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a b s t r a c t 

The clearance of tuberculosis infection shows an elimination of infectious Mycobacterium 

tuberculosis (Mtb) pathogens and infected macrophage cells. The evidence shows the exis- 

tence of individuals, who are still tested negative in tuberculin skin test after living with 

people with active tuberculosis for up to six months. Since the Mtb pathogen is spread 

from person to person through airborne particles, we build a continuous-time Markov 

chain (CTMC) model to describe the initial infection with small amount of inhaled bacte- 

ria. The CTMC model successfully simulates sample paths presenting disease clearance. We 

apply the theory of multitype branching processes to analytically approximate the proba- 

bility of disease clearance. We also estimate the disease clearance time, which is as less 

than a month for R 0 ∈ [1 , 1 . 5] . Our results demonstrate that the host immune factors affect 

both the probability and the time of the disease clearance. These relationships are linked 

by the basic reproduction number R 0 . Our findings provide new mechanisms for disease 

prevention and therapy developments. 

© 2021 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

1. Introduction 

Mycobacterium tuberculosis (Mtb) is one of the most deadly infectious disease globally in 2020. Even though antibiotic 

treatments were invented around 80 years ago, Mtb bacteria are still not completely eradicated due to the emergence of 

drug-resistant and multidrug-resistant strains. Restricted by traditional antibiotic therapies, researchers currently focus on 

epidemiological evidences, which suggest that the host immune system is able to naturally eradicate the Mtb infection [18] .

If the clearance occurs before the mount of adaptive immune responses, it is called as early clearance. If the clearance

happens after the development of adaptive immune responses, it is referred to as delayed clearance [18] . In both clearance

cases, the Mtb bacteria and infected macrophages (Mtb main target cells) are removed completely in a period of time after

the inhalation of droplet nuclei carrying a small amount of Mtb bacteria. Moreover, the evidence demonstrates that a heavy 

exposure to Mtb bacteria does not guarantee the development of Mtb infection. For example, in a US naval ship, 13 sailors

showed negative results in tuberculin skin test after living in the same cabin with seven others with TB disease for 6 months

[12] . A better understanding of the immunological mechanisms underpinning the natural disease clearance could give new 

insights in both disease prevention and therapeutic development. 

Mathematical modeling is a useful tool to understand the complex mechanisms of the host-Mtb interactions and predict 

the future of the disease. In population dynamics, the fate of an invading infectious disease is determined by the basic re-
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production number R 0 , which is the “ expected number of secondary cases produced by a typical infected individual during 

its entire period of infectiousness in a completely susceptible population” [6] . R 0 provides a good prediction in deterministic 

models for the case with large susceptible and infectious populations [4] . The invading disease dies out if R 0 < 1 and spreads

if R 0 > 1 . However, if the epidemic starts with a small number of infectious individuals, the deterministic threshold R 0 is not

applicable to predict the disease destiny [4] . Whittle showed that there exists a positive probability for a minor outbreak

when R 0 > 1 [20] . That indicates that the invading disease won’t become endemic, but will eventually die out after a minor

outbreak. In this situation, a continuous-time Markov chain (CTMC) model can be more realistic than the corresponding ODE 

model [4] . This is because the CTMC model is able to demonstrate a finite time disease extinction, while the ODE model can

only predict the disease extinction as the time goes to infinity. Moreover, the disease extinction threshold from CTMC model 

not only depends on the basic reproduction number R 0 , but also relates to the number of the initial infectious individuals.

This stochastic disease extinction threshold is derived from the theory of branching processes [3,4] . Its applications range 

from population-level models [8,19] to cellular-level model [22] . 

For Mtb-host dynamics, in-host models have been used to understand the complex host-pathogen interactions, reveal 

the determining factors for the various TB disease outcomes, and provide potential new therapies [9,11,14–16,21] . Most of 

these models are in the deterministic forms. To model the initial infection with a limited amount of infectious bacteria, 

a CTMC model is more realistic and appropriate compared to deterministic models. A CTMC model can predict the finite 

disease clearance through the theory of branching processes. Specifically, CTMC models can compute the probability of 

early clearance when R 0 > 1 after an initial exposure to small amount of Mtb bacteria, while the disease extinction won’t

happen in deterministic model when R 0 > 1 . Moreover, the disease extinction occurs at the infinite time in deterministic

models, but at a finite time in CTMC models. Since not only environmental and pathogen factors, but also host factors

affect the basic reproduction number R 0 , modifying host factors can increase the probability of clearance and decrease the 

time to reach clearance. This helps to develop potential novel host-direct therapies [17,18] . Moreover, disease clearance, 

especially early clearance, is an actual example of protective immunity against Mtb and could give new insights into vaccine 

development. For these reasons, disease clearance should be a focus of tuberculosis research. Through branching process 

theory, a CTMC model is an appropriate mathematical approach to study the problem of the disease clearance after an initial

exposure. 

The rest of the paper is organized as follows. In Section 2 , we introduce an established in-host Mtb dynamics model

and its basic properties [7] . In Section 3 , we carry out a unit conversion procedure, which transforms the units of the state

variables from cell concentrations to numbers of cell populations. In Section 4 , we build a CTMC model, which corresponds

to the ODE model, that describes multitype stochastic processes with continuous time variable and discrete state variables. 

We further derive the corresponding forward Kolmogorov differential equation from the infinitesimal transition probabilities. 

Moreover, we plot simulated sample paths to show the existence of disease clearance when R 0 > 1 . In Section 5 , we derive

the approximated probability of disease clearance through multitype branching processes. The clearance probability derived 

from analytical approach matches well with that calculated from numerical simulations. Furthermore, we investigate the 

probability distribution of the clearance time through numerical simulation. Finally, in Section 6 we present our conclusions 

and a discussion. 

