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Abstract. Recurrent infection is characterized by short episodes of high viral reproduction, sepa-
rated by long periods of relative quiescence. This recurrent pattern is observed in many
persistent infections, including the “viral blips” observed during chronic infection with
the human immunodeficiency virus (HIV). Although in-host models which incorporate
forcing functions or stochastic elements have been shown to display viral blips, simple
deterministic models also exhibit this phenomenon. We describe an analytical study of
a 4-dimensional HIV antioxidant-therapy model which exhibits viral blips, showing that
an increasing, saturating infectivity function contributes to the recurrent behavior of the
model. Using dynamical systems theory, we hypothesize four conditions for the existence
of viral blips in a deterministic in-host infection model. In particular, we explain how
the blips are generated, which is not due to homoclinic bifurcation since no homoclinic
orbits exist. These conditions allow us to develop very simple (2- and 3-dimensional) in-
fection models which produce viral blips, and we determine the complete parameter range
for the 3-dimensional model in which blips are possible, using stability analysis. We also
use these conditions to demonstrate that low-dimensional in-host models with linear or
constant infectivity functions cannot generate viral blips. Finally, we demonstrate that a
5-dimensional immunological model satisfies the conditions and exhibits recurrent infection
even with constant infectivity; thus, an increasing, saturating infectivity function is not
necessary if the model is sufficiently complex.
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I. Introduction. Mathematical models have a rich history in the investigation
of infectious disease and have proven foundational to our understanding of epidemi-
ological dynamics and control [2]. Over the last several decades, mathematical ideas
regarding the transmission of infectious agents between hosts have been extended to
develop models of infection within a single infected individual [29]. These within-host
models typically track the populations of pathogens and relevant cellular populations,
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such as the cells which may be infected by the pathogen, infected cells, and possibly
the host’s immune response to the infectious agent.

Although current work in the field addresses a wide range of pathogens and dis-
eases, the most well developed area of within-host modeling concerns the dynamics
of viral infections. Viruses are infectious intracellular parasites: they can reproduce
only inside the living cells of host organisms, and must spread from host to host for
continued existence. In animals, viruses tend to exhibit either an acute or a per-
sistent mode of infection to ensure this continuity [41]. An acute viral infection is
characterized by a relatively short period of symptoms and resolution within days or
weeks. In these cases the host immune response usually clears the infection, and a
memory immune response can then prevent the same virus from infecting the same
host. Pathogens such as the influenza virus and the rhinovirus typically cause acute
viral infections. In contrast, persistent infections [3] establish long-lasting infections
in which the virus is not fully eliminated but remains in infected cells. Persistent
infections involve both silent and productive infection stages without rapid killing or
excessive damage to infected cells. Latent infection is a type of persistent infection.

In latent infection, no clinical signs or detectable infectious cells can be observed
during the silent or quiescent stage of low-level viral replication. However, the virus
has not been completely cleared, and recurrent episodes of rapid viral production and
release can periodically punctuate relatively long periods in the silent stage. These
episodes of recurrent infection are a clinical phenomenon observed in many latent
infections [27].

Recurrent infection can also occur in the context of drug treatment for persistent
infections. The human immunodeficiency virus (HIV), for instance, is now treated by
highly active antiretroviral therapy (HAART). When the concentration of HIV viral
particles in the blood, called viremia, is measured in individuals beginning HAART
treatment, it decays rapidly at first and then follows a slower second stage of decay.
For individuals on long-term HAART, viremia can typically be held below the limit
of detection for months or years [5, 9], that is, HIV is undetectable in the blood using
standard techniques. Nonetheless, supersensitive assays are able to detect low levels
of virus in the blood during this stage [9, 32, 31]. Moreover, these long periods of
relative quiescence are sometimes interrupted by unexplained intermittent episodes of
high viremia, termed viral blips [36, 35]. Although these blips have been the focus of
much recent research [13, 18, 15, 6], their etiology is still not well understood [18, 35].

To set the stage for a review of mathematical models of viral blips, we quickly
review some of the main features of HIV infection. HIV infects specific cells of the
immune system, in particular the CD4™ T cells. Once infected, a CD41 T cell may
be either productively infected, meaning that the cell actively produces new HIV viral
particles, or may enter a quiescent long-lived stage called latently infected. Produc-
tively infected cells are vulnerable to attack by other arms of the immune system, such
as the CD8™ or cytotozic T cells, but latently infected cells are essentially invisible to
the immune system and present the main difficulty in clearing the disease. Because
CD4™" T cells themselves are an important component of the immune response, these
quiescent cells can be woken up, or activated, in response to challenges to the immune
system. For example, the presence of foreign particles called antigens can induce la-
tently infected cells to enter the productively infected stage and begin to produce new
HIV viral particles.

To date, many possible explanations for viral blips during HIV infection have
been explored mathematically. An early model of the long-term pathogenesis of
HIV [12] incorporates the activation of T cells in response to antigens, as suggested
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by [10]. In [12], both HIV and non-HIV antigen exposure are considered in a coupled
deterministic-stochastic model. The probability of antigenic exposure evolves contin-
uously in time, and Poisson distributed exposure events are generated, by simulation,
at the appropriate probabilities. This approach captures a number of features of long-
term HIV dynamics, including episodic bursts of viral replication. Further work [11]
considers the number of distinct antigens which activate the CD4™ T cell pool as a
random variable, coupled to an ODE model. Stochastic changes to this number drive
fluctuations in the basic reproductive number and viral load. This model is also able
to capture the episodic burst-like nature of HIV viral replication during long-term
infection.

More recent models are based on the recurrent activation of latently infected T
cells, a class of infected cells described above. By introducing antigen concentration
as an explicit variable, Jones and Perelson [23] developed a system of ODEs that
exhibits viral blips. The model describes the proliferation and contraction of the
CD8" T cell population and exhibits low viral loads under HAART, as expected.
Secondary infection by non-HIV pathogens, modeled as an initial concentration of
antigen, activates the immune system and is shown by numerical simulation to elicit
a transient viral blip. The same authors further showed that occasional infections
by other pathogens can generate viral blips by the activation of uninfected cells or
latently infected cells, predicting that blip amplitude and viral load will be related by
a power law [24].

In further work, by considering the asymmetric division of latently infected cells,
Rong and Perelson [35] developed a 4-dimensional ODE model based on the basic
model of latent cell activation [33]. This new model not only generates viral blips, but
also maintains a stable latent reservoir in patients on HAART. In this model, latently
infected cells can divide to produce latently infected daughter cells, or differentiate
into activated, productively infected cells, depending on antigen concentrations. In a
further 5-dimensional ODE model [36], these two types of daughter cells were distin-
guished as dependent variables, and a contraction phase was added to the activated
daughter cells. Numerical simulation showed that both cases gave rise to viral blips
and a stable latent reservoir, which were generated from the activated and the latently
infected daughter cells, respectively. In both papers [35, 36], the antigenic stimulation
of latently infected cells was modeled as an “on-off” forcing function, and viral blips
were initiated during brief pulses in which this activation function was “on.”

Most recently, a stochastic model developed by Conway and Coombs [6] presented
another possible treatment of latent cell activation. In this model [6], the authors de-
rived the probability generating function for a multitype branching process describing
the populations of productively and latently infected cells and free virus. A numerical
approach was then used to estimate the probability distribution for viral load, which
was used to predict blip amplitudes and frequencies; blip durations were studied by
simulation. The authors were able to conclude that with effective drug treatment
and perfect adherence to drug therapy, viral blips cannot be explained by stochas-
tic activation of latently infected cells, and other factors such as transient secondary
infections, or imperfect adherence, must be involved.

In order to elicit transient episodes of high viral replication, all of the models
described above incorporate either transient immune stimulation, for example, as a
forcing function, or stochastic components which act as “triggers” preceding the gen-
eration of each viral blip. Thus something exogenous to the within-host infection—for
example, a secondary infection which transiently activates the immune response—is
necessary to produce the patterns observed in recurrent infection. It should be noted
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that, clinically, viral blips in HIV typically have varying magnitudes, frequencies, and
durations, and thus stochastic models offer a natural approach to describing this phe-
nomenon. We note, however, that the analysis of fully deterministic models can offer
insights into the global behavior of the system that are difficult to assess in more com-
plex models. Moreover, nonlinear deterministic systems can indeed display varying
amplitudes and frequencies of motion merely by using a time-varying parameter in
the system; these are in fact key characteristics of nonlinear systems.

Thus, given our familiarity with previous stochastic or forcing function approaches,
we were mathematically intrigued when two recent studies demonstrated that quite
simple deterministic systems can exhibit viral blips. Based on the close relation be-
tween recurrent infection and antibody immunodeficiency, Yao, Hertel, and Wahl [42]
investigated a 5-dimensional ODE model which included antibody concentrations as
an explicit variable, and exhibited transient periods of high viral replication. By
numerical simulation at specific, meaningful parameter values, the authors explored
factors affecting the intervals between recurrent episodes and their severity. Later, an
even simpler 4-dimensional antioxidant model [40] was explored for HIV and was sim-
ilarly used to simulate viral blips with appropriate parameter values. These examples
indicated that deterministic systems can produce blips as part of the natural, rich
behavior of the nonlinear system. However, for both of these deterministic models,
numerical simulation was used to delineate behavior and explore parameter space;
the mathematical underpinnings which gave rise to recurrent infection, or viral blips,
remained unexplained.

