics of
the O. moubata system come from the immense biological complexity of the soft
tick life history and the general lack of empirical data. Parameters are estimated
from literature and expert opinion to provide ranges for sensitivity analyses of both
models. The results of both models are compared; specifically, we compare the total
tick density at equilibrium, the time to reach equilibrium, the average tick population
growth rate, and the net reproductive number R0. This work provides the foundation
for future models to include swine fever dynamics and control.
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3 Parameter Selection

Parameter values are estimated from published literature when available. For
parameters for which there is no published information, we explore a range of
potential values to help identify key parameters to investigate with future biological
research.

We approximate the small host parameter values with empirical data from small
mammals known to be utilized by O. moubata (e.g., mice, mongooses). These small
hosts are likely to inhabit unoccupied warthog burrows and will frequently come
into contact with O. moubata (A. Bastos, pers. comm.). All large host parameter
values are approximated with data from wild suids, the optimal reservoir hosts
for O. moubata [17]. To estimate the carrying capacity of hosts for our model,
we extrapolate from the densities of wild African populations of mongooses and
mice as representatives of small hosts and of wild African suid populations for
the optimal large host. The range of mongoose (Suricata suricatta) density in the
southern Kalahari is reported to be 32–95 animals per hectare [8]. The density of the
striped mouse (Rhabdomys pumilio) was found in moderate to high quality habitat
to be 20–73.3 mice per hectare [33]. Following these values as representatives of
small hosts for our model, we assume that the range in carrying capacity of the
environment for small hosts is 10−2 to 50 animals per hectare. We have chosen
to use 10−2 to 10 animals per hectare for the carrying capacity of our large hosts
following the reported warthog density in Kruger National Park [22].

Similarly, to define ranges for the net growth rate of hosts for our model,
we extrapolate from the average birth rates of small and large hosts. Mongoose
populations have, on average, four litters a year with 2.4 pups per litter [8]. The
striped mouse has been shown to have two litters per year of 5.3 pups on average [32]
Therefore, these small hosts will each have approximately 10−2 pups per week
per individual. We ignore all seasonal or phenological variation in host dynamics
and assume these rates are constant throughout the year. The net growth rate of
the large hosts is similar to that of the small hosts. The reproductive potential
of a warthog population (Phacochoerus aethiopicus in the Eastern Selous Game
Reserve, Tanzania) was estimated to be 2.6 hoglets per year per female [7], or
approximately 10−2 hoglets per week per individual, which we have used as a lower
bound.

Progression through the O. moubata life cycle as well as reproduction depends on
obtaining blood meals. We define the maximal sustainable tick population on small
and large hosts to be the amount of blood loss that can occur with no deleterious
effects on the host organism. We have estimated this range for small and large hosts
to be 1–200 and 400–600 ticks, respectively. There is minimal variation in weight
for blood meals taken from a range of small hosts [25], suggesting that all blood
meals are approximately the same size across all small hosts. As warthogs, the large
host, are significantly larger than any of our small hosts, they will have more blood
meals to give before experiencing any negative effects related to blood loss. While
density-dependent population regulation has not been successfully quantified for
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argasid ticks [15], we include this as a competitive interaction for a finite number of
shared hosts available to immature and adult tick populations.

Adult female O. moubata have been shown to lay clutches of 100–200 eggs when
fed on suboptimal hosts and up for 500 eggs when fed on warthogs, the optimal
host [3, 5, 25]. As these clutch sizes were observed in an optimal laboratory setting,
we increase the parameter range for tick birth rates to better approximate natural
populations. The ticks are subjected to constant density-independent death rates that
are determined solely by age as well as density-dependent death rates that reflects
natural death from age and other environmental risks such as predation. Although
blood meals from large hosts tend to be larger and result in slower digestion, which
may reduce molting rates, the quality of the blood meal has also been shown to
have a significant impact on molting rates [25, 26]. Because it is difficult to obtain
molting rates for ticks feeding on large hosts, little data are available on these rates.
The two models presented in this paper make different assumptions on the molting
rates, which are discussed when the models are introduced.

4 Continuous-Time Model

We extend a continuous-time population-level model for hard-bodied (ixodid)
ticks [14] to soft-bodied (argasid) ticks. The hard-bodied tick model considers a host
population that grows logistically and a tick population that grows logistically with
a host-dependent carrying capacity. Since the soft-bodied tick has a more complex
life history (e.g., host-dependent life stages), we add a second class of host and a
second tick life stage. The tick of motivating interest, O. moubata, has many more
life stages, but we ignore that complexity for now in the continuous-time model.

We consider a set of host populations with small and large mammals
(e.g., rodents and swine). Both populations grow logistically and independently
of each other:

dS

dt
= rS

(
1 − S

KS

)
S, (4.1)

dL

dt
= rL

(
1 − L

KL

)
L, (4.2)

where S and L are the densities of small and large hosts, respectively, KS and KL

are the carrying capacities per area of the small and large hosts, and rS and rL are the
net growth rates of small and large hosts. Table 1 summarizes the host parameters
and estimated values.