2. ODE Tuberculosis in-host model 

The dynamics of the host immune response against Mtb infection happen in lung tissue. The major elements of the 

host-pathogen interactions involve the Mtb pathogen population, the Mtb ideal target cell population macrophage, and the 

adaptive immune cell population T lymphocytes. The 4-dimensional model (2.1) describing the dynamics is written as fol- 

lows: 

d[ M u ] 

dt 
= s M 

− μM 

[ M u ] − β[ M u ][ B ] 

d[ M i ] 

dt 
= β[ M u ][ B ] − b[ M i ] − γ [ M i ] 

[ T ] / [ M i ] 

[ T ] / [ M i ] + c 

d[ B ] 

dt 
= δ[ B ] 

(
1 − [ B ] 

[ K] 

)
+ [ M i ] 

(
N 1 b + N 2 γ

[ T ] / [ M i ] 

[ T ] / [ M i ] + c 

)
− [ M u ][ B ](η + N 3 β) 

d[ T ] 

dt 
= s T + 

c M 

[ M i ][ T ] 

e M 

[ T ] + 1 

+ 

c B [ B ][ T ] 

e B [ T ] + 1 

− μT [ T ] . 

(2.1) 

Here, [ M u ] , [ M i ] , [ B ] and [ T ] denote the cell concentrations of the uninfected and infected macrophages, Mtb bacteria and

CD4+ T cells. 

The initiation of Mtb infection happens when Mtb bacteria are inhaled in the respiratory tract, particularly the lung 

(pulmonary TB) and taken up by resident alveolar macrophages. Before engulfing the invading bacteria, the macrophages 

are assumed to be uninfected and have recruitment and death rates s M 

and μM 

, respectively. The phagocytizing process is 

assumed to turn uninfected macrophages into infected with an infection rate β . The number of bacteria phagocytized by 
2 
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one uninfected macrophage is N 3 . Without sufficient stimuli for activation, infected macrophages fail to kill the engulfed 

bacteria. The phagocytized Mtb bacteria then undergo reproduction, which leads to the loss of the infected macrophages 

due to an excessive bacterial load or the programmed cell death. The loss rate of infected macrophages is b. The infected

macrophages can also be removed out of the system by the T-cell mediated immune response. The killing is carried out by

cytotoxic T cells (CD8+ T cells), which are activated by T helper cells (CD4+ T cells). The killing rate of CD8+ T cell depends

on the ratio of CD4+ T cell load and infected macrophage load ( [ T ] / [ M i ] ), with a maximum killing rate γ and a [ T ] / [ M i ]

half-saturation ratio c. The bacterial influx to the system has two main sources. One is bacterial reproduction, which is 

modeled as a logistic term δ[ B ](1 − [ B ] / [ K]) . Here δ and K denote the maximum growth rate and the carrying capacity. The

bacterial release from the death of infected macrophages is another way. The numbers of bacteria released by cell bursting 

and programmed cell death and by T-cell mediated immune responses are assumed as N 1 and N 2 , respectively. On the other

hand, if immune cells receive adequate stimulation, infected macrophages can also kill the phagocytized bacteria. The rate 

is assumed as η. Note that the Mtb population is comprised of extracellular and intracellular subpopulations. The growth 

of the extracellular subpopulation is caused by (1) extracellular bacteria division ( δ[ B ](1 − [ B ] / [ K]) ) and (2) intracellular

bacteria release from infected macrophages programmed cell death ( b[ M i ] N 1 ) and infected macrophages killed by T-cell

responses ( [ M i ] N 2 γ
[ T ] / [ M i ] 

[ T ] / [ M i ]+ c ). Extracellular Mtb leave the system because of uninfected macrophages killing ( η[ M u ][ B ] ) or

the phagocytosis process to become intracellular ( βN 3 [ M u ][ B ] ). For the T-cell mediated immune responses, the role of CD8+

T cells can be modeled as a ratio of CD4+ T cells and infected macrophages. Then, instead of explicitly modeling CD8+ T cell

population, we only consider the dynamics of CD4+ T cells. The recruitment and death rates of CD4+ T cells are denoted

as s T and μT , respectively. The maximum activation rates of CD4+ T cells by Mtb bacteria and infected macrophages are

assumed as c B and c M 

. The saturating factors for these two activation processes are e B and e M 

. 

A comprehensive analysis of model (2.1) was carried out in Zhang et al. [25] . The results show the existence of disease-

free equilibrium E 0 = ([ M u ] 0 , [ M i ] 0 , [ B ] 0 , [ T ] 0 ) = (s M 

/μM 

, 0 , 0 , s T /μT ) . The local and global stability of E 0 are summarized

as follows: 

Theorem 1 ( [25] ) . Under the condition b + γ + 

s M 
μM 

( N 3 β + η) > δ, the disease free equilibrium E 0 is locally asymptotically sta-

ble if R 0 < 1 and unstable if R 0 > 1 . Furthermore, there exists a M 

max 
u = [ βs M 

(N 1 b + N 2 γ ) / (bμM 

) + δ] / (η + N 3 β) , such that if

[ M u ] ≥ M 

max 
u and R 0 < 1 , E 0 is globally stable. Here, R 0 is the basic reproduction number 

R 0 = ρ(F V 

−1 ) = 

δμM 

2 s M 

(N 3 β + η) 
+ 

1 

2 

[
δ2 μ2 

M 

s 2 
M 

(N 3 β + η) 2 
+ 

4 β(N 1 b + N 2 γ ) 

(N 3 β + η)(b + γ ) 

]1 / 2 

, (2.2) 

where 

F = 

[ 

0 

βs M 

μM 

N 1 b + N 2 γ δ

] 

and V = 

[ 

b + γ 0 

0 

s M 

μM 

(N 3 β + η) 

] 

. (2.3) 

Formula (2.2) suggests that R 0 has a positive relationship with the death rate of uninfected macrophage μM 

, the Mtb

proliferation rate δ, and the numbers of intracellular bacteria released from the death of an infected macrophage N 1 (burst-

ing and programmed cell death) and N 2 (T-cell mediated immune responses). Eq. (2.2) also suggests negative relationships 

between R 0 and the death rate of the phagocytized Mtb bacteria η, the number of Mtb bacteria engulfed by an uninfected

macrophage N 3 , and the uninfected macrophage recruitment rate s M 

. 

