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Abstract

In recent years, considerable effort has been placed on developing efficient and robust solution algorithms for the incom-
pressible Navier–Stokes equations based on preconditioned Krylov methods. These include physics-based methods, such as
SIMPLE, and purely algebraic preconditioners based on the approximation of the Schur complement. All these techniques
can be represented as approximate block factorization (ABF) type preconditioners. The goal is to decompose the application
of the preconditioner into simplified sub-systems in which scalable multi-level type solvers can be applied. In this paper we
develop a taxonomy of these ideas based on an adaptation of a generalized approximate factorization of the Navier–Stokes
system first presented in [A. Quarteroni, F. Saleri, A. Veneziani, Factorization methods for the numerical approximation of
Navier–Stokes equations, Computational Methods in Applied Mechanical Engineering 188 (2000) 505–526]. This taxonomy
illuminates the similarities and differences among these preconditioners and the central role played by efficient approximation
of certain Schur complement operators. We then present a parallel computational study that examines the performance of
these methods and compares them to an additive Schwarz domain decomposition (DD) algorithm. Results are presented
for two and three-dimensional steady state problems for enclosed domains and inflow/outflow systems on both structured
and unstructured meshes. The numerical experiments are performed using MPSalsa, a stabilized finite element code.
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1. Introduction

Current leading-edge engineering and scientific flow simulations often entail complex two and three-dimen-
sional geometries with high resolution unstructured meshes to capture all the relevant length scales of interest.
After suitable discretization and linearization these simulations can produce large linear systems of equations
with on the order 105–108 unknowns. As a result, efficient and scalable parallel iterative solution methods are
required. We consider solution methods for the incompressible Navier–Stokes equations where the equations
below represent conservation of momentum and mass, and the constitutive equation for the Newtonian stress
tensor,
Momentum : qðu � rÞu ¼ r � Tþ qg;

Mass : r � u ¼ 0;

Stress tensor : T ¼ �P Iþ lðruþruTÞ
ð1Þ
in X � Rd (d = 2 or 3). Here the velocity, u, satisfies suitable boundary conditions on oX, P represents the
hydrodynamic pressure, q the density, l the dynamic viscosity, and g the body forces.

We focus on solution algorithms for the algebraic system of equations that result from linearization and
discretization of these equations. The coefficient matrices have the general form
A ¼ F BTbB �C

 !
: ð2Þ
The strategies we employ for solving (2) are derived from the LDU block factorization of this coefficient
matrix,
A ¼
I 0bBF �1 I

� �
F 0

0 �S

� �
I F �1BT

0 I

 !
; ð3Þ
where
S ¼ C þ bBF �1BT ð4Þ

is the Schur complement (of F in A). They require methods for approximating the action of the inverse of the
factors of (3), which, in particular, requires approximation to the actions of F�1 and S�1. For large-scale com-
putations, use of the exact Schur complement is not feasible. Therefore effective approximate block factoriza-
tion (ABF) preconditioners are often based on a careful consideration of the spectral properties of the
component block operators and the approximate Schur complement operators. There has been a great deal
of recent work on ABF methods (e.g. [3,4,6,8,17]). These techniques take a purely linear algebraic view of pre-
conditioning. Through these decompositions a simplified system of block component equations is developed
that encodes a specific ‘‘physics-based’’ decomposition. Alternatively, one could start with ‘‘physics-based’’
iterative solution methods for the Navier–Stokes equations (e.g. [21,22]) and develop preconditioners based
on these techniques as described in [18]. In both these cases, the system has been transformed by the factor-
ization into component systems that are essentially convection–diffusion and Poisson type operators. The re-
sult is a system to which multi-level methods, and in our particular case, algebraic multi-level methods (AMG)
can be applied successfully for parallel unstructured mesh simulations.

In this paper, we include preconditioners developed from iterative solution strategies based on pressure cor-
rection methods, like SIMPLE, proposed by Patankar and Spaulding [22] and previously studied as a precon-
ditioner by Pernice and Tocci in [23]. We interpret these methods in the context of our taxonomy and compare
them with some new ‘‘approximate commutator methods’’. These techniques are based on the approximation
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of the Schur complement operator by a technique proposed by Kay et al. [17], Silvester et al. [29], and Elman
et al. [10].

The paper is organized as follows. Section 2 gives a brief description of the Newton iteration and pro-
vides an overview of the discretization and resulting coefficient matrix used for our numerical experiments.
Section 3 presents a taxonomy for classifying the approximate block preconditioners. Section 4 provides a
brief overview of the parallel implementation of the nonlinear and linear solvers. Details of the numerical
experiments and the results of these experiments are described in Section 5. Concluding remarks are pro-
vided in Section 6.
2. Background