We consider a population of ticks with two major life stages (female nymphs
and female adults), where N and A are the densities of nymph and adult ticks,
respectively. Adult ticks lay large clutches of eggs at a rate bL if they feed on large
(ideal) hosts and lay small clutches of eggs at a rate bS if they feed on small (non-
ideal) hosts. In other words, new nymphs are born when adult ticks and hosts interact
via a blood meal.
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Table 1 Variables and parameters for the host populations for the continuous-time model

Term Meaning Units Range Baseline Citation(s)

S Density of small mammal hosts [1/ha] – – –

L Density of large mammal hosts [1/ha] – – –

KS Carrying capacity for small hosts per area [1/ha] (10−2, 50) 1 [8, 33]

KL Carrying capacity for large hosts per area [1/ha] (10−2, 10) 0.025 [22]

rS Net growth rate for small hosts [1/week] (10−2, 5) 0.1 [8, 32]

rL Net growth rate for large hosts [1/week] (10−3, 10−1) 0.03 [7]

Area is measured in hectares (100 m2); time is measured in weeks

We assume large hosts can feed ML ticks and small hosts can feed MS ticks
without significant ill effects due to blood loss. Therefore, the number of meals
available for ticks is MSS + MLL. Because nymphs and adults compete among
each other for this limited food resource, competition both within and between the
tick stages is included. We model the competition as an age-structured competitive
Lotka–Volterra system [20], where cN and cA are the total competitive death rates
for nymphs and adult ticks, and αN and αA are the relative competition weights for
nymphs and adults.

Additionally, nymphs molt into adult ticks after a sufficient blood meal from a
small or large hosts at rate γS or γL, respectively. In other words, new adults are
“born” when nymphs interact with hosts via a blood meal. Here we assume equal
molting rates for both host species. Finally, each life stage has its own death rate: dN

for nymphs and dA for adults. The system describing these dynamics is given by:

dN

dt
= (bSS + bLL)A︸ ︷︷ ︸

birth

− cN

MSS + MLL
(N + αNA)N

︸ ︷︷ ︸
competition

− dNN︸︷︷︸
death

− (γSS + γLL)N︸ ︷︷ ︸
molting

,

(4.3)

dA

dt
= (γSS + γLL)N︸ ︷︷ ︸

molting

− cA

MSS + MLL
(αAN + A)A

︸ ︷︷ ︸
competition

− dAA︸︷︷︸
death

. (4.4)

Refer to Fig. 1c for a schematic of model (4.1)–(4.4). Table 2 summarizes the
tick parameters and estimated values.

4.1 Numerical Results

We investigate the continuous-time tick-only model (4.3) and (4.4) for constant
host populations through an analytical approach in Appendix. Because the two host
populations converge to stable steady states in the long run, we assume populations
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Table 2 Variables and parameters for the tick population for the continuous-time model

Term Meaning Units Range Baseline Citation(s)

N Density of nymph ticks [1/ha] – –

A Density of adult ticks [1/ha] – –

MS Maximum sustainable ticks per small
host

Unitless (1, 200) 100 Estimated

ML Maximum sustainable ticks per large host Unitless (400, 600) 500 Estimated

bS Birth rate for ticks due to small host meal [ha/week] (10−2, 5) 0.7 [3, 5, 25]

bL Birth rate for ticks due to large host meal [ha/week] (0.1, 15) 4.0 [3, 25]

dN Density-independent death rate for
nymph ticks

[1/week] (10−3, 10−1) 0.01 [17]

dA Density-independent death rate for adult
ticks

[1/week] (10−3, 10−1) 0.004 [17]

γS Molting rate given small host meal [ha/week] (0.02, 1) 0.5 [23]

γL Molting rate given large host meal [ha/week] (0.02, 1) 0.5 [23]

cN Total competitive (density-dependent)
death rate for nymph ticks

[1/week] (10−3, 10−1) 0.005 Estimated

cA Total competitive (density-dependent)
death rate for adult ticks

[1/week] (10−3, 10−1) 0.002 Estimated

αN Relative competition for nymph from
adults

Unitless (10−1, 100) 1 Estimated

αA Relative competition for adults from
nymph

Unitless (10−1, 100) 1 Estimated

Area is measured in hectares (100 m2); time is measured in weeks

of large and small hosts are constant and prove populations of nymph and adult
ticks are non-negative and bounded if their initial states are non-negative. We find
that tick persistence depends on the threshold value (the net reproductive number)

R0(S, L) = (LγL + SγS)

(dN + LγL + SγS)

(LbL + SbS)

dA

. (4.5)

We note that, since we are assuming the host populations are at carrying capacity,
S and L can be replaced by KS and KL. The value R0 has the interpretation of the
average number of offspring produced by a nymph in its lifetime, where the first
factor of R0 is the probability of a nymph reaching the adult stage and the second
factor gives the average number of offspring produced by an adult in its lifetime.

When R0 < 1, the tick-free steady state (equilibrium solution) E0 = (0, 0)

is locally asymptotically stable. When R0 > 1, E0 loses its stability, and a positive
steady state for the tick population, E1, emerges and is locally asymptotically stable.
We further prove that E1 does not admit a Hopf bifurcation. This result agrees with
the numerical simulation results, which show no oscillation in the tick model (4.3)
and (4.4). The details of the proofs are in Appendix.

We use the continuous-time tick system (4.1)–(4.4) and the parameters outlined
in Tables 1 and 2 to numerically simulate scenarios that represent the soft-bodied



Modeling the Argasid Tick (Ornithodoros moubata) Life Cycle 71

tick population. Here, we are motivated by scenarios that may be observed when
dealing with the spread of ASF. Specifically, when ASF is detected in a pig farm,
the domesticated swine (large hosts) are removed, but it is unfeasible to eliminate
the small hosts. Therefore, we consider two scenarios. For both, we assume that
there is no way to regulate the small host density, and therefore, small hosts are at
carrying capacity. For the first scenario, we assume that no large hosts are present,
as may occur if the domesticated pigs are removed. In the second case, large hosts
are introduced at a low level and are then allowed to increase to carrying capacity,
as may be observed when the domesticated pigs are reintroduced. Comparing these
scenarios allows us to examine how much larger the tick density becomes when
large hosts are present. In both scenarios, we assume that initially there are 70
nymphs present and no adults. As this number is the (female) clutch size for an
adult tick feeding on a small host, we choose this initial condition to represent the
case where ticks are introduced to an area due to a female tick arriving to the area
(likely through transportation on a host) and laying a clutch. By examining the time
to equilibrium, this allows us to examine how quickly the tick population may grow
if introduced to a region, which may also be important for managing ASF.