3. Unit conversion 

Mtb bacteria are transmitted from person to person through droplet nuclei, which each contains a limit number of 

bacteria. Since the numbers of inhaled Mtb bacteria and infected macrophages at the initiation of the infection are small, 

predictions of the ODE model are not valid. In this setting, branching process theory is more suitable to make reasonable

predictions. Moreover, in the case of an exponentially distributed interevent time, the continuous-time branching process is a 

continuous-time Markov chain. A continuous-time branching process considers discrete random variables for the number of 

considered cell populations. However, the state variables in the in-host tuberculosis model (2.1) present the corresponding 

cell concentrations in the unit per millimeter ( ml ). Therefore, for the stochastic processes, the random variables must be 

transformed from concentrations to the numbers of cell population. We first consider the volume of lung tissue, since the 

tuberculosis infection dynamics take place within the lung. The mean lung tissue volume of single lungs is estimated as 

 = 431 ml by Denison et al. [5] . Then the numbers of uninfected and infected macrophages, Mtb bacteria, and CD4+ T cell

population in a single lung tissue are M u = V [ M u ] , M = V [ M ] , B = V [ B ] , and T = V [ T ] . The in-host tuberculosis model in the
i i 

3 



W. Zhang Applied Mathematics and Computation 413 (2022) 126614 

 

 

 

 

 

 

new variables are written as 

dM u 

dt 
= s M 

V − μM 

M u − β

V 

M u B 

dM i 

dt 
= 

β

V 

M u B − bM i − γ M i 

T /M i 

T /M i + c 

dB 

dt 
= δB 

(
1 − B 

K V 

)
+ M i 

(
N 1 b + N 2 γ

T /M i 

T /M i + c 

)
− M u B ( 

η

V 

+ N 3 
β

V 

) 

dT 

dt 
= s T V + 

c M 

V 

M i T 
e M 
V 

T + 1 

+ 

c B 
V 

B T 
e B 
V 

T + 1 

− μT T . 

(3.1) 

Eq. (3.1) yields new constant rates to replace the original parameters, s M 

, β , K, η, s T , c M 

, c B , e M 

, and e B in (2.1) 

˜ s M 

= s M 

V, ˜ β = 

β

V 

, ˜ K = K V, ˜ η = 

η

V 

, ˜ s T = s T V, 

˜ c M 

= 

c M 

V 

, ˜ c B = 

c B 
V 

, ˜ e M 

= 

e M 

V 

, ˜ e B = 

e B 
V 

. 

(3.2) 

4. Continuous-time Markov chain 

For a better prediction, we employ a continuous-time Markov chain (CTMC) model in the case that a few Mtb bacteria

are inhaled after initial infection. Let M u (t) , M i (t) , B (t) , and T (t) denote discrete-valued random variables for the number of

uninfected macrophages, infected macrophages, Mtb bacteria, CD4+ T cells at a time t ∈ [0 , ∞ ) . Here, time is a continuous

variable and parameters are taken as in the ODE model (3.1) from Table 1 . Assuming a time-homogeneous CTMC model has

only one event happening in a sufficient small-time period � t > 0 , the infinitesimal transition probability associated with 

the stochastic process is defined as 

Prob { (�M u (t) , �M i (t) , �B (t) , �T (t)) = (�u, �i, � j, �v ) | (M u (t) , M i (t) , B (t) , T (t)) = (u, i, j, v ) } 
= p k (u, i, j, v ) �t + o(�t) := P (u, i, j, v ) . 

where p k (u, i, j, v ) for k = 1 , . . . , 11 are infinitesimal transition rates corresponding to the eleven distinct events forming

this CTMC model. p k (u, i, j, v ) s are provided in Table 2 . Here, we assume the CTMC model satisfies the Markov property. For

example, the probability of the infection of an uninfected macrophage in a small period of time �t is 

Prob { (−1 , 1 , 0 , 0) | (M u (t ) , M (t ) , B (t ) , T (t )) } = p 3 (u, i, j, v )�t + o(�t) = 

˜ β M u (t ) B (t ) �t + o(�t ) . 
i 

Table 1 

Parameter symbol, descriptions, and values by Gammack et al. [9] , Marino and Kirschner 

[15] , Wigginton and Kirschner [21] . 