Our focus is on solution algorithms for the systems of equations that arise after discretization and linear-
ization of the system (1). A nonlinear iteration based on an inexact Newton–Krylov method is used to solve
this problem. If the nonlinear problem to be solved is written as G(x) = 0, where G : Rn ! Rn, then at the kth
step of Newton’s method, the solution of the linear Newton equation,
JðxkÞsk ¼ �gðxkÞ ð5Þ

is required, where xk is the current solution and J(xk) denotes the Jacobian matrix of G at xk. Once the Newton
update, sk, is determined, the current approximation is updated via
xkþ1 ¼ xk þ sk:
Newton–Krylov methods [7] relax the requirement to compute an exact solution to (5). Instead, a Krylov sub-
space method, such as GMRES, is applied until an iterate sk is found that satisfies the inexact Newton

condition,
kgðxkÞ þ JðxkÞskk 6 gkkgðxkÞk; ð6Þ

where, gk 2 [0, 1], is a tolerance. If gk = 0, this is an exact Newton method. For a discussion of the merits of
different choices of gk, see [7]. For this computational study, gk is chosen to be a constant and our attention is
focused on preconditioning methods for use with GMRES solving for the Newton update.

For the discrete Navier–Stokes equations, the Jacobian system at the kth step that arises from Newton’s
method is
F BTbB �C

 !
Duk

Dpk

� �
¼

gk
u

gk
p

 !
; ð7Þ
where F is a convection–diffusion-like operator, BT is the gradient operator, bB is the divergence operator that
for some higher-order stabilized formulations can include a contribution from non-zero higher-order deriva-
tive operators in the stabilized formulation [5], and C is the operator that stabilizes the finite element discret-
ization. The right-hand side vector, (gu, gp)T, contains, respectively, the nonlinear residual for the momentum
and continuity equations. This Newton procedure starts with some initial iterate u0 for the velocities, p0 for the
pressure; then updates for the velocities and pressures are computed by solving the Newton equations (7). Fur-
ther details on the particular discretization used in our experiments can be found in Section 4.

All of the methods we describe in Section 3 generate some approximation, eA, to the Jacobian system found
in (5). Some of the methods considered in this paper have been traditionally derived as stationary iterative
solvers, and we use this mode of description in parts of the paper. That is, for
Au ¼ f ð8Þ

stationary iterations have the form
unþ1 ¼ un þ eA�1ðf � AunÞ

where eA is a Jacobian approximation, A ¼ eA � E, and un is the approximate solution at the nth iteration. All
of our experiments use the splitting operators as preconditioners in a Krylov subspace method.
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3. Taxonomy of approximate block factorization preconditioners

We adopt a nomenclature developed by Quarteroni et al. [25] for algebraic splittings of A for projection
type methods. Let H1 represent an approximation to F�1 in the Schur complement (4) and let H2 be an
approximation to F�1 in the upper triangular block of the factorization (3). This results in the following
decomposition:
As ¼
I 0bBF �1 I

� �
F 0

0 �ðC þ bBH 1BTÞ

� �
I H 2BT

0 I

" #
¼ F FH 2BTbB �ðC þ bBðH 1 � H 2ÞBTÞ

" #
: ð9Þ
The error matrix, Es = A � As is
Es ¼
0 ðI � FH 2ÞBT

0 �bBðH 2 � H 1ÞBT

" #
:

This decomposition is used in [25] to illuminate the structure of several projection techniques for solving the
time-dependent Navier–Stokes equations. By examining the error, we can determine which equation (momen-
tum or continuity) in the original problem is perturbed by the approximations H1 or H2. For example, if
H1 = F�1 and H1 6¼ H2, then the operators applied to the pressure in both the momentum equation and con-
tinuity equation are perturbed, whereas operators applied to the velocity are not perturbed. On the other
hand, if H2 = F�1 and H1 6¼ H2, then the (1, 2) block of the error matrix is zero. So, the momentum equation
is unperturbed, thus giving a ‘‘momentum preserving strategy’’, whereas a perturbation of the incompressibil-
ity constraint occurs [25]. If H1 = H2 6¼ F�1, then the scheme is ‘‘mass preserving’’ because the (2,2) block of
the error matrix is zero, so the continuity equation is not modified. Finally, if H1 6¼ H2 6¼ F�1, then both the
momentum and continuity equations are modified.

The above factorization can be generalized to incorporate ‘‘classical’’ methods used for these problems such
as SIMPLE, SIMPLEC, SIMPLER [22,23], as well as newer approximate commutator methods devised to
generate good approximations to the Schur complement [17,29]. Let us modify (9) using some approximation
H1 in place of F�1 in the lower triangular block. In addition, let Ŝ represent an approximation of the Schur
complement. This gives
eA ¼ I 0bBH 1 I

� �
F 0

0 �bS
� �

I H 2BT

0 I

" #
¼ F FH 2BTbBH 1F bBH 1FH 2BT � bS
" #

: ð10Þ
The error, denoted eE ¼ A� eA, is
eE ¼ 0 BT � FH 2BTbB � bBH 1F bS � ðC þ bBH 1FH 2BTÞ

" #
:

Techniques explored in this study can be classified into two categories: those whose factorization groups the
lower triangular and the diagonal components as [(LD)U], and those that group the diagonal and lower tri-
angular components as [L(DU)]. Methods with the (LD)U grouping have the factorization
eAðLDÞU ¼
F 0bBH 1F �bS

� �
I H 2BT

0 I

" #
: ð11Þ
Methods with the L(DU) grouping have the factorization
eALðDUÞ ¼
I 0bBH 1 I

� �
F FH 2BT

0 �bS
" #

: ð12Þ
Some of the techniques considered do not use the complete factorization (11) or (12), but rather use only tri-
angular components of the factorization. SIMPLE uses the block (LD)U grouping. The approximate commu-
tator methods are derived from the block L(DU) grouping and use just the diagonal and upper triangular
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(DU) components in the method. Finally, these classifications are further refined by specifying strategies for
approximating the Schur complement.