For our simulation we use Matlab 2017 and the built-in ODE solver, ode23. We
use the baseline parameters listed in Tables 1 and 2 and the initial conditions S(0)=1
small host per hectare, L(0) = 0 (Fig. 2a) or L(0) = 0.01 (Fig. 2b) large hosts per
hectare, N(0)=70 nymph ticks per hectare, and A(0)=0 adult ticks per hectare. We
solve (4.1)–(4.4) numerically and find that within 2 years the populations are at a
steady state, as given in Table 3. In Fig. 2 we see there are approximately twice as
many adult ticks as nymph ticks. It is also noteworthy that once the host population
is stable, there is no change in the tick population size.

By modeling soft ticks, we aim to better understand what drives the soft tick
population and how to mitigate their potential expansion into new areas. In Fig. 3,
we show how the equilibrium total tick density is affected by host density. In
Fig. 3a, we investigate the tick dynamics with one host and change the host carrying
capacity. We consider the case where there are no small hosts and increase the large
host density from 0.01 to 10 per hectare, based on the ranges in Table 1. We find
that the total tick equilibrium increases linearly to 2 × 106 per hectare.

Similarly, we test the case in which there are no large hosts and increase the small
hosts equilibrium from 0.01 to 50 per hectare, based on the ranges in Table 1. We
find that the total tick equilibrium increases approximately linearly to 7.5 × 105 per
hectare. In Fig. 3b, we vary both the large and small host equilibrium. We find that if
both host populations are small, the tick population will die out. However, as either
host population is increased, the total tick population equilibrium increases.

4.2 Identifiability and Sensitivity Analysis

Because many of the parameters for model (4.1)–(4.4) are not currently known, we
consider a wide range of plausible parameters (shown in Tables 1 and 2). Given



72 S. M. Clifton et al.

Table 3 A comparison of the continuous-time and discrete-time model outputs for two different
initial host densities when the tick population initially has 70 (first-stage) nymphs

Initial host density

S(0) = 1, L(0) = 0 S(0) = 1, L(0) = 0.01
Continuous model Eq. size 14,165 ticks/ha 17,330 ticks/ha

Eq. time 35.1 weeks 114 weeks

Avg. eq. time 0.002 weeks/(tick/ha) 0.007 weeks/(tick/ha)

Avg. growth rate 417 ticks/ha/week 153.85 ticks/ha/week

R0 171.6 ticks/ha 196.2 ticks/ha
Discrete-time model Eq. size 8600 ticks/ha 11, 226 ticks/ha

Eq. time 468.7 weeks 474.7 weeks

Avg. eq. time 0.054 weeks/(ticks/ha) 0.042 weeks/(ticks/ha)

Avg. growth rate 18.4 ticks/ha/week 23.6 ticks/ha/week

R0 198.1 ticks/ha 248.9 ticks/ha

Equilibrium time is calculated as the time it takes the tick population density to reach within 1%
of the equilibrium tick density. Average equilibrium time is calculated as the time to equilibrium
divided by the equilibrium tick density. Average growth rate is calculated as 1/(average equilibrium
time) and is defined as the total tick density increase at equilibrium divided by the time for
the population to reach 99% of the equilibrium. R0 is calculated by Eqs. (4.5) and (5.6) for
the continuous-time and discrete-time model, respectively, when present host populations are at
carrying capacity

time series data of the number of ticks and a constant number of hosts, the model
parameters are structurally identifiable, although some are only identifiable in sets.
Using the web application COMBOS [28], we find that cN, cA, dN , dA, αN , and αA

are uniquely identifiable parameters, and bLKL + bSKS , and KLγL + KSγS are
uniquely identifiable parameter sets. For this analysis to be tractable, we must know
the total blood meals available to the ticks (MSKS + MLKL).

To understand the sensitivity of the equilibrium tick densities to the parameters
chosen, we perform a global sensitivity analysis. This is done with Latin hypercube
sampling (LHS) and partial rank correlation coefficients (PRCC) [27]. A total of
1000 simulations are executed. The parameter ranges are listed in Tables 1 and 2,
and parameter values are sampled from a uniform distribution, see Fig. 4a.

The sensitivity analysis reveals that total tick density at equilibrium is signifi-
cantly (p < 0.001) and positively correlated with the large and small host carrying
capacities, KL and KS , and the tick birth rates due to large and small host blood
meals, bL and bS . As such, if the environment can sustain more hosts, then we
will see an increase in the total tick density. Moreover, if the birth rate of ticks
after a host meal increases, then we will see an increase in the total tick density. In
addition, the simulations reveal that the competition parameters αN , αA, cN , and cA

have a significant (p < 0.001) and negative correlation. Because these parameters
are poorly understood for soft-bodied ticks, future research is needed to biologically
quantify these parameters.
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Fig. 2 (a)–(b) Simulated tick density per life stage over time using the continuous-time model
with baseline parameters in Tables 1 and 2 and initial tick density N(0) = 70, and A(0) =0. (c)–(d)
Simulated tick density per stage over time using the discrete-time model with baseline parameter
values in Tables 4 and 5 and initial tick density T(0) = col(70, 0, 0, 0). For all graphs, small
hosts are assumed to be at carrying capacity with 1 small host/hectare (S(0) = 1). In graphs (a)
and (c), no large hosts are present (L(0) = 0). In graphs (b) and (d), large hosts are introduced
(L(0) = 0.01) and increase to carrying capacity (0.025 large host/hectare)