Sym. Description (Unites) Value 

V lung volume 431 

˜ s M recruitment rate of uninfected macrophages (1/ day) 1 . 16 V 

˜ s T T-cell recruitment rate (1/ day) 0 . 0153 V 

μM death rate of uninfected macrophages (1/day) 0.01 

b loss rate of infected macrophages (1/day) 0.11 

μT T-cell death rate (1/day) 0.33 
˜ β infection rate caused by Mtb bacteria (1/day) 8 . 26 × 10 −5 / V 

˜ η bacteria killing rate by uninfected macrophages (1/day) 1 . 25 × 10 −8 / V 

γ T-cell killing rate (1/day) 1.5 

δ Mtb bacterial proliferation rate (1/day) 5 × 10 −4 

˜ c M T-cell activation rate induced by M i (1/day) 0 . 4 V 

˜ c B T-cell activation rate induced by B (1/day) 2 . 0 V 

˜ e M saturating factor of T-cell activation related to M i 0 . 04 / V 

˜ e B saturating factor of T-cell activation related to B 0 . 04 / V 

c half-saturation ratio for the death of M i ( T /M i ) 3 
˜ K Mtb bacterial carrying capacity 10 5 V 

N 1 max No. of Mtb released by programmed cell death ( B/M i ) 50 

N 2 max No. of Mtb released by T-cell killing ( T /M i ) 20 

N 3 N 3 = N 1 / 2 ( B/M i ) 25 

M u number of uninfected macrophages 

M i number of infected macrophages 

B number of Mtb bacteria 

T number of CD4 T-cells 

4 
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Table 2 

Infinitesimal transition rates for the CTMC model (MC Rate) and for the approximating branching process for infected 

macrophages and Mtb bacteria (BP Rate). 

Event Transition MC Rate p k (u, i, j, v ) BP Rate ˜ p k Description 

1 M u → M u + 1 ˜ s M – M u influx 

2 M u → M u − 1 μM M u – M u death 

3 M u → M u − 1 M i → M i + 1 ˜ βM u B ˜ βM u B M u infected by Mtb 

4 M i → M i − 1 B → B + N 1 bM i bM i programmed cell death of M i 

5 M i → M i − 1 B → B + N 2 γ M i 
T/M i 

T/M i + c γ M i M i killed by T cells 

6 B → B + 1 δB (1 − B/ ̃ K ) δB Mtb reproduction 

7 B → B − 1 M u B ( ̃ η + N 3 ̃  β) M u B ( ̃ η + N 3 ̃  β) Mtb engulfed by M u 

8 T → T + 1 ˜ s T – T-cell influx 

9 T → T + 1 
˜ c M M i T 

˜ e M T + 1 
– T-cell activation by M i 

10 T → T + 1 
˜ c B BT 

˜ e B T + 1 
– T-cell activation by Mtb 

11 T → T − 1 μT T – T-cell death 

 

 

 

 

 

 

 

 

 

 

 

 

The forward Kolmogorov differential equation can be derived from the infinitesimal transition probabilities as follows 

dP 

dt 
(u, i, j, v ) = 

˜ s M 

P (u − 1 , i, j, v ) + μM 

(u + 1) P (u + 1 , i, j, v ) 

+ b i P (u, i + 1 , j − N 1 , v ) + γ (i + 1) 
v / (i + 1) 

v / (i + 1) + c 
P (u, i + 1 , j − N 2 , v ) 

+ δ ( j − 1)(1 − j − 1 

˜ K 

) P (u, i, j − 1 , v ) + u ( j + 1)( ̃  η + N 3 ̃
 β) P (u, i, j + 1 , v ) 

+ ̃

 s T P (u, i, j, v − 1) + 

˜ c M 

i (v − 1) 

˜ e M 

(v − 1) + 1 

P (u, i, j, v − 1) 

+ 

˜ c B j (v − 1) 

˜ e B (v − 1) + 1 

P (u, i, j, v − 1) + 

˜ β(u + 1) j P (u + 1 , i − 1 , j, v ) 

+ μT (v + 1) P (u, i, j, v + 1) − ∑ 11 
k =1 p k (u, i, j, v ) P (u, i, j, v ) . 

The analytical solution of the preceding forward Kolmogorov differential equation is difficult to find. Numerically simulated 

sample paths (stochastic realizations) are feasible to obtain for a multivariate process. We apply the Gillespie algorithm 

[10] for the simulation of the CTMC model. Two uniform random numbers, u 1 , u 2 , ∈ U[0 , 1] , are generated for the changes

in the interevent time and one of the eleven events. The interevent time τ follows an exponential distribution, i.e., τ has 

a probability density function as λ exp −λ t , where λ = 

∑ 11 
k =1 p k (u, i, j, v ) and τ = − ln u 1 /λ. For the second random variable

u 2 , if u 2 ∈ ( 
∑ i −1 

k =1 
p k , 

∑ i 
k =1 p k ] , then the i th-event occurs. 

A comparison of stochastic realizations and the solution of ODE model (2.1) is illustrated by numerical simulations in 

Fig. 1 . We take the basic reproduction number R 0 = 2 . The analytical results by Zhang [24] suggests that the Mtb infection

will develop to an active disease, since R 0 > 1 . This analytical prediction from the deterministic model is confirmed by the

exponentially growing populations of infected macrophage and Mtb bacterium in the first 90 days after initial infection. For 

the simulation of the CTMC model, four sample paths closely follows the ODE solution, while one sample path (in green) hits

M i = 0 and B = 0 (the disease clearance state), which is the absorbing state. Therefore, the CTMC model indicates a positive

possibility of the occurrence of disease clearance after initial infection when the basic reproduction number is greater than 

one. 

5. Branching process approximations 

In this section, we apply multitype branching process theory to study disease clearance. After an initial Mtb invasion 

with a small amount of inhaled bacteria, we assume that the immune system has normal levels of immune cells. That is, the

uninfected macrophages and T cells are assumed to be at steady states, i.e., M u (t) = M̄ u and T (t) = T̄ . Linear approximation

of the CTMC near the disease-free equilibrium leads to multitype branching processes in terms of the infected macrophages 

and Mtb bacteria, M i (t) and B (t) . Here, the two nonnegative integers M i (t) and B (t) take discrete random variables for

t ∈ [0 , ∞ ) . Assume that each infected macrophage cell and Mtb bacterium evolve independently of each other and the

future states of the stochastic process do not depend on the history, the changes of M i (t) and B (t) near the disease-free

equilibrium are summarized as BP Rates in Table 2 . 