3.1. Pressure correction

The pressure correction family of Navier–Stokes preconditioners is derived from the divergence free con-
straint with decoupling of the incompressible Navier–Stokes equations. In the following sections, three pres-
sure correction methods are derived, SIMPLE (Semi-Implicit Method for Pressure Linked Equations),
SIMPLEC, and SIMPLER (Semi-Implicit Method for Pressure Linked Equations Revised) [22–24].

3.1.1. The SIMPLE preconditioner

The SIMPLE-like algorithm described here begins by solving a variant of the momentum equation for an
intermediate velocity using a previously generated pressure; then the continuity equation is solved using the
intermediate velocity to calculate the pressure update. This value is used to update the velocity component.
The SIMPLE algorithm expressed as a stationary iteration is as follows:

1. Solve: F unþ1
2
¼ f � BTpn for the velocity, u.

2. Solve: �ðC þ bBdiagðF Þ�1BTÞdp ¼ bBunþ1
2
þ Cpn for dp.

3. Calculate the velocity correction: du ¼ unþ1 � unþ1
2
¼ ð�diagðF Þ�1BTÞdp.

4. Update the pressure: pn+1 = pn + adp
5. Update the velocity: unþ1 ¼ unþ1

2
þ du

The quantity a is a parameter in (0, 1] that damps the pressure update. An alternative derivation is obtained
using the LDU framework described above. The block lower triangular factor (L) and the block diagonal (D)
are grouped together. In terms of the taxonomy described above, this corresponds to the choices H1 = F�1,
H2 = (diag(F))�1, and bS ¼ C þ bBðdiagðF ÞÞ�1BT in (11). The decomposition is
F BTbB �C

" #
�

I 0bBF �1 I

� �
F 0

0 bS
� �

I ðdiagðF ÞÞ�1BT

0 aI

" #
¼

F 0bB �bS
� �

I ðdiagðF ÞÞ�1BT

0 aI

" #
¼ eASIMPLE:
Thus, one iteration of SIMPLE corresponds to
unþ1

pnþ1

� �
¼

un

pn

� �
þ eA�1

SIMPLE

f

0

� �
� A

un

pn

� �� �

where A is defined in (2). The error for this method (when a = 1) is
ESIMPLE ¼ A� eASIMPLE ¼
0 BT � F ðdiagðF ÞÞ�1BT

0 0

" #
:

SIMPLE does not affect the terms that operate on the velocity, but it perturbs the pressure operator in the
momentum equation. This results in a method that is ‘‘mass preserving’’. When diag(F)�1 is a good approx-
imation to F�1, then ESIMPLE is close to a zero matrix, so this method generates a very close approximation to
the original Jacobian system. From our computational experiments in Section 5, we have found that the diag-
onal approximation can yield poor results because the diagonal approximation does not capture enough infor-
mation about the convection operator.

3.1.2. The SIMPLEC preconditioner
The SIMPLEC algorithm is a variant of SIMPLE [23]. It replaces the diagonal approximation of the

inverse of F with the diagonal matrix whose entries contain the absolute value of the row sums of F. The
matrix structure is the same (LD)U as that of SIMPLE. The symbol

P
ðjF jÞ denotes a matrix whose entries

are equal to the absolute value of the row sum of F. With the choices H1 = F�1, H 2 ¼ ð
P
jF jÞ�1, and
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bS ¼ C þ bBðP jF jÞ�1BT, the SIMPLEC method can be expressed in terms of the block factorization (11). The
decomposition is
F BTbB �C

" #
�

F 0bB �bS
� �

I ð
P
ðjF jÞ�1BT

0 aI

" #
¼ eASIMPLEC
where bS ¼ C þ bBðP jF jÞ�1BT. The error for this method (when a = 1) is
ESIMPLEC ¼ A� eASIMPLEC ¼
0 BT � F ð

P
jF jÞ�1BT

0 �bBðP jF jÞ�1BT þ bBF �1BT

" #
:

This method perturbs the pressure operator in both the momentum and continuity equations. The choice of
the absolute value of the row sum tends to provide a better approximation to the matrix F, therefore reducing
the error associated with this method [23]. We have found that this choice works reasonably well and is easy to
construct. Further variations of this class of methods can be determined by choosing different approximations
to F�1, such as sparse approximate inverses. For our computational results in Section 5, we use the absolute
value of the row sum.