In this paper, we take advantage of dynamical systems theory to reinvestigate
deterministic in-host infection models that exhibit viral blips. By examining the
bifurcation behavior in parameter spaces close to the region where blips occur, we
propose an understanding of the features of the dynamical system which underlie this
complex model behavior.

We then propose four conditions which, when satisfied, guarantee that an in-host
infection model will exhibit long periods of quiescence, punctuated by brief periods
of rapid replication: viral blips. Based on these conditions, we develop very simple 2-
and 3-dimensional models that produce blips and apply stability criteria to determine
parameter ranges which may yield this phenomenon. Moreover, for the 2-dimensional
model, we apply Poincaré-Bendixson theory to prove the existence of the blips. We
also pay particular attention to how viral blips are generated; contrary to the ex-
pectation that viral blips may arise through homoclinic bifurcation, we show that no
homoclinic orbits can exist in the 4-dimensional, 3-dimensional, and 2-dimensional
models developed in this paper. Most of the models discussed share a similar infec-
tivity function, describing the rate at which new infected cells are created. In a final
section, we examine a related 5-dimensional immunological model and demonstrate
that viral blips are possible in this system even when infectivity is constant. The
main conclusion of our work is that exogenous, stochastic triggers are not necessary
for the generation of viral blips; patterns of recurrent infection can instead naturally
arise as part of the rich behavior of the underlying nonlinear system.

The rest of the paper is organized as follows. In section 2, the previously proposed
4-dimensional HIV antioxidant model is reinvestigated analytically. Based on the in-
sights of our bifurcation analysis, conditions for generating viral blips are proposed.
In section 3, we use these conditions to propose a simpler 3-dimensional in-host in-
fection model, and parameter ranges which will exhibit blips in the simpler model
are determined. In section 4, we develop a 2-dimensional model, characterized by an
increasing and saturating infectivity function, which can also generate viral blips. In
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section 5, we demonstrate that a 5-dimensional immunological model [42] can exhibit
viral blips with constant infectivity. In the final section, we discuss the implications
of our results and demonstrate that blips of varying amplitude and frequency can be
recovered in our models with deterministic but time-dependent parameter values.

2. A 4-Dimensional Model Which Exhibits Viral Blips. In this section, we
reconsider a 4-dimensional HIV antioxidant-supplementation therapy model which
was developed and studied numerically in [40]. This model novelly introduces reac-
tive oxygen species (ROS) and antioxidants to an in-host model of HIV infection.
In uninfected individuals, ROS play a positive physiological role at moderate lev-
els [17, 25, 8, 21, 19] but are harmful at high levels [40].

HIV infection may lead to chronic and acute inflammatory diseases, which may
cause high levels of ROS [26] as well as lowered antioxidant levels; this phenomenon
has been observed clinically and experimentally [26, 16, 22, 37, 39]. In addition, high
levels of ROS may cause damage to CD4" T cells, impair the immune response to
HIV [38], and exacerbate infected cell apoptosis, releasing more HIV virions. Thus,
infected cells produce high levels of ROS, which in turn increase the viral production
by infected cells. To control this cycle, antioxidant supplementation (vitamin therapy)
has been suggested as a potential complement to HIV therapy [16, 14], with the aim
of counteracting and reducing ROS concentrations [17].

The equations of the 4-dimensional model are described by [40]

T = Ay —dyx — (1 —€)B(r)zy,
(2 1) Y= (1 - E)B(T)l’y - dyyv
' 7= A + ky — mar — d,r,
a= A +a—par —dya,

where a dot indicates the derivative with respect to time ¢; z, y, r, and a represent,
respectively, the population densities of the uninfected CD4" T cells, infected CD4™"
T cells, ROS, and antioxidants. The constant A, denotes the production rate of
CD4" T cells, and d,z is the death rate. Uninfected cells become infected at rate
(1 — €)B(r)zy, where € is the effectiveness of drug therapy, and d, is the per-capita
death rate of infected CD4™ T cells. ROS are generated naturally at rate \, and by the
infected cells at rate ky; the ROS decay at rate d,. r and are eliminated by interaction
with antioxidants at rate mar. Antioxidants are introduced into the model through
natural dietary intake at a constant rate A\, and through antioxidant supplementation
at rate a, which is treated as a bifurcation parameter. Antioxidants are eliminated
from the system by natural decay at rate d,a and by reacting with the ROS at rate
par, where p is much smaller than m.

An important novel feature of this model is that the infectivity 5(r) is a positive,
increasing, and saturating function of r (ROS),

7A(bmax - bO)
2.2 =by+ —m=
(2:2) pir) 0 7 + Thalf

where by represents the infection rate in the ROS-absent case, while by, denotes the
maximum infection rate, and 7. is the ROS concentration at half maximum. It is
obvious that S(r) > 0, and it is also assumed that 0 < e < 1. Therefore, all the
parameters in (2.1) and (2.2) are positive. The experimental values used for studying
model (2.1) are given in Table 2.1. Importantly, these parameters were chosen with
careful reference to clinical studies, such that the predicted equilibrium densities are
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Table 2.1 Parameter values used in model (2.1) [40].

Parameter  Value

A 60.76 cells L~ " day 1
dy 0.0570 day~*!
dy 1.0 day~!
Aa 2.74 x 103 molecules L~ day !
da 0.0347 day~!
e !
bo 2.11 x 104 cell™! pyLday !
bimax 0.00621 cell™! uL day !
Thalf 3.57 x 10’3 molecules pL !
dy 1.66 x 107 day~!
Ar 1.86 x 1021 molecules pL~! day !
k 1.49 x 10'®  molecules cell ™! day !
1.27 x 1076  molecule™! pL day !
p 5.04 x 10714  molecule ™! L day !

clinically reasonable. Also note that the densities of antioxidants and ROS are of
order 10'2 per puL, while cell densities are of order 102 or 103 per L.

In [40], this model was explored numerically to assess the potential of antioxidant
therapy as a complement to HIV drug therapy. In that study, regions of oscillatory
behavior, reminiscent of viral blips, were observed. In the following subsections we
perform a thorough equilibrium and stability analysis of the model in order to shed
further light on the factors underlying these rich behaviors.

2.1. Well-Posedness of the Solutions of System (2.1). By defining

F:{(m,y,a,r)ER‘l‘Oga:Sg—z, ng—l—yg%, OSTSW, 0<a< )‘;’ita},
we can show that I' is a positively invariant set and attracts all nonnegative solutions
of (2.1), by using the method of variation of constants and differential inequality. The
details of the proof can be found in [46].

2.2. Equilibrium Solutions of (2.1) and Their Stability. To find the equilibrium
solutions of (2.1), simply setting & = y = 7 = @ = 0 yields two solutions, the
uninfected equilibrium solution Eg and the infected equilibrium solution Ei, given,
respectively, by

A Ar — dyTe
(23) Eo : (xem Ye0, TeO, an) = <d_xa 0, 7e0, #> ,
x MTeo
where 7 is determined by the equation

0

1 Ao A\ dadn —pA,
(24) Fo(T,Ot)EO(—i—)\a—i—— (pdrr— >+ p =
m

m

and
d
E1: (Te1,Ye1,Te1,Ge1), Ter = Wyﬁ(?“ay
_ Az — dy Tex B Ao + @
der = (1= e)B(re1)zer’ o1 = da+prer’
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Fig. 2.1 Bifurcation diagram for the 4-dimensional HIV antiozidant-therapy model (2.1) projected
on the r-a plane, restricted to the first quadrant, with the red and blue lines denoting Eg
and E1, and the dashed and solid lines indicating unstable and stable, respectively.

where 7.1 is a function in the system parameters, particularly « (see the function F;
in 2.8)). Both Eg and E; are expressed in terms of r (7 or r.1) for convenience.

We first consider the uninfected equilibrium Egy. The solution of 7. is determined
by (2.4), which is a quadratic equation in r. To simplify the analysis, we use r to
express the parameter « since (2.4) is linear in «, and « is treated as a bifurcation
parameter. Thus, solving Fy(r,«) = 0 for a, we obtain

da>\r _dadr_p)\r
m .

1
2.6 0) = Mo — — | pdy7en —
(26) oo(reo) - (pdrro - %2
To find the stability of the equilibrium solution Eg, we first evaluate the Ja-
cobian of system (2.1) at Eg to get Jo(rep), where (2.6) has been used, and then
we use det(£I— Jy) to obtain the fourth-degree characteristic polynomial given by
PO(fvreO) = (E + dx) [52 + (pTeO +do + ;\Tro)g + (% +pdr7"e0)} (§ + POr)a where

(bO Thalf + Te0 bmax)

(1 —e)As
2.7 Py =d, —
27 0 Y dy(Teo + Thalf)

Py(&,re0) contains three factors: the first is a linear polynomial of &, the second
is a quadratic polynomial of &, and both are stable polynomials (i.e., their roots
(eigenvalues) have negative real part); thus the stability of Eg depends only on the
third factor, a linear polynomial of {. Therefore, when Py, > 0 (Fp,. < 0), the
equilibrium solution Eg is asymptotically stable (unstable).