For the case with only one infected macrophage cell M i (t) = 1 , events 3, 4, 5, and 6 in Table 2 happen. Given M i (t) = 1

and B (t) = 0 , the offspring probability generating function (pgf) for M i (t) is 

f 1 (u 1 , u 2 ) = 

1 

λ1 

(
˜ p 3 u 1 + 

˜ p 4 u 

N 1 
2 

+ 

˜ p 5 u 

N 2 
2 

+ 

˜ p 6 u 1 u 2 

)
= 

b u 

N 1 
2 

+ γ T̄ u 

N 2 
2 

b + γ T̄ 
, (5.1) 
5 
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Fig. 1. Five sample paths (in color) of the CTMC model vs. the solution (in black) of the corresponding ODE model (2.1) . The sample path in green color 

demonstrates the disease clearance (extinction). R 0 (γ ) = 2 . 0 and all the other parameter values are provided in Table 1 . Initial values for five sample path 

and one ODE solution are taken as M u = 500 , M i = 1 , B = 1 , and T = 10 0 0 . (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.) 

 

 

 

 

 

where 

˜ p 3 (1 , 0) = 

˜ βM̄ u B | { (M i ,B )=(1 , 0) } = 0 , 

˜ p 4 (1 , 0) = bM i | { (M i ,B )=(1 , 0) } = b, 

˜ p 5 (1 , 0) = γ T̄ , since γ B 

T̄ 

T̄ + c B 

| { (M i ,B )=(1 , 0) } = γ T̄ + o( ̄T ) , 

˜ p 6 (1 , 0) = δ B = 0 , since δ B 

(
1 − B 

˜ K 

)
= δ B + o(B ) , 

λ1 = 

∑ 6 
i =3 ˜ p i = b + γ T̄ . 

(5.2) 

In the case of an initial infection with only one infected macrophage, i.e. M i = 1 , there are only two events, this infected

M i is killed either by the overloaded intracellular bacteria with probability b/λ and releases the number of N 1 Mtb bacteria

or by cell-mediated immunity with probability γ T̄ / ( ̄T + c) /λ1 and releases the number of N 2 Mtb bacteria. Note that the

terms u 
N 1 
2 

and u 
N 2 
2 

mean one infected M i dies and release N 1 and N 2 bacteria, which depend on the way of death. That is

u 2 is raised to the power of N 1 or N 2 , respectively. 

For the case with only one Mtb bacterium cell, i.e. M i (t) = 1 , events 3, 6, and 7 in Table 2 occur. Given M i (t) = 0 and

B (t) = 1 , the offspring probability generating function (pgf) for B (t) is 

f 2 (u 1 , u 2 ) = 

1 

λ2 

(
˜ p 3 u 2 + 

˜ p 6 u 

2 
2 + 

˜ p 7 
)

= 

˜ βM̄ u u 1 u 2 + δ u 

2 
2 + M̄ u ( ̃  η + N 3 ̃

 β) 

˜ βM̄ u + δ + M̄ u ( ̃  η + N 3 ̃
 β) 

(5.3) 
6 
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where, 

˜ p 3 (0 , 1) = 

˜ βM̄ u B | { (M i ,B )=(0 , 1) } = 

˜ βM̄ u , 

˜ p 6 (0 , 1) = δ, 

˜ p 7 (0 , 1) = M̄ u ( ̃  η + N 3 ̃
 β) B | { (M i ,B )=(0 , 1) } = M̄ u ( ̃  η + N 3 ̃

 β) 

λ2 = 

˜ p 3 + 

˜ p 6 + 

˜ p 7 = 

˜ βM̄ u + δ + M̄ u ( ̃  η + N 3 ̃
 β) . 

(5.4) 

Next, we drive the differential equations for the probabilities of disease clearance. Following the derivation in Allen [3] ,

let p (i, j) , (l,m ) be the transition probability for M i (t) and B (t) 

p (i, j) , (l,m ) (�t) = P rob { ( M i (t + �t) , B (t + �t) ) = (l, m ) | (M i (t ) , B (t ) = (i, j) } . 
The generating function G (i, j) for infected macrophage cells and Mtb bacteria has the following relation 

G (i, j) (u 1 , u 2 , t) = 

∑ 

l,m 

p (i, j) , (l,m ) u 

l 
1 u 

m 

2 = 

[
G (1 , 0) (u 1 , u 2 , t) 

]i [
G (0 , 1) (u 1 , u 2 , t) 

] j 
. (5.5) 

The transition probability for M i (t) and B (t) have the following backward Kolmogorov differential equation 

dp (i, j) , (l,m ) (t) 

dt 
= 

˜ β M̄ u j p (i +1 , j) , (l,m ) (t) + b i p (i −1 , j+ N 1 ) , (l,m ) + γ i p (i −1 , j+ N 2 ) , (l,m ) (t) 

δ j p (i, j+1) , (l,m ) (t) + M̄ u ( ̃  η + N 3 
˜ β) j p (i, j−1) , (l,m ) (t) 

−
[

˜ β M̄ u j + b i + γ i + δ j + M̄ u ( ̃  η + N 3 
˜ β) j 

]
p (i, j) , (l,m ) (t) 

(5.6) 

For the two cases (i, j) = (1 , 0) and (i, j) = (0 , 1) , substituting (5.6) into (5.5) and taking the derivative in terms of time t ,

we obtain 

∂G (i, 0) 

dt 
= i 

[
G (1 , 0) (u 1 , u 2 , t) 