5 Discrete-Time Model

In this section, we develop a discrete-time, structured population model for the soft
tick feeding on two types of hosts, small hosts S and large hosts L. As with the
continuous-time model, the host densities can be thought of as constant or time-
dependent. For non-constant host densities, if we assume that the host populations
are independent of each other as well as the tick population, we can describe the
populations according to

S(t + 1) = rS
1

1 + kSS(t)
S(t), (5.1)
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Fig. 3 Equilibrium total tick density as a function of equilibrium small and large host densities
for the continuous-time model (a)–(b) and the discrete-time model (c)–(d). Parameters are selected
from baselines in Tables 1 and 2 for the continuous-time model and baselines from Tables 4 and 5
for the discrete-time model. (a) Total tick density increases approximately linearly with no small
host (solid black line) or with no large host (dashed black line). Eliminating only one host will
not drive the ticks to extinction. (b) Total tick density using the continuous-time model when both
large and small hosts are present. (c) Total tick density increases approximately linearly with small
host density if there are no large hosts and with large host density if there are no small hosts. Note
that eliminating either host without the other will not drive the ticks to extinction in this case. (d)
Total tick density using the discrete-time model when both large and small hosts are present

L(t + 1) = rL
1

1 + kLL(t)
L(t), (5.2)

where rS and rL are the growth expansion factors of hosts S and L, respectively,
and kS and kL are intraspecific competition coefficients. Table 4 provides parameter
values, ranges, and units for the host populations. We note that these values were
chosen so that the host equilibrium values are the same as those in the continuous-
time model.
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Fig. 4 Sensitivity and uncertainty analysis using Latin hypercube sampling (LHS) of parameter
space and partial rank correlation coefficients (PRCC). (a) PRCC of equilibrium total tick density
in the continuous-time model. (b) PRCC of equilibrium total tick density in the discrete-time
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model (initial condition T(0) = col(70, 0, 0, 0)). All parameter ranges for the continuous-time
model are given in Tables 1 and 2. All parameter ranges for the discrete-time model are given in
Tables 4 and 5. A total of 1000 simulations were executed to obtain all PRCC values. *** indicates
significance (p < 0.001)
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Table 4 Variables and parameters for host populations for the discrete-time model

Variable Description Units

S Density of small host [hosts/ha]

L Density of large host [hosts/ha]

Parameter Description Units Range Baseline Citations(s)

kS Intraspecific competition for host S [ha/hosts] (0.08, 2) 0.2 [8, 33]

kL Intraspecific competition for host L [ha/hosts] (0.02, 0.2) 2.4 [22]

rS Average expansion factor for host S Unitless (1.02, 5) 1.2 [8, 32]

rL Average expansion factor of host L Unitless (1.002, 1.2) 1.06 [7]

Area is measured in hectares (100 m2). Time is measured in 2-week intervals

The aim of this model is to capture some of the aspects of the life history of soft
ticks that are not captured by the two-stage nymph-adult continuous-time model
presented in the previous section. As with the continuous-time model, we assume
host-specific fecundity in which the large host is the more beneficial host. We also
incorporate two additional biological aspects of the soft tick life cycle. First, we
assume that the blood meal obtained from a large host is better quality resulting in
fewer nymph stages, but the probability of reaching maturity in the minimum num-
ber of instars is the same for feeding on both types of hosts. As a result, transition
probabilities following a meal on a large host are larger than transition probabilities
following a meal on a small host. Second, it is possible that nymphs will be
interrupted while feeding or will have an insufficient amount of energy necessary
to molt [17]. If this occurs, they will require a second meal to complete their molt.
We represent this in the models as feeding but not transitioning. Feeding without
transitioning has the effect of “resetting” the biological clock, allowing a tick to
remain in the same stage for a longer amount of time. We therefore assume that sur-
vival rates are dependent upon whether a tick that feeds transitions to the next stage.

We describe the soft tick life cycle using four stages: three nymph stages N1,
N2, NX and one adult stage A. This simplification of the soft tick life cycle is
obtained by combining the first and second nymph classes into N1 and the third
through fifth nymph classes into N2. Movement between the stages is described in
Fig. 1b. It is possible for an individual nymph to bypass the third nymph stage, NX,
provided that in stage N2 it receives a sufficiently large blood meal from a large
host. Meanwhile, the second nymph stage, N2, ensures that first-stage nymphs, N1,
cannot immediately reach maturity.

We describe the dynamics of the soft tick population by the system

N1(t + 1) = σs1(S(t), L(t), T(t))N1(t) + β(S(t), L(t), T(t))A(t),

N2(t + 1) = σg1γ1(S(t), L(t), T(t))N1(t) + σs2(S(t), L(t), T(t))N2(t), (5.3)

NX(t + 1) = σg2γ2,Sf2,S(S(t), L(t), T(t))N2(t) + σsX(S(t), L(t), T(t))NX(t),

A(t + 1) = σg2γ2,Lf2,L(S(t), L(t), T(t))N2(t)

+ σgX
γX(S(t), L(t), T(t))NX(t) + σsA(S(t), L(t), T(t))A(t),
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where T = col(N1, N2, NX,A) is the column vector containing the densities of the
four stages. Here, we take the unit of time to be 2 weeks to accurately represent
the maximum O. moubata nymph molting potential. This is also the minimum time
between adult reproductive events [17].