3.1.3. The SIMPLER preconditioner

The SIMPLER algorithm is very similar to SIMPLE, except that it first determines p̂nþ1 using un, then it
calculates an intermediate velocity value, unþ1

2
. This intermediate velocity is projected to enforce the continuity

equation, which determines un+1. The steps required are as follows:

1. Solve: ðC þ bBdiagðF Þ�1BTÞp̂nþ1 ¼ �bBdiagðF Þ�1ðf þ F un � BT pnÞ for the pressure, p̂nþ1.

2. Solve: F unþ1
2
¼ f � BTðp̂nþ1 � pnÞ for the velocity, u.

3. Project unþ1
2

to obtain unþ1 ¼ ½I þ ðdiagðF Þ�1Þ�1bBðC þ BdiagðF Þ�1BTÞ�1BTÞ�unþ1
2

4. Update the pressure: pnþ1 ¼ ap̂nþ1

Once again, a is a parameter in (0, 1] that damps the pressure update. SIMPLER can also be expressed
using the LDU framework. The block diagonal (D) and the block upper triangular (U) factors are grouped
together and an additonal matrix, P, a projection matrix for the velocity projection in step 3, is added to
the factorization.

In terms of the taxonomy, this corresponds to the choices of H1 = diag (F)�1, H2 = F�1, andbS ¼ C þ bBdiagðF Þ�1BT in (12). Then
F BTbB �C

" #
�

I 0bBF �1 I

� �
F BT

0 S

" #
�

I 0bBðdiagðF ÞÞ�1 I

� �
F BT

0 �bS
" #
where bS ¼ C þ bBðdiagðF ÞÞ�1BT. Now, the projection matrix is added to give the SIMPLER algorithm in ma-
trix form. This results in
eASIMPLER ¼
I þ ðdiagðF ÞÞ�1bBbS�1BT 0

0 aI

" #
I 0bBðdiagðF ÞÞ�1 I

� �
F BT

0 �bS
" #

ð13Þ
[23]. Thus, one iteration of SIMPLER corresponds to
unþ1

pnþ1

� �
¼

un

pn

� �
þ eA�1

SIMPLER

f

0

� �
� A

un

pn

� �� �

where A is defined in (2) and eASIMPLER is defined in (13). The use of the projection matrix, which has subsidiary
solves that must be performed to very high accuracy, greatly degrades the performance of this method when
compared to SIMPLE. However, the projection matrix is needed to enforce the continuity equation, and
therefore produce a solution that is divergence free [23]. This method perturbs the pressure operator in both
the momentum and continuity equations.
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3.1.4. Remarks on pressure correction methods

In this section, the pressure correction methods (SIMPLE/SIMPLEC) that begin with the underlying
factorization, (LD)U and use approximations to the components of the factors to define the precondition-
er have been given. SIMPLER is based on the decomposition L(DU) with approximations to
P�1(DU)�1L�1 as the preconditioner. These methods are useful for steady-state flow problems. However,
these methods tend to converge slowly and require the user to input a relaxation parameter to improve
convergence.

3.2. Approximate commutator methods

The pressure convection–diffusion preconditioners group together the diagonal and upper triangular fac-
tors and omit the lower triangular factor. Let H1 = H2 = F�1. Then the block factorization of the coefficient
matrix is
F BTbB �C

 !
¼

I 0bBH 1 I

� �
F FH 2BT

0 �S

 !
¼

I 0bBF �1 I

� �
F BT

0 �S

 !
: ð14Þ
where the diagonal (D) and upper triangular (U) factors are grouped together. For our computations, we
only use the upper triangular factor, and replace the Schur complement S by some approximation Ŝ (to
be specified later). The efficacy of this strategy can be seen by analyzing the following generalized eigenvalue
problem:
F BTbB �C

 !
u

p

� �
¼ k

F BT

0 bS
 !

u

p

� �
:

If Ŝ is the Schur complement, then all the eigenvalues of the preconditioned matrix are identically one. This
operator contains Jordan blocks of dimension at most 2, and consequently at most two iterations of a precon-
ditioned GMRES iteration would be needed to solve the system [20].

We motivate the Approximate Commutator Methods by examining the computational issues associated
with applying this preconditioner Q in a Krylov subspace iteration. At each step, the application of Q�1 to
a vector is needed. By expressing this operation in factored form,
F BT

0 �S

 !�1

¼ F �1 0

0 I

 !
I �BT

0 I

 !
I 0

0 �S�1

� �

two potentially difficult operations can be seen: S�1 must be applied to a vector in the discrete pressure space,
and F�1 must be applied to a vector in the discrete velocity space. The application of F�1 can be performed
relatively cheaply using an iterative technique, such as multigrid. However applying S�1 to a vector is too
expensive. An effective preconditioner can be built by replacing this operation with an inexpensive approxima-
tion. We discuss three preconditioning strategies, the pressure convection–diffusion (P–CD), the Least Squares
Commutator (LSC), and the approximate SIMPLE commutator (ASC).
3.2.1. The pressure convection–diffusion (PCD) preconditioner