The bifurcation diagram for system (2.4) is shown in Figure 2.1, where only the
part in the first quadrant is depicted. The graph for the equation Fy(r,a) = 0 given
in (2.4) is shown as the red line in Figure 2.1, which clearly shows a hyperbola. It is
seen from this red line that the relation (2.4) also defines a single-valued function r
in a. More precisely, it can be shown that the biologically meaningful solutions must
be located on the first quadrant and above, including the red line, since Eg has the
component Yo = 0.
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Next, consider the infected equilibrium solution E;. The solution of r.; can be
similarly obtained by solving for r from the equation

kA kds (r + Thait) mr(Aa + @)
2.8 Fi(r,a) =X\ + — — -
( ) 1( ) dy (1 - 6) (borhalf + bmaxr) pr+dg

—d,r =0,

which is again a linear function of «, and we can use 7.1 to express « as

041(7"61) — _Aa + )\T(prel + da) + k)\x(prel + da)

mre1 mreldy
(2 9) o kd;c ('rel + Thalf)(prel + da) B (prel 4 da)dr
| m7e1 (1 — €)(bornait + bmaxTe1) m :

The graph of the equations Fy(r,«) = 0 given in (2.4) and Fi(r,a) = 0 given in
(2.8) is shown in Figure 2.1. To find the stability of Eq, in a similar way, we evaluate
the Jacobian of (2.1) at E; to obtain the fourth-degree characteristic polynomial,
P& re1) =& a1(re1)E34 aa(re1)E2+az(re1 )+ as(rer ), where the lengthy expressions
for the coefficients a1 through a4 are omitted here for brevity.

2.3. Bifurcation Analysis. To understand the conditions underlying oscillatory
behavior and viral blips in this model, we now consider possible bifurcations which
may occur from the equilibrium solutions Ey and E.

2.3.1. Transcritical Bifurcation. First, for the uninfected equilibrium E, it fol-
lows from Py(§,7e0) and (2.7) that in general Eq is stable for Py, > 0, and the only
possible singularity occurs at the critical point, determined by Py, = 0 (see (2.7)).
At this point, one eigenvalue of the characteristic polynomial becomes zero (and the
other three eigenvalues still have negative real part), leading to a static bifurcation,
and Eg becomes unstable. More precisely, when the parameter values in Table 2.1 are
used, the two equilibrium solutions Ey and E; intersect and exchange their stability
at the point (rt, at) ~ (8.89x 102, 4.58 x 10'3), indicating that a transcritical bifur-
cation occurs at this critical point (see Figure 2.1). Here, the subscript “t” stands
for transcritical bifurcation. The value of «; is obtained by substituting r; into either
ap(r) in (2.6) or aq(ry) in (2.9). In fact, ao(ry) = aq(re).

As discussed above, biologically meaningful solutions should be above or on the
uninfected equilibrium solution Eq (the red line shown in Figure 2.1), since solutions
below the red line contain the component y < 0. The above discussion indicates
that the uninfected equilibrium Eq is asymptotically stable (unstable) when r < ry
(r>mr) or a>ap (@ < ay) (see Figure 2.1), leading to the conclusion that no Hopf
bifurcation exists on Ej.

It should also be noted from Figure 2.1 that, besides a transcritical bifurca-
tion point, E; has a saddle-node bifurcation which occurs at the so-called turning
point. To determine this turning point, using (2.9) and mdl—vfr) =0 yields (rs, ag) =~
(1.72 x10'3, 5.06 x 1013), where the subscript “s” denotes saddle-node bifurcation, and
as=ai(rs) by using (2.9). Note that this bifurcation does not change the stability of
E; since the characteristic polynomial Pj (&, 7.1) still has an eigenvalue with positive
real part when 7.1 (or «) is varied along E; to pass through the turning point (see
Figure 2.1), where a saddle-node bifurcation occurs. This can be seen more clearly
by examining the local dynamics close to the turning point on the center manifold;
interested readers can find this detailed analysis in [46].
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2.3.2. Hopf Bifurcation and Limit Cycles. To find any possible Hopf bifurca-
tion which may occur from the infected equilibrium E;, we first need to determine
the critical points at which Hopf bifurcation occurs. The necessary and sufficient
conditions for general n-dimensional systems to have a Hopf bifurcation are obtained
in [44]. When the parameter values in Table 2.1 are used, the critical values are given
by (ra, am)=~(6.72x10'3, 2.64x1013).

To find the approximate solutions of the limit cycles and to determine their stabil-
ity, we apply normal form theory to the model associated with this singularity. First,
we apply a transformation (QC, Yy, 7 a)T = (xelv Ye1,Tel, ael)T + TH (xlv Z2,T3, x4)Ta
where (Ze1,Ye1, Te1, de1) is the infected equilibrium solution E; and Ty is a constant,
nonsingular matrix. We obtain a transformed system of (2.1), which we omit due to
its lengthy expression. Then, applying the formulas of the normal form given in [45],
we obtain

(2.10) p=popt+vip’+-), O=wettop+tip®+---,

where = a — ay, and p and 6 denote the amplitude and phase of motion, re-
spectively; w. comes from the pure imaginary eigenvalues +iw. at the Hopf critical
point. Then the first equation of (2.10) can be used to approximate the amplitude
of bifurcating limit cycles and to determine their stability. The second equation of
(2.10) can determine the frequency of periodic motion. The coefficient vy, usually
called the first-order focus value, plays an important role in determining the stability
of limit cycles. When v; < 0 (v1 > 0, respectively), the Hopf bifurcation is called
supercritical (subcritical) and the bifurcating limit cycles are stable (unstable). For
the transformed system of (2.1) at the Hopf critical point, we obtain vy~3.15 x 10715
and tp~3.33 x 1071°. Further, we apply the Maple program [43] to the transformed
system to obtain v; ~—4.18 x10~7 and #; ~ —3.38 x 106, Thus, the normal form up
to third order is given by

pap(3.15 x107 Py —4.18 x 107 "p% + - -+),

(2.11) _
0~ 0.30843.33x107 1% —3.38 x 107 %p*+- - - .

Now, setting p = 0 results in two solutions: p = 0, which represents the infected
equilibrium solution E;, and p ~ 8.68 x 10*5\/;7 (v > 0), which is an approximation
of the amplitude of bifurcating limit cycles. Since v; < 0, this is a supercritical
Hopf bifurcation, and bifurcating limit cycles are stable. For example, choosing y =
10'2, we obtain the amplitude approximation of the limit cycle as p ~ 86.8, and the
frequency of the limit cycle approximately as w ~ 0.283, slightly less than w, =~ 0.308.
The phase portrait of the simulated limit cycle, projected on the x-y plane, is shown in
Figure 2.2(d). It can be seen from Figures 2.2(a) and (d) that the analytical prediction
from the normal form, p =~ 86.8, agrees well with the simulated result.

The above analysis based on normal form theory is for local dynamical behavior;
that is, the limit cycles must be near the Hopf critical point (rg,am). It can be
seen from Figure 2.1 that values of o taken from the interval a € (am,a:) lead to
unstable equilibrium solutions (since both Ey and E; are unstable for this interval).
However, due to the solutions being nonnegative and bounded, we expect that there
should exist certain persistent motions such as oscillating solutions for the values of
« taken from this interval, and the amplitudes of these oscillations can be large. For
example, for o = 3.50 x 103, the phase portrait of the simulated solution, projected
on the x-y plane, is shown in Figure 2.2(e), corresponding to the oscillations in time
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Fig. 2.2 Simulated limit cycles of system (2.1) for the parameter values taken from Table 2.1, with
the time course of z (blue) and y (red) on the top row and the corresponding phase portraits
projected on the x-y plane on the bottom row. For (a) and (d) a = 2.74 x 103, for (b)
and (e) a = 3.50 x 103, and for (c) and (f) a = 4.55 x 1013,

shown in Figure 2.2(b), which have much greater amplitude than the oscillations in
Figure 2.2(a).

Now, we take a particular value of « from the interval o € (ap, o), which is close
to ay, to simulate the system. For example, taking o =4.55x10"3 < oy ~4.58x10'3, we
obtain the phase portrait of the simulated oscillating solution, projected on the x-y
plane, shown in Figure 2.2(f), with the corresponding time history of z and y shown
in Figure 2.2(c). This clearly shows viral blips.

Next, we will discuss what conditions are needed for creating the phenomenon of
viral blips.

2.4. Conditions for Generating Viral Blips. In the previous subsection, we care-
fully analyzed the occurrence of viral blips in a 4-dimensional HIV model (2.1). Sys-
tem (2.1) is an example of an in-host infection model, an ODE system describing the
dynamics of infection within a single infected individual. In-host infection models,
based on classical susceptible-infected-recovered (SIR) models in epidemiology [1],
typically include populations of uninfected target cells, infected target cells, and the
infection dynamics between the two classes [29]. More complex models also include
populations of free virus, latently infected cells, and various relevant components of
the immune response, depending on the infection under study. Although there are
many exceptional cases, in-host models typically admit an uninfected equilibrium and
at least one infected equilibrium, analogous to the disease-free and endemic equilibria
of an SIR model.