Since life history processes for ticks depend upon obtaining blood meals, we
define feeding functions fi,S and fi,L, which give the fraction of stage i ticks that
consume a meal from S or L hosts. This fraction is assumed to depend on the total
number of meals available (without preference for a particular host) and is modified
by interference from other ticks according to

fi,S(S, L, T) = MSS∑
j αij Tj + MSS + MLL

, (5.4)

fi,L(S, L, T) = MLL∑
j αij Tj + MSS + MLL

, i = 1, 2, X,A. (5.5)

Because more than one tick may feed on the same host, MS and ML give the
number of blood meals provided by small and large hosts, respectively. Meanwhile,
parameter αij gives the interference stage i experiences from stage j . We assume
that αij ≥ 1 to ensure that the number of meals consumed does not exceed the
number of meals available. By this choice for feeding functions, as the number of
available meals grows large, the number of meals consumed approaches the total
number of ticks present.

Birth and transition out of stage i are assumed to require a blood meal and thus
depend upon the feeding functions according to

β(S,L, T) = bSfA,S(S, L, T) + bLfA,L(S, L, T),

γi(S, L, T) = γi,Sfi,S(S, L, T) + γi,Lfi,L(S, L, T), i = 1, 2, X.

Parameters bS and bL give the fecundity of an adult that has fed on a small or large
host, respectively, while γi,S and γi,L give the probability of transitioning out of the
i-th stage given a meal on a small or large host. The transition probability for a given
stage will depend on the number of biological instars contained in that stage. We
assume that stage N2 nymphs transition to stage NX nymphs if they obtain a meal
from a small host (low quality), while N2 nymphs transition to the adult stage if they
receive a meal from a large host (high quality). However, this modeling assumption
can be relaxed by allowing transitions to either stage to depend on meals from both
hosts.

All nymphs of stage i survive to the next time unit with probability σgi
, which

factors in the length of time that a nymph can remain in stage i without feeding.
We assume no mortality occurs as a result of transitioning, and therefore nymphs
that feed and transition have the same survival probability as those that do not feed.
However, in the case that a nymph feeds without transitioning, it can remain in the
stage longer, resulting in a boost in survivorship to σi . Therefore, for the nymph
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stages, the probability of surviving and transitioning out of stage i is σgi
γi , while

the probability of surviving and remaining in stage i is

σsi (S, L, T) = σi[(1 − γi,S)fi,S(S, L, T) + (1 − γi,L)fi,L(S, L, T)]
+ σgi

(1 − fi,S(S, L, T) − fi,L(S, L, T)), i = 1, 2, X,

where σgi
≤ σi ≤ 1. The first term of σsi gives the probability that a tick

survives and feeds but does not transition. Meanwhile, the second term in σsi is
the probability that a tick survives but does not feed. If it is assumed that the
only advantage to feeding is transitioning; that is, if σi = σgi

, then σsi (S, L, T)

reduces to σgi
(1 − γi(S, L, T)). To define the survival of adult ticks, we note that

individuals only leave the adult stage through death. In addition, since feeding
results in reproduction and an adult female can only lay up to three clutches in
her lifetime after which she dies [17], we assume that feeding shortens the amount
of time spent in the adult stage, resulting in a lower survival probability for adults.
Therefore, we define

σsA(S, L, T) = σA[fA,S(S, L, T) + fA,L(S, L, T)]
+ σgA

(1 − fA,S(S, L, T) − fA,L(S, L, T)),

where σA ≤ σgA
accounts for the fact that females have a limited number of

reproductive events.
Table 5 summarizes the various variables, functions, and parameters as well as

the units and parameter ranges for tick population.

5.1 Numerical Simulations

We examine the tick population dynamics analytically in Appendix. In particular,
we determine a threshold value for tick persistence that is a function of large and
small host densities. This threshold value is given by the inherent net reproductive
number

R0(S, L) =βγ1σg1σg2

(
γ2,Lf2,L(1 − σsX) + γ2,Sf2,SσgX

γX

)
(1 − σs1)(1 − σs2)(1 − σsX)(1 − σsA)

, (5.6)

where the functional dependencies have been dropped to simplify notation and all
functions are evaluated at (S, L, 0). We show that if R0(S, L) < 1, then the tick
population goes extinct, while if R0(S, L) > 1, the tick population is persistent.

We explore the effects of host density on the tick population by numerically
simulating the discrete-time model (5.3). Unless otherwise indicated, we assume
that small hosts, S, are constantly supplied at their carrying capacity of (rS −
1)/kS = 1 small host per hectare. For our simulations, we use the baseline
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Table 5 Variables and parameters for the tick population for the discrete-time model

Variable Description Units

N1 Density of first nymph stage
(immature)

[ticks/ha]

N2 Density of second nymph stage
(can mature)

[ticks/ha]

NX Density of third nymph stage
(can mature)

[ticks/ha]

A Density of adult ticks [ticks/ha]

Function Description Units Range

fi,S(S, L, T) Feeding on host S by stage i Unitless (0, 1)

fi,L(S, L, T) Feeding on host L by stage i Unitless (0, 1)

β(S, L, T) Number of N1 nymphs from a
single female clutch

Unitless (0, 300)

σsi (S, L, T) Survivorship of stage i

assuming no transition
Unitless (0, 1)

γi(S, L, T) Transition probability from
stage i

Unitless (0, 1)

Parameter Description Units Range Baseline Cit.