Pressure convection–diffusion preconditioners take a fundamentally different approach to approximate the
inverse Schur complement than SIMPLE. The basic idea hinges on the notion of an approximate commutator.
Consider a discrete version of the convection–diffusion operator,
ðmr2 þ ðw � gradÞÞ ð15Þ

where w is a constant vector. When w is an approximation to the velocity obtained from the previous nonlin-
ear step, (15) is an Oseen linearization of the nonlinear term in (1). Suppose there is an analogous operator
defined on the pressure space,
ðmr2 þ ðw � gradÞÞp
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Consider the commutator of these operators with the gradient:
� ¼ ðmr2 þ ðw � gradÞÞr �rðmr2 þ ðw � gradÞÞp ð16Þ
Supposing that � is small, multiplication on both sides of (16) by the divergence operator gives
r2ðmr2 þ ðw � gradÞÞ�1
p � r � ðmr2 þ ðw � gradÞÞ�1r ð17Þ
In discrete form, using finite elements, this usually takes the form,
ðQ�1
p ApÞðQ�1

p F pÞ�1 � ðQ�1
p BÞðQ�1

v F Þ�1ðQ�1
v BTÞ

ApF �1
p Qp � BF �1BT
where here F represents a discrete convection–diffusion operator on the velocity space, Fp is the discrete con-
vection–diffusion operator on the pressure space, Ap is a discrete Laplacian operator, Qv the velocity mass
matrix, and Qp is the lumped pressure mass matrix. This suggests the approximation for the Schur
complement
S � bS ¼ ApF �1
p Qp ð18Þ
for a stable finite element discretization when C = 0. In the case of our pressure stabilized finite element dis-
cretizations, the same type of approximation is required [8]:
S ¼ C þ bBF �1BT � ApF �1
p Qp: ð19Þ
Applying the action of the inverse of ApF �1
p Qp to a vector requires solving a system of equations with a discrete

Laplacian operator, then multiplication by the matrix Fp, and solving a system of equations with the pressure
mass matrix. In practice, Qp can be replaced by its lumped approximation with little deterioration of effective-
ness. Both the convection–diffusion-like system, F, and the Laplace system, Ap, can also be handled using mul-
tigrid with little deterioration of effectiveness.

In our taxonomy, the pressure convection–diffusion method is generated by grouping together the upper
triangular and diagonal factors as in (12), choosing H2 = F�1 and Ŝ as in (19). In matrix form this is
eAPCD ¼
F FH 2BT

0 �bS
" #

¼
F BT

0 �ApF �1
p Qp

" #
:

The error matrix is
EPCD ¼ A� eAPCD ¼
0 0

B̂ ApF �1
p Qp � C

" #
;

which shows that the momentum equation is unperturbed and only the pressure operator in the continuity
equation is perturbed by this method, thus giving a ‘‘momentum preserving’’ strategy.

Considerable empirical evidence for two and three-dimensional problems indicates that this precondition-
ing strategy is effective, leading to convergence rates that are independent of mesh size and mildly dependent
on Reynolds numbers for steady flow problems [9,12,17,29]. A proof that convergence rates are independent
of the mesh is given in [19]. One drawback is the requirement that the matrix Fp be constructed. There might
be situations where a developer of a solver does not have access to the code that would be needed to construct
Fp. This issue is addressed in the following section.

3.2.2. The least squares commutator (LSC) preconditioner

The Least Squares Commutator method automatically generates an Fp matrix by solving the normal equa-
tions associated with a certain least squares problem derived from the commutator [10]. This approach leads
to the following definition of Fp:
F p ¼ QpðbBQ�1
v BTÞ�1ðbBQ�1

v FQ�1
v BTÞ: ð20Þ
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Substitution of the operator into (19) generates an approximation to the Schur complement for div-stable fi-
nite element discretizations (i.e. C = 0):
bBF �1BT � ðbBQ�1
v BTÞ�1ðbBQ�1

v FQ�1
v BTÞ�1ðBQ�1

v BTÞ: ð21Þ
For stabilized finite element discretizations, this can be modified to
C þ bBF �1BT � ðbBQ�1
v BT þ cCÞ�1ðbBQ�1

v FQ�1
v BTÞðbBQ�1

v BT þ cCÞ�1 þ aD�1 ð22Þ
where a and b are scaling factors, and D is the diagonal of ðbBdiagðF Þ�1BT þ CÞ. For a further discussion of the
merits of this method including heuristics for generating a and b, see [11].

In the taxonomy, the LSC operator is generated by grouping together the upper triangular and diagonal
factors as in (12), choosing H2 = F�1 and Ŝ as in (22). In matrix form this is
ALSC ¼
F FH 2BT

0 �bS
" #

¼ F BT

0 ðbBQ�1
v BT þ cCÞðbBQ�1

v FQ�1
v BTÞ�1ðbBQ�1

v BT þ cCÞ þ aD

" #
:

The error matrix is
ELSC ¼ A� eALSC ¼
0 0

B̂ ðbBQ�1
v BT þ cCÞðbBQ�1

v FQ�1
v BTÞ�1ðbBQ�1

v BT þ cCÞ þ aD� C

� �
;

so that the momentum equation is again unperturbed. Empirical evidence indicates that this strategy is effec-
tive, leading to convergence rates that are mildly dependent on Reynolds numbers for steady flow problems
[12,29].