]i −1 ∂G (1 , 0) 

dt 
⇒ 

∂G (1 , 0) 

dt 
= 

∑ 

(l,m ) 

dp (i, 0) , (l,m ) (t) 

dt 
u 

l 
1 u 

m 

2 

i G (i − 1 , 0) 

∂G (0 , j) 

dt 
= j 

[
G (0 , 1) (u 1 , u 2 , t) 

] j−1 ∂G (0 , 1) 

dt 
⇒ 

∂G (0 , 1) 

dt 
= 

∑ 

(l,m ) 

dp (0 , j) , (l,m ) (t) 

dt 
u 

l 
1 u 

m 

2 

j G (0 , j − 1) 
, 

which are originally derived in Allen [3] . Simplifying the preceding equations yields 

∂G (1 , 0) 

dt 
= 

(
b + γ T̄ 

)
[ f 1 (G (1 , 0) , G (0 , 1)) − G (1 , 0) ] 

∂G (0 , 1) 

dt 
= 

[
˜ βM̄ u + δ + M̄ u ( ̃  η + N 3 ̃

 β) 
]
[ f 2 (G (1 , 0) , G (0 , 1)) − G (0 , 1) ] . 

(5.7) 

Substituting G (1 , 0) (0 , 0 , t) = p (1 , 0) , (0 , 0) and G (0 , 1) (0 , 0 , t) = p (0 , 1) , (0 , 0) to the preceding equations, the stationary solutions

satisfy, 

f 1 (p (1 , 0) , (0 , 0) (t) , p (0 , 1) , (0 , 0) (t)) = p (1 , 0) , (0 , 0) (t) , f 2 (p (1 , 0) , (0 , 0) (t) , p (0 , 1) , (0 , 0) (t)) = p (0 , 1) , (0 , 0) (t) , (5.8)

which are the fixed points of offspring pgfs (5.1) and (5.3) . 

5.1. Fixed points of offspring pgfs and their stability 

According to the theory of multitype branching processes, the probability of disease clearance can be approximated by 

the fixed points of the offspring pgfs (5.1) and (5.3) . Letting p (1 , 0) , (0 , 0) (t) = u 1 , p (0 , 1) , (0 , 0) (t) = u 2 , (5.8) is rewritten as 

b u 

N 1 
2 

+ γ T̄ u 

N 2 
2 

b + γ T̄ 
= u 1 , 

˜ βM̄ u u 1 u 2 + δ u 

2 
2 + M̄ u ( ̃  η + N 3 ̃

 β) 

˜ βM̄ u + δ + M̄ u ( ̃  η + N 3 ̃
 β) 

= u 2 . (5.9) 

The first equation of (5.9) derives that 

u 1 (u 2 ) = 

(b u 

N 1 
2 

+ γ u 

N 2 
2 

) 

b + γ
. (5.10) 
7 
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Substituting (5.10) to the second equation of (5.9) yields 

h (u 2 ) = M̄ u b ˜ β u 

N 1 +1 
2 

+ M̄ u 
˜ β γ u 

N 2 +1 
2 

+ δ (b + γ ) u 

2 
2 

−(b + γ ) { [(N 3 + 1) ˜ β + ˜ η] M̄ u + δ} u 2 + M̄ u (N 3 
˜ β + ˜ η) (b + γ ) 

= 0 . 

(5.11) 

With positive parameters for CTMC model, the total number of sign changes from one coefficient to another in the polyno-

mial (5.11) is two. Then, according to Descartes’ rule of signs, the number of positive roots of (5.11) is two if the positive root

exists. Notice that h (1) = 0 , if h ′ (1) > 0 there exist a ˜ u 2 ∈ (1 − ε, 1) , 0 < ε � 1 , such that h ( ̃  u 2 ) < 0 . Because of h (0) > 0 we

have at least another root in the interval (0 , ̃  u 2 ) ∈ (0 , 1) . h ′ (1) > 0 is verified as follows. First we have 

dh 

du 2 

= M̄ u u 

N 1 
2 

(N 1 + 1) b ˜ β + M̄ u u 

N 2 
2 

(N 2 + 1) ˜ β γ + 2 (b + γ ) [ (
−1 

2 

N 3 
˜ β − 1 

2 

˜ β − 1 

2 

˜ η
)

M̄ u + δ
(

u 2 − 1 

2 

)] 
. 

Evaluating the preceding equation at M̄ u = 

s M 
μM 

and u 2 = 1 yields 

dh 

du 2 

| u 2 =1 = [(N 2 − N 3 ) γ + b (N 1 − N 3 )] ˜ β
s M 

μM 

− ˜ η (b + γ ) 
s M 

μM 

+ δ (b + γ ) . (5.12)

Recalling the expression of R 0 in (2.2) , when R 0 = 1 , we have 

δ = δ0 := − s M 

μM 

[
(N 2 − N 3 ) γ ˜ β + (N 1 − N 3 ) b ˜ β

b + γ
− ˜ η

]
, 

dh 

du 2 

| u 2 =1 ,δ= δ0 
= 0 . 

(5.13) 

Observing (2.2) and (5.12) , we find that δ has a positive relationship with R 0 and h ′ (u 2 ) . Thus, h ′ (1) > 0(= 0 , < 0) if

R 0 > 1(= 1 , < 1) . Moreover, if u 2 ∈ (0 , 1) , then u 1 ∈ (0 , 1) according to expression (5.10) . We summarize the results in the

following theorem. 

Theorem 2. The offspring pgfs (5.1) and (5.3) always have a positive fixed point at (u 1 , u 2 ) = (1 , 1) . Moreover, if R 0 > 1 , another

fixed point exists and (u 1 , u 2 ) ∈ (0 , 1) × (0 , 1) . 