MS Number of meals per small host [meals/tick] (1200) 100 Estimated

ML Number of meals per large host [meals/tick] (400, 600) 500 Estimated

αij Intraspecific interference of Tj

on Ti

[meals/tick] [1, 5] 1 Estimated

bS Number of N1 nymphs from an
adult female due to a meal from
host S

Unitless (20, 70) 70 [3, 5, 25]

bL Number of N1 nymphs from an
adult female due to a meal from
host L

Unitless (45, 230) 230 [3, 25]

�L Probability an N1 nymph
reaches A in 5 instars when
feeding on host L

Unitless (0, 1) 0.5 [25]

�S Probability an N1 nymph
reaches A in 6 instars when
feeding on host S

Unitless (0, 1) 0.5 [26]

γi,S Transition probability for tick in
stage i that has fed on host S

Unitless (0, 1) 0.79,
0.71, 0.89

[25]

γi,L Transition probability for tick in
stage i that has fed on host L

Unitless (0, 1) 0.76,
0.66, 0.87

[26]

σgi
Baseline survival of stage i Unitless (0, 1) 0.98,

0.98,
0.98, 0.98

[17]

σi Survival of stage i assuming
feeding but not transitioning

Unitless (0, 1) 0.99,
0.99,
0.99, 0.67

[17]

Area is measured in hectares (100 m2); time is measured in 2-week intervals. Index i = 1, 2, X,A

unless otherwise indicated
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parameters given in Tables 4 and 5 and assume that initially there exist only 70
stage-1 ticks per hectare (N1(0) = 70 and N2(0) = NX(0) = A(0) = 0).

Figure 2c, d gives the time evolution of ticks in the four different stages when
small hosts are at carrying capacity with no large hosts (S(0) = 1, L(0) = 0) versus
when large hosts are introduced at a low level and increase to carrying capacity
(S(0) = 1, L(0) = 0.01). Supplying a constant small host at carrying capacity
each time unit results in around 8600 ticks per hectare in total at equilibrium, in
comparison with approximately 11,200 ticks per hectare (or 1.3 times as many)
when large hosts are present. This is due to the fact that the fecundity of adult ticks
benefits more from large hosts compared with small hosts. Hence, the more large
hosts that are present at each unit time, the greater the total tick density. Recall that
ticks feeding on small hosts need one extra instar, NX, to mature relative to those
feeding on large hosts. Therefore, the presence of large hosts results in a shorter
time to adulthood, thus “speeding up” the population dynamics. Specifically, while
the time to equilibrium is longer when large hosts are present due to the higher
tick equilibrium level, the average population growth rate (defined as the total tick
density increase at equilibrium divided by the time for the population to reach 99%
of the equilibrium) is shorter, as seen in Table 3. For instance, in Fig. 2, the average
population growth rate increases by 28.61% when large hosts are introduced.

As with the continuous-time model, we investigate how the equilibrium of the
total tick density changes with host density in Fig. 3c, d. We use the minimum and
maximum carrying capacities to define the ranges for small hosts, [0.01, 50] hosts
per hectare, and large hosts, [0.01, 10] hosts per hectare. The total tick equilibrium
increases linearly with the number of small hosts when no large hosts are present,
and vice versa. However, the rate of increase in the equilibrium level per large host
is approximately 12 times that per small host. Figure 3d displays the influence of
both small and large hosts on total tick density.

5.2 Sensitivity Analysis

We calculate partial rank correlation coefficient (PRCC) values in Fig. 4b, c to
determine model sensitivity to individual parameters. To reduce the number of
parameters, we make the simplifying assumption that the competitive effect of stage
Nj on stage Ni is the same for all i; that is, we assume aj = aij for all i. To derive
the transition probabilities γi,S and γi,L in Table 4, we assume probabilities of a
stage N1 nymph reaching the adult class A in six or five instars when feeding on a
small or large host, respectively, and an equal probability of transitioning between
instars. We denote these probabilities by the parameters �S and �L.

From Fig. 4b, we observe that the equilibrium total tick density is most sensitive
to large host intraspecific competition and growth (kL and rL), baseline survivorship
of young nymphs (σg1 and σg2 ), and the ability of young nymphs to compete for
meals (α1). Since increasing either kL or kS decreases host density, these parameters
are negatively correlated with total tick density. From Fig. 4c, we note the time to
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reach the equilibrium total tick value is sensitive to parameters rL and kL, which
determine total large host density. It is also sensitive to the survival of adult and
stage N1 nymphs (σg1 and σgA

). If we assume a different initial condition for the
tick population, then these sensitivities may change. Specifically, if we consider
the cases where all individuals start in any one of the four stages, then the time to
equilibrium continues to be sensitive to rL and kL but its sensitivity to the survival
probabilities σgi

may change.

6 Discussion

Comparing model results in Fig. 3 and Table 3, we observe that the two models
predict similar equilibrium densities. However, while the equilibrium total tick
densities in both models are comparable, it takes approximately four times longer
for the discrete-time model to reach the equilibrium (that is, within 1% of the
equilibrium value) compared to the stabilizing time for the continuous-time model.
This is because the dynamics in the discrete-time model are slowed down by the
extra stages in the soft tick life cycle. Specifically, in the continuous-time model, it
is possible for a young tick to reach maturity in 1 week, while in the discrete-time
model, it requires a minimum of 4 or 6 weeks for newly emerged nymphal ticks
feeding on large or small hosts, respectively, to progress to adults. The discrete-time
model results in larger values of R0, the net reproductive number, with the difference
increasing for increased host densities. In particular, when only small hosts are
present and at carrying capacity, at low tick populations an adult tick produces 20%
more new ticks in the discrete-time model. Meanwhile, if both hosts are present
and at carrying capacity, then an adult tick produces 25% more new ticks. Since the
continuous-time model predicts higher tick densities, this suggests that the effect
of intraspecific competition is greater in the discrete-time model. Furthermore, the
models agree that R0, the net reproductive number, is greater than 1.0 even when
only small hosts are present. This implies that once these ticks are introduced, the
population will persist.