3.2.3. The approximate SIMPLE commutator preconditioner

In this section, we define an alternative strategy that uses the same factors as SIMPLE, together with the
commutator used to derive the P-C–D and LSC factorizations. This results in a ‘‘mass preserving’’ strategy. In
terms of the taxonomy, this method is generated by grouping together the lower triangular and diagonal fac-
tors, choosing H1 = F�1 and bS ¼ C þ bBdiagðF Þ�1BTF �1

p . Insertion of the choices into (12) leads to
AASC ¼
F BTbB �C

" #
¼

F 0bBH 1F �bS
� �

I H 2BT

0 I

" #
¼

F 0bB �ðC þ bBdiagðF Þ�1BTF �1
p Þ

" #
I H 2BT

0 I

" #
:

We can approximate H2BT in the upper triangular factor by diagðF Þ�1BTF �1
p . In matrix form this becomes
AASC ¼
F BTbB �C

" #
¼

F 0bB �ðC þ bBdiagðF Þ�1BTF �1
p Þ

" #
I diagðF Þ�1BTF �1

p

0 I

" #
:

The error matrix is
EASC ¼ A� eAASC ¼
0 BT � F diagðF Þ�1BTF �1

p

0 0

" #
:

Here, the continuity equation is unperturbed. This method performs well when the error in the (1, 2) block is
small. More details on the method with a further discussion of how this method compares to SIMPLE can be
found in [10].
4. Implementation and testing environment

We have tested the methods discussed above using MPSalsa [26], a code developed at Sandia National Lab-
oratory, that models chemically reactive, incompressible fluids. The discretization of the Navier–Stokes equa-
tions provided by MPSalsa is a pressure stabilized, streamline upwinded Petrov Galerkin finite element scheme
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[30] with Q1–Q1 elements. One advantage of equal order interpolants is that the velocity and pressure degrees
of freedom are defined at the same grid points, so the same interpolants for both velocity and pressure are
used.

4.1. Problem and preconditioner structure

The nonlinear system is solved by Newton’s method where the structure of a two-dimensional steady ver-
sion of F is a 2 · 2 block matrix consisting of a discrete version of the operator
�mDþ uðn�1Þ � r þ ðuðn�1Þ
1 Þx ðuðn�1Þ

1 Þy
ðuðn�1Þ

2 Þx �mDþ uðn�1Þ � r þ ðuðn�1Þ
2 Þy

 !
: ð23Þ
For the pressure convection–diffusion preconditioning strategy, we need to specify the operators Fp, Ap, and
Qp. These operators are generated using the application code, MPSalsa. For the Ap operator required by this
strategy, we choose it by taking 1/m times the symmetric part of Fp. This generates a Laplacian type operator
suitable for the use in this preconditioning strategy. For Qp, we use a lumped version of the pressure mass
matrix. For problems with inflow boundary conditions, we specify Dirichlet boundary conditions on the in-
flow boundary for all of the preconditioning operators [8]. For singular operators found in problems with en-
closed flow, the hydrostatic pressure makes BT and the Jacobian system rank-deficient by one. Since we are
given a Jacobian matrix from MPSalsa that is ‘‘pinned’’, i.e. a row and column that is causing the rank defi-
ciency is removed, we pin all of the operators in the preconditioner (Fp, Ap,Qp) as the Jacobian matrix is pin-
ned. The other methods (i.e. SIMPLE, LSC) in this study were built as described in Section 3.

One aspect of the block preconditioners discussed here is that they require two subsidiary scalar computa-
tions, solutions for the Schur complement approximation and convection–diffusion-like subproblem. Both of
these computations are amenable to multigrid methods. We employ smoothed aggregation algebraic multigrid
(AMG) for these computations because AMG does not require mesh or geometric information, and thus is
attractive for problems posed on complex domains or unstructured meshes. More details on AMG can be
found in [31,33].
4.2. Software

Our implementation of the preconditioned Krylov subspace solution algorithm uses Trilinos [16], a soft-
ware environment developed at Sandia National Laboratories for implementing parallel solution algorithms
using a collection of object-oriented software packages for large-scale, parallel multiphysics simulations. One
advantage of using Trilinos is its capability to seamlessly use component packages for core operations. We use
the following components of Trilinos:

1. Meros – This package provides scalable block preconditioning for problems with coupled simultaneous
solution variables. Both the pressure convection–diffusion and SIMPLE preconditioner studied here are
implemented in this package. Meros uses the Epetra package for basic linear algebra functions.

2. Epetra – This package provides the fundamental routines and operations needed for serial and parallel lin-
ear algebra libraries. Epetra also facilitates matrix construction on parallel distributed machines. Each pro-
cessor constructs the subset of matrix rows assigned to it via the static domain decomposition partitioning
generated by a stand-alone library, CHACO [15], and a local matrix–vector product is defined. Epetra han-
dles all the distributed parallel matrix details (e.g. local indices versus global indices, communication for
matrix–vector products, etc.). Once the matrices F, B, bB, and C are defined, a global matrix–vector product
for (7) is defined using the matrix–vector products for the individual systems. Construction of the precon-
ditioner follows in a similar fashion.