Since in-host infection models share many similar features, much of our under-
standing regarding the behavior of system (2.1) can be generalized to other models.
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Based on insights obtained in analyzing system (2.1), we propose in the following
hypothesis four conditions for an in-host infection model to generate viral blips.

Hypothesis 1. The following conditions are needed for an in-host infection model
to generate viral blips:

(i) there exist at least two equilibrium solutions;

(i) there exists a transcritical bifurcation at an intersection of the two equilibrium

solutions;

(iii) there is a Hopf bifurcation which occurs from one of the equilibrium solutions;

and

(iv) large oscillations (or, more generally, global, persistent motions) can occur

near the transcritical critical point.

The reasons for conditions (i) and (ii) are simple because when a parameter that
reflects infection severity is chosen as a bifurcation parameter, an in-host infection
model typically starts at the uninfected equilibrium and then bifurcates to the infected
equilibrium as the parameter is increased. Thus, these two equilibrium solutions must
exchange their stability, yielding a transcritical bifurcation. For the 4-dimensional
model considered in the previous subsection, the uninfected equilibrium Eg and the
infected equilibrium E; intersect at the critical point (as,r:), where they exchange
their stability. In fact, Eq is stable (unstable) for o« > oy (v < ay), while the lower
branch of E; is stable (unstable) for o < a¢ (@ > o), as shown in Figure 2.1.

Condition (iii), the existence of a Hopf bifurcation, is necessary to obtain oscilla-
tions. It can be seen from Figure 2.1 that limit cycles bifurcate from E; at the Hopf
critical point (ag, 7 ), and they become larger if y = o — ay > 0 increases.

The reasoning behind condition (iv) is not so obvious. Large oscillations (or
global, persistent motions) are necessary, near the transcritical point, for viral blips
to emerge. As shown in Figure 2.1, both Ey and E; are unstable for a € (am, at)
(though a part of the lower branch of E; is stable, it is biologically meaningless since
y < 0). Thus, there exist large oscillations near the transcritical critical point «y.
Moreover, it is noted from Figure 2.1 that at the left side of the transcritical point
oy, the eigenvalues evaluated at Eg are all real, containing one positive eigenvalue
(€0 > 0) and three negative eigenvalues (€2 < 0,7 = 2,3,4). In other words, any point
on the uninfected equilibrium Eq for o < ay is a saddle point. Since &9 crosses zero at
the critical point a@ = ay, it is very small near the transcritical point for o < ay. On
the other hand, the infected equilibrium E; is an unstable focus-type point since the
eigenvalues at E; contain a complex conjugate pair with positive real part and two
negative real eigenvalues (see Figure 2.1). Now, we need to answer two questions: (1)
Where does the large periodic solution (limit cycle) come from? (2) Why does the
periodic solution contain a region of very fast motion and a region of very slow motion?

To answer the first question, see from Figure 2.2(f) that since there exists a saddle
point outside the stable limit cycle and the stable limit cycle encloses an unstable
singular point, there may exist an unstable homoclinic orbit which passes through the
saddle point and encloses the stable limit cycle. The possible homoclinic orbit and
the limit cycle can be thought of as being embedded in a 2-dimensional submanifold.
However, this possibility can be ruled out as follows: Suppose there exists a homoclinic
orbit embedded in a 2-dimensional submanifold. Then this homoclinic orbit must
start from Eg (the saddle point) and return to the same point. First note that all the
eigenvalues at this saddle point are real (see Figure 2.1), and one of them is —d,. It
can be shown that the eigenvector associated with this eigenvalue is (1,0, 0,0), i.e., in
the direction of the z-axis. Now consider the line in the 4-dimensional space, through
the two points (z,y,r,a) = (0,0,70, aeo) and (z,y,7,a) = (Ze0,0,7c0, aeo), and call
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Fig. 2.3 Simulated blips projected on the x-y plane. Labels along the solution curve reflect the
relative speed of the trajectory at each point.

the line segment between the two points S*. It is easy to see that this line passes
through the equilibrium solution (the saddle point) Eg and is in the direction of the
eigenvector (1,0,0,0). Moreover, it can be shown by using (2.1) that this line itself
is actually a solution trajectory of the system (an invariant manifold of the system).
This implies that if a homoclinic orbit passing through the saddle point Eq exists, it
must return to the saddle point Eg along S*. In other words, S* must be a part of the
homoclinic orbit. But this is impossible because S* does not contain singular points
for © € [0,z¢) and thus no other possible trajectories can connect this particular
trajectory S* due to the uniqueness of solutions. This will be seen more clearly later
when we discuss the 2-dimensional model in section 4.

To answer the second question and make the answer more clear, we consider a
value of @ < oy, but near the critical point a = oy (e.g., a = 4.55 x 10'3, as shown
in Figures 2.2(c) and (f)). For simplicity, we consider the projection of the solution
trajectory for this case on the z-y plane, as depicted in Figure 2.3, where the two
equilibrium points Eg and E; are shown. Due to 0 < &) < 1, it is expected that
the trajectory moves very slowly near the saddle point Eg, while it moves rapidly
when it is away from this point. In fact, we have shown in Figure 2.3 the speed of
the trajectory along the solution curve (limit cycle). It can be seen from this figure
that the speed indeed varies from very small (near the saddle point), on the order of
3 x 1073, to very large (away from the saddle point), on the order of 3 x 102. Thus,
the small part in the phase portrait with very slow speed actually takes a longer time,
while the large part in the phase portrait with very fast speed takes much less time, as
shown in the time history (see Figure 2.2(c)). This fast-slow motion yields the blips
phenomenon, with slow changes corresponding to the near-flat section in the time
history, and rapid changes occurring during the viral blips, as shown in Figures 2.2(c)
and (f). In other words, the trajectory spends relatively long periods in regions of
state space which lie very close to the uninfected equilibrium and then transiently
visits regions of state space which are close to the infected equilibrium.
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3. A Simple 3-Dimensional In-Host Infection Model Producing Blips. Having
established the conditions in Hypothesis 1 for generating viral blips, we are ready to
turn to some basic questions such as the following: What types of in-host infection
models can generate blips, and what is the minimum dimension of such models?

3.1. Generalizing ROS to Other Physical Variables. In model (2.1), the vari-
able r represents ROS, which are produced naturally in the body. In HIV infection,
extra ROS are generated by infected cells, and these in turn directly accelerate HIV
progression [30, 37]. Therefore, infectivity 8 is an increasing and saturating function
of ROS concentrations. However, we note that the form of the infection term is not
specific to HIV or to ROS, and models of a similar form could in fact apply to other
infections. To generalize the physical meaning of the variable r, we can, for exam-
ple, let r denote any damage caused by the infection to, for example, the humoral
immune response, the infected organs, or the infected individual aspecifically. The
model assumes that “damage” increases with the extent of the infection at rate ky
and is repaired or cleared at rate d,r. This yields the 3-dimensional system

(3.1) &= Ay — dgx — B(r)zy, y = B(r)zy — dyy, 7 =ky —d,r.

To achieve an infection term similar to that in model (2.1), we further assume that
accrued damage makes target cells more vulnerable to infection, that is, accrued
damage increases the infection rate. We thus take 5(r) to be an increasing, saturating
function of r.

In the original model (2.1),  represents ROS, for example, HyO5, whose produc-
tion and decay rates are both extremely fast. For the more general model (3.1), we
would like to assess whether viral blips are still possible at more moderate production
and repair rates, k and d,. For ROS the decay rate d, = 1.66 x 107 dayf1 implies a
half life of only 4ms. We decreased d,. by several orders of magnitude and found that,
in particular, at d, =1.0x103day ', a half life of 60s, viral blips are still possible.
For this value of d,, we can take k=1.49 x 105 molecules cell * day~!. Note that A,
has been set to zero in (3.1) to make the model more general.

For simplicity, let a = byax —bo, b = by, and ¢ = rpar. Then the function B(r)
is rewritten as [(r) =b+ T‘TC, and a, b, and ¢ are treated as bifurcation parameters.
Parameter values \;, d, dy, k, dr, by, bmax, and Thair are given in Table 2.1. For prac-
tically meaningful solutions, the values of the bifurcation parameters will be chosen
close to the values in Table 2.1.