Little empirical data is available for soft ticks. Specifically, parameter estimates
for the majority of tick-host dynamics have not been measured in laboratory or field
experiments, and it is unclear if the data from tick life history lab experiments can
be applied directly to field conditions. Therefore, from the PRCC values provided
in Fig. 4, we can identify which life history parameters may be most important for
predicting population dynamics and should be the focus of future laboratory or field
studies. We observe that, for both models, tick density values are dependent upon
parameters determining host densities and intraspecific competition. In addition,
for the discrete-time model, tick density depends on certain survival rates and the
transition term �L. In general, we observe that tick density for the discrete-time
model appears to be more correlated with properties related to the large host than
the small host while the opposite is true for the continuous-time model.
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7 Conclusions and Future Directions

The two models presented here are the first such models developed to explore the
complex life history of soft ticks. One of the key findings through this effort is the
large number of data gaps in the published literature for what is known about O.
moubata, which is arguably one of the better studied soft tick species. These gaps
are not surprising given the complexities of natural history and laboratory studies
of species that can survive for many years without feeding and live up to 18 years.
While the models vary in the time to equilibria, both models suggest that it is nearly
impossible to eradicate these ticks in the presence of any suitable host. This raises
the need for constant vigilance to prevent accidental introduction of O. moubata to
new areas such as the USA [19].

These models are based on a soft tick, Ornithodoros moubata, that is of particular
economic concern in Europe and Africa because it is a competent vector of African
swine fever virus. The two models presented can now be extended to include the
dynamics of this disease. Those models can then be used to explore both current and
future control strategies. Additionally, the models have highlighted key biological
data that need to be gathered and published for better parameterization as well as
model validation. The models presented here are just the first steps in exploring the
dynamics of these complex, yet important, disease vectors.

8 Data Availability

All software used to simulate and analyze the presented models is available from
the corresponding author by request.

Acknowledgements The work described in this chapter was initiated during the Association for
Women in Mathematics collaborative workshop Women Advancing Mathematical Biology hosted
by the Mathematical Biosciences Institute (MBI) at Ohio State University in April 2017. Funding
for the workshop was provided by MBI, NSF ADVANCE “Career Advancement for Women
Through Research-Focused Networks” (NSF-HRD 1500481), Society for Mathematical Biology,
and Microsoft Research.

Appendix

Model Analysis of Continuous-Time Model

First, we prove that the solutions of the continuous-time model (4.3) and (4.4) are
well-posed.
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THEOREM 1 For any given N(0), A(0) ≥ 0, where both cannot be zero, the
solutions of (4.3) and (4.4) are positive and bounded.

Proof We first rewrite the model (4.3) and (4.4) as Ṅ = F1(N, A) and Ȧ =
F2(N, A), and find that if (N, A) ∈ R2+ ∪ (0, 0), then F1(0, A) ≥ 0 and
F2(N, 0) ≥ 0. Then, we apply Theorem A.4 in [34], and prove that solutions
of (4.3) and (4.4) are non-negative if the initial values are non-negative.

Next, for the boundedness, we let (N, A) ∈ R2+, adding up (4.3) and (4.4) yields

d (N + A)

dt
= (A1 − A8)A − A4N − A2N

2 − A6A
2 − (A3 + A7)NA. (1)

It yields d(N+A)
dt

< 0 with large positive values of N and A. Therefore, the value of
(N + A) is bounded. For notational simplicity, we denote parameters in model (4.3)
and (4.4) as follows:

A1 = bS S + bL L, A2 = cN

MSS+MLL
, A3 = αNA2, A4 = dN,

A5 = γSS + γLL, A6 = cA

MSS+MLL
, A7 = A6αA, A8 = dA.

(2)

��
Therefore, we focus on the system (4.3) and (4.4), which yields one tick-free

equilibrium E0 = (0, 0), and positive equilibrium: E1 = (N̄, Ā). Then, for E1, we
have

N̄ = N̄(A6Ā + A8)

A5 − A7Ā
, (3)

where Ā is determined by the following cubic equation:

F1(Ā) = C0Ā
3 + C1Ā

2 + C2Ā + C3. (4)

Here, Ci are in terms of Ai parameters in (2), as follows:

C0 = A2
6A2(αNαA − 1),

C1 = A6

[
(A1αA + A4 + A5)A6α2 − A2(A5αN + A8) + A8

C0

A2
6

]
,

C2 = −C3A6αA

A5
− A2A8(A5αN + A8) − (A1αA + A5 + A4)A5A6,

C3 = A5(A1A5 − A4A8 − A5A8).