Recall that the fixed points of offspring pgf s (5.1) and (5.3) are also stationary solutions of the backward Kolmogorov

differential Eq. (5.7) . Their stability is determined by the eigenvalues of the Jacobian matrix J = W (M − I) in Allen [1] , [2] ,

and [3] . Here, W is diag(λ1 , λ2 ) , I is the 2 × 2 identity matrix, and M is the expectation matrix associated with the offspring

pgfs (5.1) and (5.3) and evaluated at (u 1 , u 2 ) = (1 , 1) . W and M are calculated as 

W = 

[
λ1 0 

0 λ2 

]
= 

[
b + γ T̄ 0 

0 

˜ βM̄ u + δ + M̄ u ( ̃  η + N 3 ̃
 β) , 

]
, 

M = 

⎡ 

⎢ ⎣ 

0 

N 1 b + N 2 γ

b + γ
˜ β M̄ u 

˜ β M̄ u + δ + M̄ u (N3 

˜ β + η) 

M̄ u 
˜ β + 2 δ

˜ β M̄ u + δ + M̄ u (N 3 
˜ β + δ) 

⎤ 

⎥ ⎦ 

. 

(5.14) 

We denote the largest real part of the eigenvalue of the Jacobian matrix J = W (M − I) as s (J) , which determines the stability

of the stationary solution of the offspring pgfs. Following [2] , the branching process is subcritical, critical, or supercritical,

if s (J) < 0 , s (J) = 0 , or s (J) > 0 , which is equivalent to ρ(M) < 1 , ρ(M) = 1 , or ρ(M) > 1 . Here ρ(M) denotes the spectral

radius of M. Furthermore, it is proven by [2] that ρ(M) < 1 ( = 1 , > 1 ) is equivalent to R 0 < 1 ( = 1 , > 1 ). We verify that the

irreducible matrix M in (5.14) and nonsingular M-matrix V in (2.2) satisfy the following relationship 

J = W (M − I) = 

⎡ 

⎢ ⎢ ⎣ 

−b − γ
˜ βs M 

μM 

N 1 b + N 2 γ δ − s M 

μM 

(N 3 ̃
 β + ˜ η) , 

⎤ 

⎥ ⎥ ⎦ 

= F − V, 

where we take the matrix F and V in (2.3) . For the multitype branching processes approximation, we denote the smallest

fixed point of the offspring pgfs as (u 1 , u 2 ) ∈ (0 , 1] × (0 , 1] . Given the initial infection with (M i (0) , B (0)) = (k 1 , k 2 ) , an

estimation of the probability of disease clearance is 

P clearance = u 

k 1 
1 

u 

k 2 
2 

. (5.15) 

For the case R 0 < 1 , there exists an unique fixed point (u 1 , u 2 ) = (1 , 1) , such that P clearance | (1 , 1) = 1 . For the case R 0 > 1 ,

there exists another fixed point (u 1 , u 2 ) ∈ (0 , 1) × (0 , 1) , such that 0 < P clearance | (u , u ) < 1 . 

1 2 
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5.2. Approximated probability of disease clearance 

Applying the theory of the multitype branching processes, the approximated probability of disease clearance is denoted 

in (5.15) . 

To gain understanding of the disease clearance with the change of the basic reproduction number R 0 , we rewrite γ in

terms of R 0 based on (2.2) 

γ = γ0 (R 0 ) := b 
˜ s M 

(N 3 
˜ β − ˜ η) R 

2 
0 − δ ˜ μM 

R 0 + N 1 
˜ β ˜ s M 

−˜ s M 

(N 3 
˜ β + ˜ η) R 

2 
0 

+ δ ˜ μM 

R 0 + N 2 
˜ β ˜ s M 

. (5.16) 

Then Eq. (5.11) can be written as 

h 2 [ γ0 (R 0 )] = 

b ̃  s M 

˜ β

[(−N 3 R 

2 
0 

+ N 2 ) ̃  β − R 

2 
0 ̃

 η] ̃  s M 

μM 

+ δμM 

R 0 μM 

×([(−N 3 R 

2 
0 + N 2 ) ̃  β ˜ s M 

− R 

2 
0 ̃  η ˜ s M 

+ δμM 

R 0 ] u 

N 1 +1 
2 

+[(N 3 R 

2 
0 − N 1 ) ˜ β ˜ s M 

+ R 

2 
0 ˜ η ˜ s M 

− δμM 

R 0 ] u 

N 2 +1 
2 

+(N 3 u 2 + u 2 − N 3 ) ̃  β ˜ s M 

(N 1 − N 2 ) + ˜ η(u 2 − 1) ̃  s M 

(N 1 − N 2 ) 
−δu 2 μM 

(u 2 − 1)(N 1 − N 2 )) = 0 . 

(5.17) 

considering the preceding equation h 2 [ γ0 (R 0 )] = 0 and the parameter values in Table 2 , the relationship between u 2 and R 0 
is plotted in Fig. 2 . It shows that there is a unique u 2 = 1 ∈ [0 , 1] for R 0 < 1 , and another u 2 ∈ [0 , 1) exists for R 0 > 1 . 

For five different values of R 0 , we solve h 2 [ γ0 (R 0 )] = 0 in (5.17) for the fixed point u 2 of the offspring pgf (5.3) . The cor-

responding fixed point u 1 is calculated according to (5.10) . Assuming the initial infection with one infected macrophage cell 

and one Mtb bacterium, i.e. (M i (0) , B (t)) = (1 , 1) , the probability of disease clearance approximated by multitype branching

processes is computed by the formula in (5.15) with k 1 = k 2 = 1 . The five values set of R 0 , u 1 , u 2 , and P clearance by branching

process are summarized in Table 3 . 