To analyze (3.1), we can follow the same procedure used in the previous section
and treat b as a bifurcation parameter. First, it is easy to prove the well-posedness
of system (3.1). Next, we get the infection-free equilibrium Eq : (Zeo, Yeo, Te0) =

(3—%, 0, 0) and the infected equilibrium E;1 := (2c1, Ye1, re1), where .1 = %,

Yel = d—ly (Ays—dze1), and re; is determined by Fi (r, ¢) = d,dy, (a+b)r*+[dy (d, betkd, )—
kAg(a+Db)] r+ke(dydy—bA,) = 0. Again, it is easy to show that Eg and E; intersect at
the transcritical bifurcation point (b, ;) &~ (9.38x 1074, 0). On the infected equilib-
rium E4, there is a saddle-node bifurcation point (turning point) (bs,7s) =~ (—1.49 %
1073, 4.18 x 10'3) and a Hopf bifurcation point (by,rx) ~ (6.56 x 1074, 7.24 x 103).
The bifurcation diagram and simulated results are shown in Figure 3.1. All the
conditions (i)—(iv) in Hypothesis 1 are satisfied. Blips do appear since the Hopf
critical point is close to the transcritical point. However, because E; is not globally
stable, depending on the initial conditions, the oscillation may converge to the stable
equilibrium E; (see Figure 3.1(b)) or converge to a limit cycle with large amplitude
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Fig. 3.1 Dynamics and bifurcation of system (3.1) for dr =1.0x103, k=1.49x10'%: (a) bifurcation
diagram projected on the b-r plane; (b) simulated time history y(t) converging to E1 for
b = 0.001 with the initial condition (x,y,r)=(178,46,73) close to E1; and (c) simulated
time history y(t) converging to a stable limit cycle (blips) for b = 0.001 with the initial
condition (x,y,r)= (1005, 3,3) close to Eg.

(blips), as shown in Figure 3.1(c). Convergence to a smaller, regular oscillation due
to the Hopf bifurcation is also possible (not shown in Figure 3.1). Similarly, following
the discussion in the previous section for the 4-dimensional model, we can show that
the existence of the blips (limit cycle) is not due to homoclinic bifurcation. In fact,
no homoclinic orbits can exist.

3.2. ldentifying the Region of Parameter Space Exhibiting Viral Blips. Hav-
ing found viral blip behavior in the simple 3-dimensional infection model (3.1), we are
now further interested in identifying the region of parameter space in which viral blips
may occur. This is particularly useful in applications since, in reality, all parameters
are roughly measured. Thus, we need to study the robustness of the phenomenon
to variations in the system parameters. If blips appear only for a very small region
in the parameter space, then the results are not practically useful. The main idea of
identifying the region where blips may occur is to study the instability of the solutions
of the system. Once the unstable region is identified, blips can be found by using the
other conditions in Hypothesis 1. In order to simplify the analysis, we first introduce
state variable scaling and parameter rescaling into system (3.1).

3.2.1. State Variable Scaling and Parameter Rescaling. Introducing the scal-

. A _ _ Ak _ 1
ing x=c1X, y=cY, r=c3R, t = c47, where 1= g% cz—d—i, C3=15% 2 > Ca=7g-s to
z 3 y z

2
(3.1) and letting A = “d’\;, B = bd”\;, C= %z, D, = Z_Z’ D, = g—; yields the scaled
system ! !
(3.2)
dX AR dYy AR dR
—=1-D,X-|B+—|XY, —=|(B+—=)XY-Y, —=Y-D,R
dr g ( * R+C) Cdr ( * R+C) = i

which will be used in the following analysis, with the scaled parameter values given
by

(3.3) A=0364, C=394x10"% D,=0.057, D,=1000

and with B treated as a bifurcation parameter.

3.2.2. Equilibrium Solutions and Their Stability. The bifurcation patterns of
the scaled system (3.2) are the same as those of system (3.1). Two equilibrium
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Fig. 3.2 (a) Graph of Aa = 0 in the A-B-C parameter space, identifying the region yielding oscilla-
tions; (b) cross section of panel (a), where A = 0.364; and (c) cross section of panel (a),
where C=3.94 x 1074,

solutions are Eg : (Xeo, Yeo, Reo) = (i, 0, 0) and E; : (Xe1, Ye1, Re1), where X1 =
Wr%ﬁ, Y.1 = DyRe1, and Ry is determined from the equation F5(R) =
D, (A+B)R?+[D, + BC+D,—(A+B)|R+(D,—B)C=0.

The characteristic polynomial for Eq is Py(§) = (£ + D) (£ + Dy) (§ — Dﬁw). It
is easy to show that Eg and E; exchange stability at the transcritical bifurcation
point B = D,. The characteristic polynomial for Ey is Py (&,7e1) = €2 + a1(re1)€? +
as(re1)§+as(re1), and the Hopf critical point is determined by Ag = a1 (7e1) az(re1) —
as(re1) = 0. We fix parameters D, and D, and choose A, B, and C as bifurcation
parameters. Then we want to find the parameter region where blips may occur. First,
a Hopf bifurcation is necessary, requiring the condition Ay(A, B,C)=0. The graph
of Ay(A, B,C)=0 is plotted in the 3-dimensional A-B-C parameter space, as shown
in Figure 3.2(a), where the green hypersurface defines a set of points which are Hopf
critical points; the region bounded by the green surface is unstable for E;, leading
to oscillations. Thus blips may occur within this region and near the boundary as
well, depending on the relative position of the Hopf critical point with respect to the
transcritical point.

In the following, we fix either parameter A or parameter C to enable the anal-
ysis and obtain 2-dimensional graphs, which illustrate more clearly the bifurcations
necessary for blips.

3.2.3. Parameter A Fixed. Fix A = 0.364, which cuts the surface in Figure 3.2(a)
to yield curves, as shown in Figure 3.2(b). The transcritical bifurcation occurs at
B = 0.057, which is denoted by a red line in Figure 3.2(b). A Hopf bifurcation occurs
on the green curve, and the region bounded by the green and red curves indicates
where oscillations can happen. It should be noted that the above results are based
on local dynamical analysis; thus blips may also appear outside this bounded region
but close to the green curve.

We take three typical values of C' (as the three dotted lines shown in Figure 3.2(b)),
and we obtain the Hopf critical points as follows:

C =0.002: (Bg,Ry) =~ (1.69x1071 7.90 x 1074),
C=0.012: (Bpg,,Ru,)~ (627 x1072 1.53 x107%),
C=0.012: (Bp,, Ru,) ~ (1.06 x107 1, 5.31 x10~%),
C =0.018: No Hopf critical point.

~
~
~
~

(3.4)
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The bifurcation diagrams corresponding to the three lines C'=0.002, C' =0.012,
and C'=0.018 are shown in the top three graphs in Figure 3.3. Six simulated results
are also presented in this figure, corresponding to the six points marked on the three
dotted lines in Figure 3.2(b). It can be seen that the values taken from the points
(1)—(4) generate blips, point (5) leads to a regular oscillation, while point (6) gives a
simple stable equilibrium solution, as expected. For this case when parameter A is
fixed, no blips have been found for the values outside the region bounded by the red
and green curves. It should be noted in the top middle figure of Figure 3.3 that there
are two Hopf bifurcation points on the equilibrium E;. One of them is supercritical,
while the other is subcritical, but the two families of the limit cycles bifurcating from
these two critical points are both stable, since the stability change is reversed at the
two points. In fact, the three eigenvalues along the unstable part of E; between the
two Hopf bifurcation points contain one negative eigenvalue and a pair of complex
conjugates with positive real part. On the two stable parts, the real part of the
complex conjugate eigenvalues changes sign to become negative. As the parameter C'
increases from 0.002 to 0.018, the two Hopf bifurcation points merge to a single point
on E; (corresponding to the turning point on the green curve (see Figure 3.2(b)), at
which the horizontal line is tangent to the green curve); the corresponding eigenvalues
contain a negative eigenvalue and a purely imaginary pair. This indeed characterizes a
degenerate Hopf bifurcation (see, e.g., [45]) different from the Hopf bifurcation defined
by (2.10). A similar discussion applies to the other two Hopf bifurcation points shown
in the top left panel in Figure 3.4.

3.2.4. Parameter C Fixed. Now we fix parameter C' = 3.94 x 10~%, which results
in curves in the A-B plane by cutting the surface in Figure 3.2(a), as shown in
Figure 3.2(c). The transcritical point is kept the same: B = 0.057. We choose three
typical values of A and find the Hopf bifurcation points as follows:

A=0.025: (Bpg,,Ru,)~ (582 x107% 9.84 x 107?),
A=0.025: (Bu,,Rg,)~ (6.75 x1072, 2.65 x 10~%),
A=0200: (Byg,Ry) =~ (8.32x1072 7.33 x107%),
A=0.364: (Bmg,Rug) =~ (3.99x1072 7.99 x1074).

(3.5)

The bifurcation diagrams corresponding to the three lines A =0.025, A =0.200,
and A=0.364 are shown in the top three graphs in Figure 3.4. Nine simulated results
are also presented in this figure, corresponding to the nine points marked on the five
dotted lines in Figure 3.2(c). It is observed from these graphs that among the nine
chosen parameter values, seven cases exhibit blips (see the points (2)—(7) and (9) in
Figure 3.2(c) with the corresponding simulated results shown in Figure 3.4). It is
noted that some of these points are not even close to the red line, nor are they in the
region bounded by the red and green curves, suggesting that a simple 3-dimensional
HIV model can generate rich blips.