3. AztecOO – This package is a massively parallel iterative solver library for sparse linear systems. It supplies
all of the Krylov methods used in solving (7), the F, and Schur complement approximation subsystems.

4. ML – This is a multi-level algebraic multigrid preconditioning package. We use this package with AztecOO
to solve the F and Schur complement approximation subsystems.
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5. NOX – This is a package for solving nonlinear systems of equations. We use NOX for the inexact nonlinear
Newton solver.

4.3. Operations required

Once all of the matrices and matrix–vector products are defined, we can use Trilinos to solve the incom-
pressible Navier–Stokes equations using our block preconditioner with specific choices of linear solvers for
the Jacobian system and the convection–diffusion and Schur complement approximation subproblems.

For solving the system with coefficient matrix F we use the generalized minimal residual method (GMRES)
preconditioned with four levels of algebraic multigrid, and for the pressure Poisson problem, we use the
conjugate gradient method (CG) preconditioned with four levels of algebraic multigrid. For the convec-
tion–diffusion problem, a block Gauss Seidel (GS) smoother is used and for the pressure Poisson problem,
a multi-level smoother polynomial is used for the smoothing operations [1]. The block GS smoother is a
domain-based Gauss Seidel smoother where the diagonal blocks of the matrix (the velocity components)
correspond to subdomains, and a traditional point GS sweep occurs in the smoothing step. The local
Gauss–Seidel procedure includes a communication step (which updates ghost values around each subdomain’s
internal boundary) followed by a traditional Gauss–Seidel sweep within the subdomain. For the coarsest level
in the multigrid scheme, a direct LU solve was employed. We used smoothed aggregation multigrid solvers
available in Trilinos. To solve the linear problem associated with each Newton iteration, we use GMRESR,
a variation on GMRES proposed by van der Vorst and Vuik [32] allowing the preconditioner to vary at each
iteration. GMRESR is required because we use a preconditioned Krylov subspace method to generate approx-
imate solutions in the subsidiary computations (pressure Poisson and convection–diffusion-like) of the precon-
ditioner, so the preconditioner is not a fixed linear operator.

In our experiments, we compare methods from pressure correction (SIMPLEC) and approximate commu-
tator (PCD) with a one-level Schwarz domain decomposition preconditioner [27]. This preconditioner does
not vary from iteration to iteration (as the block preconditioners do), so GMRES can be used as the outer
solver. Domain decomposition methods are based upon computing approximate solutions on subdomains.
Robustness can be improved by increasing the coupling between processors, thus expanding the original sub-
domains to include unknowns outside of the processor’s assigned nodes. Again, the original Jacobian system
matrix is partitioned into subdomains using CHACO, whereas AztecOO is used to implement the one-level
Schwarz method and automatically construct the overlapping submatrices. Instead of solving the submatrix
systems exactly we use an incomplete factorization technique on each subdomain (processor). For our exper-
iments, we used an ILU with a fill-in of 1.0 and a drop tolerance of 0.0. Therefore, the ILU factors have the
same number of nonzeros as the original matrix with no entries dropped. A 2-level or 3-level Schwarz scheme
might perform better. However, there are some issues with directly applying a coarsening scheme to the entire
Jacobian-system due to the indefinite nature of the system [27].

5. Numerical results

5.1. Benchmark problems

For our computational study, we have focused our efforts on steady solutions of two benchmark problems,
the lid driven cavity problem and flow over an obstruction, each posed in both two and three spatial
dimensions

5.1.1. Driven cavity problem

For the two-dimensional driven cavity, we consider a square region with unit length sides. Velocities are
zero on all edges except the top (the lid), which has a driving horizontal velocity of one. For the three-dimen-
sional driven cavity, the domain is a cube with unit length sides. Velocities are zero on all faces of the cube,
except the top (lid), which has a driving velocity of one. Each of these problems is then discretized on a uni-
form mesh of width h. In two dimensions, we have approximately 3/h2 unknowns, i.e. 1/h2 pressure and 2/h2

velocity unknowns. In three dimensions, we have approximately 4/h3 unknowns.
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The lid driven cavity is a well-known benchmark for fluids problems because it contains many features of
harder flows, such as recirculations. The lid driven cavity poses challenges to both linear and nonlinear solvers
and exhibits unsteady solutions and multiple solutions at high Reynolds numbers. In two dimensions,
unsteady solutions appear around Reynolds number 8000 [14]. In three dimensions, unsteady solutions appear
around Reynolds number 100 [28]. Fig. 1 shows the velocity field and pressure field for an example solution to
a two-dimensional lid driven cavity problem with h = 1/128.

5.1.2. Flow over an obstruction

For the two-dimensional flow over a diamond obstruction, we consider a rectangular region with width of
unit length and a channel length of seven units, where the fluid flows in one side of a channel, then around the
obstruction and out the other end of the channel. Velocities are zero along the top and bottom of the channel
and along the obstruction. The flow is set with a parabolic inflow condition, i.e. ux = 1 � y2, uy = 0 and a nat-
ural outflow condition, i.e. oux

ox ¼ p and oux
ox ¼ 0.