Next, we compare the analytical approximated probability of disease clearance by branching process with the probability 

estimated by numerical simulation of the CTMC model. We count the number of extinct sample paths, which are absorbed 

by (M i , B ) = (0 , 0) before the end of simulation time ( 90 × 2 days/ three months). Then, the approximated probability of

disease clearance from the CTMC model is obtained through dividing the number of extinct sample paths by 10,0 0 0, which

is the total number of CTMC simulations. The estimation of P clearance by CTMC simulations is stored in the second column 

of Table 3 . It is shown that the approximated probability of disease clearance by analytical and numerical approaches are

closely matched. Moreover, the probability of disease clearance after the initial infection decreases with the growth of R . 
0 

Fig. 2. The fixed point u 2 in terms of R 0 , according to the equation h 2 [ γ0 (R 0 )] = 0 in (5.17) . Parameter values are taken in Table 1 . 

Table 3 

Comparison of the probability of disease clearance estimated by CTMC model with 

10,0 0 0 simulations and estimated by branching process in the formula (5.15) . 

R 0 P clearance by CTMC u 1 u 2 P clearance by branching process 

1.0 0.8914 1 1 1 

1.1 0.6783 0.7339 0.9894 0.7261 

1.2 0.4999 0.5350 0.9817 0.5252 

1.3 0.3452 0.3716 0.9754 0.3625 

1.4 0.2170 0.2307 0.9701 0.2238 

1.5 0.1485 0.1050 0.9651 0.1013 

9 
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Fig. 3. Histograms to the time of disease clearance for the CTMC model after the initial Mtb infection with one infected macrophage cell and one Mtb 

bacterium. 

 

 

 

 

 

 

5.3. Time to disease clearance 

Through stochastic processes, we can estimate the finite time of disease clearance. While the ODE model can only sim- 

ulate disease clearance when the time goes to infinity. To approximate the probability distribution of the disease clearance 

time, we simulate 10,0 0 0 sample paths by applying Gillespie algorithm on the CTMC model. The period for primary infection

is usually a few weeks or up to three months [13] . We therefore set the simulation time as 90 days and assume that the

infection starts by one inhaled Mtb bacterium and one Mtb infected macrophage cell. Fig. 3 demonstrates the approximated 

probability distribution for the time of disease clearance for the CTMC model with R 0 = 1 . 0 , R 0 = 1 . 1 , R 0 = 1 . 2 , R 0 = 1 . 3 ,

R 0 = 1 . 4 , R 0 = 1 . 5 . With the increase of R 0 , the probability of disease clearance decreases and the mean day and the median

day to disease clearance increase. In general, the median day to disease clearance after initial Mtb infection is less than a

month. The most common day for disease clearance day is around two weeks. It is shown as peaks in Fig. 3 . Most of the
10 
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disease clearance happens within the initial first two months after the initial Mtb infection. Longer disease clearance time, 

up-to three months, is required with a large reproduction number, such as R 0 = 1 . 5 in Fig. 3 . 

6. Conclusion and discussion 

In this paper, we capture the occurrence of finite-time disease clearance after an initial infection with a small amount of

infectious Mtb bacteria through a continuous-time Markov chain model. Evidence shows the existence of disease clearance 

in individuals who are heavily exposed to Mtb pathogens. Correspondingly, the CTMC model demonstrates sample paths 

with extinctions on infected macrophage and Mtb bacterial populations in finite time. The analytical approximation for the 

probability of disease clearance is calculated through the theory of multitype branching processes. This result matches well 

with simulated results calculated via 10,0 0 0 sample paths. For R 0 > 1 , the approximated probability for disease clearance

is positive and shows a negative relationship with the growth of the basic reproduction number R 0 . Furthermore, we in-

vestigate the probability distribution of the disease clearance time, which is roughly within a month for R 0 ∈ [1 , 1 . 5] . The

clearance time increases with the growth of R 0 . 

Our results predict the probability of and the time to disease clearance in terms of the basic reproduction number R 0 .

Host immune factors affect R 0 , and thusly, can be used to modulate the probability of and the time to disease clearance.

For example, HIV infection can induce an increase in macrophage turnover. Due to the positive relationship between R 0 and

the death rate of uninfected macrophages μM 

and the negative relationship between R 0 and the probability of disease clear- 

ance, HIV infection can thus eventually reduce the probability of disease clearance. Negative relationships occur between 

the probability of disease clearance and the number of intracellular bacterial released from an infected macrophage, killed 

by bursting N 1 and T-cell mediated immune responses N 2 . Because HIV infection impairs the protective immune process of 

programmed cell death (apoptosis), it then leads to a high amount of Mtb bacterial release. This explains why individuals 

carrying HIV viruses have higher TB burden. On the other hand, effective host immune responses can inhibit the pathogen 

reproduction δ, which has a positive relationship with R 0 . It then results in a higher probability for disease clearance. Host-

direct therapy is another example to enhance host immune ability against TB infection [17] . Vitamin D is a potent adjunctive

therapy with host-beneficial effects in TB. It has been shown that vitamin D intake can promote the killing of the phagocy-

tized Mtb bacteria, which is represented as an increase in η [18] . It can increase the chance for disease clearance. Moreover,

vitamin D has been proven to promote autography in cell culture [23] , which in turn reduces intracellular bacterial releases

N 1 and N 2 and raise the probability of disease clearance. Overall, the probability, time, and mechanisms of TB clearance 

revealed in this investigation could give new insights in TB prevention and the development of new therapies. 
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