3.3. A 3-Dimensional Immunological Model. In this subsection, we briefly con-
sider an immunological model [29] and apply Hypothesis 1 to show that the model can
have blips. For simplicity, the original 4-dimensional model [4] is reduced (by a quasi-
steady-state assumption on the virus particles) to a 3-dimensional model, described
by

(3.6) &=\ —dx— B(y)zry, v = By)ry — ay — pyz, Z=cyz — bz,

where x, y, and z represent the densities of the uninfected cells, infected cells, and
cytotoxic T lymphocytes (CTLs), respectively. The system (3.6) with constant 8(y)
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Fig. 3.3 Bifurcation diagrams corresponding to C = 0.002, 0.012, and 0.018, respectively,
and numerical simulation results for the parameter values (B,C) = (0.06,0.002)(1),

(0.08,0.002)(2), (0.10,0.002)3), (0.07,0.012)*, (0.09, 0.012)(®), (0.08,0.018)(0).

is well known [7, 28] and does not exhibit blips. In order to generate viral blips, here
we choose B(y) =n+ y’i—%ﬁ, where n and m are minimum and maximum infectivity,
and k represents the density of infected cells when the infectivity takes its median
value. Since the analysis is similar to previous models, we omit the details and give
only the results as follows. The system (3.6) has three equilibrium solutions: the
infection-free equilibrium, Eg, the infected equilibrium with CTL, E;, and the in-
fected equilibrium without CTL, Es. There are two transcritical bifurcation points.
One, named “Transcritical 1”7 in Figure 3.5(a), is at the intersection of Ey and Es:
(ne1, yr1) = (0.005, 0), at which Eg and E5 exchange their stability. The second oc-
curs at the intersection of E; and Ea: (n42, y12) & (—0.01, 0.5), called “Transcritical
2” in Figure 3.5(a). However, note that they only exchange their stability if restricted
to a 1-dimensional manifold, and both are unstable in the whole space since one of the
eigenvalues stays positive when crossing this transcritical point. E; becomes stable
until n is increased to cross a Hopf critical point (called “Hopf 1”7 in Figure 3.5(a)):
(n1m, y1m) ~ (0.206, 0.5). Another Hopf bifurcation point (called “Hopf 2” in Fig-
ure 3.5(a)) happens on Eg at (nog, yam) &~ (0.0213, 1.81). It should be noted that
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Fig. 3.4 Bifurcation diagrams corresponding to A=0.025, 0.200, 0.364 and numerical simulation re-
sults for the parameter values (A, B)=(0.025,0.060)(1), (0.200,0.060)(), (0.200,0.070)(3),
(0.200, 0.085)(4) | (0.300, 0.059)(®),  (0.300,0.070)(®), (0.364,0.060)(7), (0.364,0.070)(®),
(0.400, 0.060)(?)

this Hopf bifurcation occurs from a 2-dimensional manifold that is orthogonal to a 1-
dimensional unstable manifold. That’s why the E, stays unstable when the parameter
is varied to pass through this Hopf critical point. The limit cycles bifurcating from
“Hopf 1”7 are stable, while those from “Hopf 2” are unstable, leading to large oscillat-
ing motions when the values of n are chosen near the two singular points “transcritical
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Fig. 3.5 (a) Bifurcation diagram of system (3.6), showing the equilibrium solutions Eo, E1, and Ea
with dashed and solid lines denoting unstable and stable, respectively. (b) Simulated viral
blips in system (3.6) for n = 0.04. Other parameter values used here are A\=k=p=1, d=
0.01, m=b=0.05, a=0.5, c=0.1.

1”7 and “Hopf 2.” The above results show that all four conditions in Hypothesis 1 are
satisfied, and blips indeed appear. The simulated blips for n = 0.04 are depicted in
Figure 3.5(b).

4. A 2-Dimensional In-Host Infection Model. For the generalized 3-dimensional
model discussed in section 3, we assume that r is some form of damage to the host
or to the host immune system that increases with the extent of the infection, that
is, in proportion to the infected cell density. Here, we further assume that there is
a quasi-steady state (as used in (3.1)) between the damage r and the infected cell y.
Thus, the 3-dimensional HIV model can be further reduced to a 2-dimensional model,
given by

(4.1) &= X\ — dyz — B(y)2y, y = B(y)ry — dyy.

Note that system (4.1) is now in the form of an in-host infection model, which includes
only uninfected and infected target cell populations and the most basic “birth” and
death rates. However, we now think of the infectivity 5(y) as a possible function of y;
other parameters have the same meaning as in (3.6). We will show that this simplified
2-dimensional infection model may also be able to generate blips.

4.1. A 2-Dimensional In-Host Model with Constant and Linear Infection
Rates. First, we consider the case when the infection rate, 5(y), is simply a con-
stant function; that is, S(y) = . Taking g itself as a bifurcation parameter, it is
easy to show that there exist two equilibrium solutions and a transcritical bifurcation
point, but no Hopf bifurcation exists. This violates Hypothesis 1, and therefore no
blips can appear in this case.

Next, suppose the infection rate S(y) is a linear function of the infected cell
density, y, that is, 5(y) = b + ay, where the parameters a and b represent the same
constants as before and «a is treated as a bifurcation parameter. In this case, we have
two equilibrium solutions Eg and E;. But Eg is always stable for all values of a though
there exists a Hopf bifurcation on E;. Therefore, no transcritical bifurcation point
exists for this case, which violates Hypothesis 1, implying that blips are not possible
when S(y) is a linear function.
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4.2. A 2-Dimensional In-Host Model with Saturating Infection Rate. Moti-
vated by our previous results for the 3- and 4-dimensional models, we next assume
that infectivity is an increasing saturating function of the infected cell density v,
namely, 5(y) = b+ ﬁ For our numerical work, we take the same values of a and b
as used in section 3.1, while c is taken to be ¢ = 50, obtained by numerical simulation
based on the experimental data given in [40]. Other parameter values are as described
for model (3.1).

4.2.1. Scaling. For convenience in the following analysis, we first simplify sys-
tem (4.1) by the following scaling to reduce the number of parameters. Let x =
e1 X, y=exY, t=e37, where 61:%, 62:2—””, egzdi, and set A=9%= B=2b =

y Y Y

a2 2
%, D= fl—z. Then the rescaled system is given by

dX AY dy AY
4.2 — =1-DX - B+ —— | XY, —=|B+——= ) XY Y,
(4.2) dr ( +Y—|—C> ’ dr ( +Y+C> ’

with B treated as a bifurcation parameter. Taking the parameter values from [29],
we have the scaled parameter values A=0.364, C'=0.823, and D =0.057 for system
(4.2).

4.2.2. Equilibrium Solutions and Their Stability. By setting X =Y =0 in (4.2),
we get two biologically meaningful equilibrium solutions, the uninfected equilibrium
solution Eg : (X, Yo) = (%, 0) and the infected equilibrium solution E; = (X1, Y1),
where X = W}%% and Y7 is determined by the equation F} = (A+B)Y2_|_(D—|—
BC—-A-B)Y+(D—B)C=0. This indicates that condition (i) in Hypothesis 1 is
satisfied. Similarly, it is easy to find that Eo is stable (unstable) if B < D (B > D).

4.2.3. Bifurcation Analysis. By using the characteristic polynomials at Ey and
E;, we can show that a transcritical bifurcation occurs at the critical point, (Y, B:) =
(0, 0.057), which satisfies condition (ii) in Hypothesis 1. Eg and E; intersect at this
critical point and exchange their stability. Further, a Hopf bifurcation happens at the
critical point (By, Yr) =~ (0.121, 0.811). E; is stable (unstable) on the right (left)
side of the Hopf bifurcation point. Therefore, condition (iii) in Hypothesis 1 holds
for this case. If we take a value of B near B; on the side where both Ey and E;
are unstable, then condition (iv) in Hypothesis 1 is also satisfied and so blips occur.
The bifurcation diagram is shown in Figure 4.1(a), and the simulated viral blips for
B = 0.060 are depicted in Figure 4.1(b).

For this 2-dimensional model, we study the blips phenomenon more carefully and
rigorously show the existence of the blips. To achieve this, we plot the phase portrait,
corresponding to the time history in Figure 4.1(b), as shown in Figure 4.2(a), where
Ep is a saddle point, with eigenvalues 0.0526, —0.057, and E; is an unstable focus,
with eigenvalues 0.0766 £ 0.3865¢. Comparing Figure 4.2(a) with Figure 2.3 indeed
shows that the qualitative behavior of the system does not change after the model
reduction from four dimensions to two dimensions, with only the value of y increased
in the 2-dimensional model. Note that we do not show the speed of the trajectory in
Figure 4.2(a) since it is similar to that in Figure 2.3.