(5)
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The local stability of the equilibrium solutions are determined by their correspond-
ing eigenvalues solved from the corresponding characteristic polynomial as follows:

P(λ) = λ2 + B1λ + B2,

B1 = (2A2 + A7)N̄ + (A3 + 2A6)Ā + A4 + A5 + A8,

B2 = 4A2A6N̄Ā + 2A2A7N̄
2 + 2A3A6Ā

2 + (A1A7 + A3A8)Ā

+(2A2A8 + A3A5)N̄+(A4 + A5)(A7N̄+2A6Ā)−A1A5+A4A8+A5A8 :
(6)

Evaluating P(λ) at E0 yields

P0(λ) = λ2 + B10λ + B20, where,

B10 = A4 + A5 + A8, B20 = −A1A5 + A4A8 + A5A8.
(7)

THEOREM 2 In original parameter values, we define a threshold as

B20 = −(LbL + SbS)(LγL + SγS) + (dN + LγL + SγS) dA or

R0 = LbL + SbS

dA

1
dN

LγL+SγS
+ 1

(8)

• when B20 > 0 or R0 < 1, the tick-free equilibrium E0 is locally asymptotically
stable,

• when B20 < 0 or R0 > 1, E0 becomes unstable, while the positive equilibrium
E1 emerges,

• when B20 = 0 or R0 = 1, a transcritical bifurcation occurs; moreover E0 and
E1 intersect and exchange stability.

Proof With all positive parameter values, the stability of E0 is easily derived from
P0(λ) = 0 in (7). Since C3 = −A5B20, we have C3 > 0 and C2 < 0, when B20 < 0.
Therefore, the cubic equation (4) has at least one positive solution, denoted by E1.
Moreover, evaluating P0(λ) = 0 at E1 yields B2|E1 = −B20fE1, where fE1 is in
terms of Ai parameters. Therefore, E1 has one zero eigenvalue when B20 = 0. This
proves the occurrence of the transcritical bifurcation. ��
THEOREM 3 With all positive parameter values and positive equilibrium solutions,
no Hopf bifurcation occurs.

Proof In (6), B1 is always positive with positive solutions (N, A) and positive
parameter values. Therefore, B1 = 0 does not occur; thus, the necessary condition
for a Hopf bifurcation is never satisfied for model (4.3)–(4.4). ��
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Model Analysis of Discrete-Time Model

In this section we examine the dynamics of the discrete-time model (5.3) assuming
constant host densities. Model (5.3) can be represented by the matrix equation

T(t + 1) = P(S(t), L(t), T(t))T(t),

where the projection matrix P(S,L, T) is given by
⎛
⎜⎜⎝

σs1 (S, L, T) 0 0 β(S, L, T)

σg1γ1(S, L, T) σs2 (S, L, T) 0 0
0 σg2γ2,Sf2,S(S, L, T) σsX (S, L, T) 0
0 σg2γ2,Lf2,L(S, L, T) σgX

γX(S, L, T) σsA (S, L, T)

⎞
⎟⎟⎠ . (9)

By the linearization principle [12], the extinction equilibrium T = 0 is stable when
the dominant eigenvalue of the inherent projection matrix P(S,L, 0) is less than
1 and unstable when it is greater than 1. Since the dominant eigenvalue and the
inherent net reproductive number R0 are on the same side of 1 [10], the same is true
in terms of R0.

The inherent net reproductive number of model (5.3) is given by

R0(S, L) = βγ1σg1σg2

(
γ2,Lf2,L(1 − σsX) + γ2,Sf2,SσgX

γX

)
(1 − σs1)(1 − σs2)(1 − σsX)(1 − σsA)

,

where the functional dependencies have been dropped to simplify notation and
all functions are evaluated at (S, L, 0). This value is defined to be the dominant
eigenvalue of the matrix F(I −U)−1, where F and U are obtained by decomposing
the projection matrix (9) into a fertility matrix F and a transition matrix U , so that
P = F + U [10]. Theorem 4 establishes the condition for tick persistence and
characterizes the behavior of model (5.3) in a neighborhood of R0 ≈ 1.

THEOREM 4 Assume S and L are constant.

(a) The extinction equilibrium T = 0 is globally asymptotically stable for
R0(S, L) < 1.

(b) For R0(S, L) > 1, the extinction equilibrium is unstable and system (5.3) is
permanent; that is, there exists a positive constant δ > 0 such that

δ ≤ lim
t→∞ inf |T(t)| ≤ lim

t→∞ sup |T(t)| ≤ 1

δ

for all solutions T(t) satisfying T(0) ∈ R4+ and |T(0)| > 0.
(c) For R0(S, L) > 1, a branch of positive equilibria bifurcates from the extinction

equilibria. The positive equilibria are locally asymptotically stable in the
neighborhood of R0(S, L) � 1.
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Proof

(a) By Theorem 1.1.3 of [10], R0 and the dominant eigenvalue of P(S,L, 0) are on
the same side of 1. Since the feeding functions (5.4) are decreasing functions
of tick density, P(S,L, T) ≤ P(S,L, 0) holds for all T ∈ R4+. Therefore,
by Theorem 1.2.1 of [10], the extinction equilibrium is globally asymptotically
stable for R0(S, L) < 1.

(b) Assume R0(S, L) > 1, then by Theorem B2 of [21], system (5.3) is permanent
if it is dissipative. Since all nonzero entries of projection matrix P are
decreasing functions of tick density, there exists a K > 0 such that for |T| > K ,
the sum of each row of P is less than 1, that is,

∑
i pij (S, L, T) < 1. By

Theorem B1 of [21], system (5.3) is dissipative.
(c) By Theorem 1.2.5 of [10], a branch of positive equilibria bifurcates from the

extinction equilibrium at R0(S, L) = 1. Since projection matrix P contains
only negative tick density effects, the bifurcation is forward; that is, the
positive equilibria exist for R0(S, L) � 1. Since the bifurcation is forward,
by Theorem 1.2.6 of [10], the equilibria are stable in a neighborhood of
R0(S, L) � 1. ��
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