Now we want to show that no homoclinic orbits can exist for this model. First,
it is easy to find that the two eigenvalues at the saddle point Ey are & = —D and
& = % —1 (> 0 for B > D), and their corresponding eigenvectors are v; = (1,0)
and vy = (1,2(1 — D) — 1), respectively. It should be noted that for convenience
(z,y) are used in Figure 4.2(a), while (X,Y") are used in Figure 4.2(b); their relation
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Fig. 4.1 (a) Bifurcation diagram projected on the B-Y plane, with the thick and thin lines denoting
Eo and E1, respectively, and dotted and solid lines indicating unstable and stable, respec-
tively. (b) Simulated time history of y(t) for B = 0.060.
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Fig. 4.2 (a) Simulated phase portrait of the blips (see Figure 4.1(b) for the time history). (b)
Construction of the trapping region of the blips (limit cycle).

is given by (z,y) = (60.76X,60.76Y). The first eigenvector v; is in the direction
of the X-axis. Thus, if a homoclinic orbit exists, it must leave the saddle point Eq
along the direction of vo and return to the point along v;. Further, we can use (4.2)
to show that the X-axis is actually a solution trajectory of this system. Thus, if a
homoclinic orbit passing through the saddle point Eg exists, it must contain the part
of the X-axis from X =0to X = %. However, this is impossible because this part of
the X-axis for X € [0, %) does not contain singular points and so no other trajectories
can connect the X-axis for X € [0, %) due to the uniqueness of solutions. Therefore,
no homoclinic orbits can exist and thus the stable limit cycle (blips) is not due to
homoclinic bifurcation.

Next, we apply Poincaré-Bendixson theory to prove the existence of the limit
cycle. Since E; is an unstable focus point, we can construct an annulus to form a
trapping region, with the inner closed boundary, a circle with small enough radius,
enclosing the focus point E1, and the outer boundary, a right triangle as shown in Fig-

ure 4.2(b), consisting of the X-axis, the Y-axis, and the hypotenuse ¥ = K (X — %),
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where K = Z(1—£) —1 is the slope of the hypotenuse. It is obvious that all solution
trajectories inside the inner boundary move toward the trapping region, since E; is
an unstable focus. For the outer boundary, first note that the slope of the hypotenuse
is less than that of the eigenvector vs, i.e., the hypotenuse stands more vertically than
vo. As has been shown above, the X-axis is a trajectory of the system. For the Y-axis,
it is easy to see that for Y > 0, % =1, % = —Y < 0, implying that trajectories
cross the Y-axis in the left to right, downward direction (see Figure 4.2(b)). For the
hypotenuse Y = K(X — %), X €0, %), we can use the equation of the hypotenuse
and the differential equations in (4.2) to show that all trajectories cross the hypotenuse
in the direction toward the trapping region, as shown in Figure 4.2(b). Therefore, by
applying Poincaré-Bendixson theory, we know that there exists at least one closed
orbit (limit cycle) within this trapping region. The numerical simulation shows that
only one closed orbit (limit cycle) exists within this trapping region. It is noted that
for the given parameter values B = 0.06, D = 0.057, the two eigenvalues at the saddle
point Eg are —0.06 and 0.053, associated with the eigenvectors v; = (1,0) (in the X-
axis direction) and vy = (1, —0.104), respectively (see Figure 4.2(b)). This is why the
trajectory moves very slowly around the corner of the saddle point Eg, while it moves
very quickly when it is away from this corner. For example, at the point (X,Y) =
(6.641,9.574) the eigenvalues are —1.020+1.6254, so the convergence rate at this point
to that of the point near the saddle point Eg is about % ~ 20, showing that the tra-
jectory moves through this point much faster than the points near the saddle point Ey.

Summarizing the results of this section, we conclude that the simple 2-dimensional
in-host model is sufficiently complex to exhibit viral blips, provided the infectivity
function is an increasing, saturating function of infected cell density. However, for
this model, the range of parameter space in which blips occur is relatively restricted,
compared with the 3-dimensional model, which is established in the previous section.

An interesting question naturally arises: Does there exist a more general function
B(y) such that the existence of blips depends upon the general properties of the
function like its maximal values and/or its derivatives? In fact, it has been found that
by choosing the parameter ¢ large enough in the function g, a threshold is reached
beyond which the Hopf bifurcation and hence also the viral blips disappear.

5. Recurrency in a 5-Dimensional Model. So far, we have considered 2-, 3-, and
4-dimensional in-host infection models with increasing, saturating, infectivity func-
tions and have shown that all these models exhibit blips. Moreover, it has been shown
for the 2-dimensional model (and can be shown for the 3- and 4-dimensional models,
though omitted here) that replacing the infectivity function with a constant or linear
function of y will cause blips to disappear. However, in this section we will show that
higher-dimensional systems may have blips even with a constant infectivity function.

We consider a previously proposed 5-dimensional immunological model in which
recurrent phenomena or viral blips have been observed via numerical simulation [42].
The model describes antibody concentrations and CTLs explicitly and is described as
follows:

(5.1a) &= A—dx — Pz,

(5.1b) Y = v — ay — pyz,
(5.1c) Z=cyz —bz+ hy,

(5.1d) U =&z —nu — kuv,

(5.1e) U = ey — kuv — yzv — qu.

Here x, y, z, u, and v are, respectively, the population densities of uninfected target
cells, infected target cells, CTLs, antibodies, and virions. The parameters A and
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Table 5.1 Parameter values used in model (5.1) [42].

Parameter Value

A 10%  cells pL =t day !

d 0.100 day~!

B 1.25 x 10~%  virion~! pL day !
P 1074 cells™! pL day~!

c 10~%  cells™! pLday~!

b 0.200 day~!

h [0, 1074] day~!

13 10.0 molecules cell ™! day~?

n 0.040 day~!

k 2.50 x 1075 particle™! uL day !
e 2.50 virions cell ™! day !

o 5.00 x 1075 cell™! pLday !

dx represent the uninfected cells’ constant growth rate and death rate, respectively.
Target cells are infected by the virus at rate Szv. The infected cells die at rate ay,
being killed by CTLs at rate pyz. It is assumed that CTLs proliferate at rate cyz
and decrease with the natural death rate bz. Equation (5.1d) describes the antibody
growth rate, £z, which is proportional to the number of CTLs, the natural death
rate of antibody, nu, and the binding rate of one antibody with one antigen, kuv. In
(5.1e), viruses are released from infected cells at rate ey and are bound by antibody,
absorbed by uninfected cells, or cleared at rates kuv, yrv, and qu, respectively. The
term hy corresponds to the CTL differentiated from memory T cells [42] and should
be expressed as hj;yzas, where zps is the population density of virus-specific memory
T cells, which produce activated CTLs with rate hpsy. In [42], zps is assumed to be
a constant, and so we have h = hjp;z),. We will consider two cases: h = 0 and h # 0;
h = 0 is due to the absence of memory T cells (that is, zps = 0) during the primary
effector stage. We will show the relation between the two cases. For simplicity,
without loss of the properties of antibodies, we assume ¢ = 0 according to [42]. Other
experimental parameter values used for studying model (5.1) are given in Table 5.1.

5.1. Well-Posedness of Model (5.1). Due to physical reasons, negative values of
the state variables of system (5.1) are not allowed. Only nonnegative initial conditions
are considered, and the solutions of (5.1) must be nonnegative. The parameters in
(5.1) are all positive, again for biological reasons. Expressing the solutions of system
(5.1) by variation of constants yields

2(0) exp [~ [1(d + Bu(s)) ds] + A [ exp [~ [ (d + Bu(w)) dw] ds,
y(0) exp [~ [ (a + pz(s)) ds]
+p fot z(s)v(s)exp [~ f (a + pz(w)) dw] ds,

(5.2a)  x(t) =
(5.2b)  y(¢)

(5.2¢)  z(t) = z(0) exp [, (cy(s) — b) ds] + hfo s) exp [f:(cy(w) — b) dw] ds,
(5:2d)  u(t) = u(0) exp [~ [y (n + kv(s)) ds]

+& [y 2(s) exp = [L(n+ kv(w)) dw] ds,
(5:20)  o(t) = v(0) exp |- (ku(s) 4 ya(s) + q)ds]

+e Jyy(s) exp[= [ (ku(w) + ya(w) + g)du]ds.
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First, we have the following result: When the initial conditions are taken to be
positive, the solutions of system (5.1) remain positive for ¢ > 0. Moreover, they are
bounded. This can be shown as follows: By the initial condition z(0) > 0, it is easy
to see from (5.2a) that z(t) > 0 V¢ > 0. Next, we show that y(t) > 0 V¢ > 0 by
contradiction. Suppose, otherwise, that y(¢) < 0 for some interval t € (¢1,t2), t1 > 0.
Since y(0) > 0, without loss of generality, we may assume ¢; is the first time that
y crosses zero, i.e., y(t) > 0 Ve € [0, t1), y(t1) = 0, and y(t) < 0 V¢ € (t1, ta).
Thus, from (5.2e) we have v(t;) > 0 due to v(0) > 0. On the other hand, it is
seen from (5.2b) that v(¢) must cross zero to become negative at some t < ¢, since
y(t) <0Vt € (t1, t2). However, it follows from (5.2¢) that

v(t) >0  Vte|0,t],

leading to a contradiction. Hence y(¢) > 0 V¢ > 0, and it then follows from (5.2c)
and (5.2e) that z(t) > 0 and v(t) > 0Vt > 0. Finally, by the positivity of z(¢), (5.2d)
gives u(t) >0Vt > 0.

It remains to prove that positive solutions of system (5.1) are all bounded. First,
consider (5.1a), which yields & < A — dz. Given that the exponential functions have
negative exponents, we show that x(t) for ¢ > 0 is bounded since as t — +00,

x(t) < exp (—fot dds) [z(0)+ A\ fot exp ([, ddu)ds] = z(0)e~% + 3(1 — =) < 3.

Thus, denote Zmax =lims—s 4o SUp z(t) = %. It is easy to see that zpi, >0. Next, we
add (5.1a) and (5.1b) together to obtain £+y=A—dz—ay—pyz < A—min(d, a)(z+y).

Using the same boundedness argument for x(t), we get x(t) +y(t) < m as

t — +00, and thus Ymax = limy oo sup y(t) < m Now consider (5.1e), yielding
U< €Ymax— (YZmin+¢) v. Similarly, using the same boundedness argument as for z(t),
we have limy_, 4 oo v(t) < % To prove boundedness of z(t) V>0, we use proof by
contradiction. Assume z(t) is unbounded, i.e., lim;_, o 2(¢t) = 400. Due to positivity
of z, y, z, and v and boundedness of z, y, and v, it follows from (5.1b) that y <0 for
z>2z* or for t>t*>0 (z* and t* are finite), which implies lim;_, o y(¢) = 0. Then
from (5.1c) we have 2 = (cy —b)z+ hy, so for sufficiently large ¢, cy —b < 0, and so
Z becomes negative (for some z > z*), implying that z cannot increase unboundedly,
which is a contradiction. Thus, we denote zmax = max{z(t), ¢ > 0}. Finally, from
(5.1d), we have @ < Ezmax—nu, which yields u(t) < 52“7“‘ as t— +oo. Hence, we have
shown that the solutions of system (5.1) are positive and bounded.

If the initial conditions have some zero elements, it is easy to see from (5.2) that
solutions are nonnegative. Hence, system (5.1) is proved to be a well-posed biological
model, with nonnegative and bounded solutions.

5.2. Equilibrium Solutions and Their Stability. The following results are ob-
tained based on the assumption ¢ = 0 [42]. The equilibrium solutions of (5.1)
are obtained by simply setting the vector field of (5.1) to zero. There are two
equilibrium solutions, the infection-free equilibrium Eg : (Ze0, Ye0, 2¢0, Ue0, Veo) =
(%, 0, 0, 0, 0) and the infected equilibrium E; : (Ze1, Ye1, Ze1, Uel, Ve1), Where ve; =

A—dxer Ue1 (N+kve1) Ve (kue1+yTe1)
Bxe1 I3 e :

with the parameter values in Table 5.1 (with h = 107%), we obtain a transcritical
point (z¢, a;)=(0.625, 1.00 x10°) at which Ey and E; exchange their stability, which
actually holds for both cases h # 0 and h = 0. We also find a Hopf bifurcation point

) Zel = , and ye1 = From the bifurcation analysis,
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Fig. 5.1 Bifurcation diagram and simulated viral blips for system (5.1) with the parameter values

taken from Table 5.1 when a = 0.500: (a) Bifurcation diagram for h = 10~%, with the red
and blue lines denoting Eo and E1, respectively, and the dotted and solid lines indicating
unstable and stable, respectively (the lower branch of Eq is biologically meaningless, due to
negative values in the solution); (b) simulated time history of y(t) for h = 10~%; and (c)
stmulated time history of y(t) for h = 0.

(rm, ap) ~ (8.85x10% 0.617). Note that the Hopf bifurcation point is above the
turning point (ZTurning; GTurning) =~ (8.82% 10%, 0.604) in the upper branch of E; (see
Figure 5.1).

The above results show that the case h # 0 satisfies all four conditions in Hypoth-
esis 1 to generate recurrent infection, and indeed recurrence occurs for a € (0, a*),
where a* < ag. Moreover, a* should not be too close to ag; otherwise the period of
limit cycles bifurcating from the Hopf critical point (zg, ag) is relatively small. The
bifurcation diagram, shown in Figure 5.1(a), indicates that the Hopf critical point ay
is located on the left side of a = a¢, where Eg is unstable. A simulated time course
exhibiting recurrent infection is depicted in Figure 5.1(b).

5.3. Bifurcation Analysis for h — 07. Now we consider the special case, h = 0.
It is easy to observe from (5.1c) that the solutions of system (5.1) are discontinuous
at h = 0. Therefore, to have continuity, we should regard the special case h = 0 as
the limiting case h — 07. When h = 0, the seemingly vertical line in the bifurcation
diagram for h = 0 disappears, clearly showing the discontinuity of E; at h = 0.
This causes difficulty in bifurcation analysis. However, if we treat the case h = 0
as the limiting case h — 0%, the solution E; continuously depends on h, and the
bifurcation diagram becomes smooth. Therefore, we can still use our theory to explain
the occurrence of blips for the case h = 0, as shown in Figure 5.1(c).

Similarly, we may conclude that the occurrence of the blips (for both cases h # 0
and h = 0) are not due to homoclinic bifurcation since we can show that no homoclinic
orbits exist in system (5.1).

6. Conclusion and Discussion. In this paper, the problem of recurrent infec-
tion (viral blips) in in-host infection models is studied via the qualitative analysis
of dynamical systems. A 4-dimensional HIV antioxidant-therapy model [40], which
produces viral blips, is investigated in detail using bifurcation theory. A hypothesis
consisting of four conditions for the emergence of viral blips is proposed. These condi-
tions describe two equilibrium solutions which intersect at a transcritical bifurcation
point, with a Hopf bifurcation which originates from the equilibrium solution. Under
these conditions, blips appear for values of the bifurcation parameter near the trans-
critical point, where equilibrium solutions are unstable. We also discuss how the blips
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are generated and find that they are not due to homoclinic bifurcation since we have
shown that no homoclinic orbits exist in all the models considered in this paper.

Guided by the proposed hypothesis, we propose several simpler in-host infection
models that can also generate viral blips. We develop a 3-dimensional in-host model
with an increasing, saturating infection rate similar to the HIV antioxidant-therapy
model and show that all four conditions in the hypothesis are satisfied, leading to blips.
Further, stability and bifurcation analysis determine all possible regions in parameter
space where blips may occur. We then investigate an even simpler 2-dimensional in-
host model. This very simple model can also exhibit blips, as long as the infection
rate is an increasing, saturating function of infected cell density. We also apply the
hypothesis to study a standard HIV model with CTL response [29] and find blips by
using an increasing, saturating infection rate function.

Overall, our results suggest that simple ODE models of in-host infection dynamics
are sufficient to describe transient periods of high viral replication, separated by long
periods of quiescence. Rather than needing an exogenous trigger such as stochastic
stimulation of the immune system, the natural dynamics of such systems may be
sufficiently rich, in many cases, to exhibit viral blips. One key to obtaining this
rich behavior is to propose an infection rate which increases, but saturates, with
the extent of the infection. This is a natural assumption if the infection itself (high
density of infected target cells) makes the host more vulnerable to further infection.
Such an assumption is certainly natural for HIV, where the primary target cells are
T lymphocytes.

All the simulated oscillating motions and blips presented in this paper show con-
stant amplitudes and frequencies. This is because all parameter values are fixed in
the simulations. We note, however, that nonlinear, deterministic systems can indeed
generate oscillations with varying amplitudes and phases, called “amplitude modula-
tion” and “frequency modulation,” due to nonlinearity. This can be seen from (2.11),
where both amplitude and phase are functions of the parameter u. Since in reality
parameters are not constant, time-varying parameters can be seen as analogous to the
variation due to random perturbations in stochastic models. Although deterministic
models with fixed parameter values cannot generate varying amplitude and phase,
deterministic models can generate such variation if the system is nonlinear and some
parameters vary with time. For example, Figure 6.1 shows the result of changing
the fixed « used in Figure 2.2(c) to a time-varying deterministic function, clearly
demonstrating that a deterministic model can generate blips of varying magnitude,
frequency, and duration.

We note that, mathematically, a system of delay differential equations (DDEs)
could also generate oscillatory behaviors similar to viral blips. However, in this case,
the inherent delay would need to be of the same order as the interval between blips,
that is, on the order of several months. Since it is difficult to suggest a physiological or
immunological process that would impose a delay of this magnitude, it seems unlikely
that DDEs are the most natural approach for modeling viral blips.

While we are able to show that linear or constant infection rates do not lead
to blips in the 2-; 3-, or 4-dimensional models we have studied, further study of a
5-dimensional immunological model reveals that a system with a constant infection
rate can also generate blips. This suggests that the use of an increasing, saturating
infection rate function is not necessary but is effective in low-dimensional models.
The results presented here provide a useful tool for the mathematical study of viral
blips or other examples of recurrent infection. The conditions in our hypothesis may
also be used or generalized to study recurrent phenomena in other physical systems.
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Fig. 6.1 Simulated viral blips of system (2.1) with varying amplitude and frequency when using a
time-varying function a(t) = arp + [ — 0.31 + 0.3¢—3 cos(t/50) cos(t/100)] x 10'3, where
ar = 4.58 x 1013 is the transcritical bifurcation value.
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