For the three-dimensional flow over a cube, we consider a rectangular region with a width of one and a half
units, a height of three units, and a channel length of five units. The fluid flows in one side of the channel, then
around the cube, and out the other end of the channel. Velocities are zero along the top and bottom of the
channel, and along the obstruction. The flow is set with a parabolic inflow condition similar to the two-dimen-
sional case and with a natural outflow condition.

The flow over an obstruction also poses many difficulties for both linear and nonlinear solvers. This prob-
lem contains an unstructured mesh with inflow and outflow conditions which generates a more realistic, yet
difficult problem than the driven cavity. In two dimensions, unsteady solutions appear around Reynolds num-
ber 50 [13]. Figs. 2 and 3 shows the velocity field and unstructured mesh for an example solution to a two-
dimensional flow over a diamond obstruction for Re 25. Fig. 4 shows the velocity field for an example solution
to a three-dimensional flow over a cube obstruction for Re 50.

5.2. Numerical results

We terminate the nonlinear iteration when the relative error in the residual is 10�4, i.e.
f �
F ðuÞuþ BTpÞ
g � ðbBu� CpÞ

 !�����
����� 6 10�4 f

g

� ����� ����: ð24Þ
The tolerance gk for (6), the solve with the Jacobian system, is fixed at 10�5 with zero initial guess. For all of
the problems with the pressure convection–diffusion preconditioner, we employ inexact solves on the subsidi-
ary pressure Poisson type and convection–diffusion subproblems. For solving the system with coefficient ma-
trix Ap, we use six iterations of algebraic multigrid preconditioned CG and for the convection–diffusion-like
subproblem, with coefficient matrix F, we fix a tolerance of 10�2, i.e. this iteration is terminated when
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Fig. 1. Sample velocity field and pressure field from 2D lid driven cavity. h = 1/128, Re = 100.



Fig. 2. Sample velocity field from 2D flow over a diamond obstruction. 62K unknowns, Re = 25.

Fig. 3. Sample velocity field and unstructured mesh from 2D flow over a diamond obstruction.
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kðy� F uÞk 6 10�2kyk: ð25Þ

We compare this method to a one-level overlapping Schwarz domain decomposition preconditioner that uses
GMRES to solve the Jacobian system at each step [27]. In order to minimize the CPU time and thus reduce the
number of outer iterations, we have found that for the SIMPLEC preconditioner, we could not perform the
Schur complement approximation solve and the solve with F as loosely as we did with the pressure convec-
tion–diffusion preconditioner. For SIMPLEC, we fix a tolerance of 10�5 for the solve with coefficient matrix
F in (25) and the solve with the Schur complement approximation. For the pressure convection–diffusion and
SIMPLEC preconditioners, we use a Krylov subspace size of 300 and a maximum number of iterations of 900.
For the 2D domain decomposition preconditioner, we use a Krylov subspace of 600 and a maximum number
of iterations of 1800. For the 3D domain decomposition preconditioner, we use a Krylov subspace of 400 and



Fig. 4. Sample velocity field from 3D flow over a cube obstruction, Re = 50.
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a maximum number of iterations of 1200. All of these values are chosen to limit the number of restarts needed
for the solver, while balancing the memory on the compute node. The results were obtained in parallel on San-
dia’s Institutional Computing Cluster (ICC). Each of this cluster’s compute nodes are dual Intel 3.6 GHz Xe-
non processors with 2 GB of RAM.

5.2.1. Lid driven cavity problem

We first compare the performance of the pressure convection–diffusion preconditioner to that of the
domain decomposition preconditioner and SIMPLEC on the lid driven cavity problem generated by MPSalsa.
In the first column of Table 1, we list the Reynolds number followed by four mesh sizes in column two. In
columns three, four, and five, we list the total CPU time and the average number of outer linear iterations
per Newton step for the pressure convection–diffusion, domain decomposition, and SIMPLEC precondition-
ers, respectively.

The trends are as follows. The pressure convection–diffusion method displays iteration counts that are lar-
gely independent of the mesh size. The domain decomposition preconditioner does not display mesh indepen-
dent convergence behavior as the mesh is refined. However, there is much less computational effort involved in
one iteration of preconditioning with domain decomposition than in one iteration of preconditioning with
pressure convection–diffusion. For the fine meshes, the CPU time for the pressure convection–diffusion pre-
conditioner is four times smaller than domain decomposition (when the latter method was convergent).
The SIMPLEC method also does not display mesh independent convergence behavior, but it provides solu-
tions in fewer iterations and in less CPU time for finer meshes than the domain decomposition preconditioner.
For large Re, SIMPLEC is sensitive to the damping parameter on the pressure update. For the results shown,
the damping factor was 0.01; for larger values of a the method stagnated. We found SIMPLE to be less effec-
tive than SIMPLEC and do not report results for SIMPLE.

For the 3D driven cavity problems (Table 2), we find that the pressure convection–diffusion method again is
faster on larger meshes than the one-level domain decomposition method. The pressure convection–diffusion
method again displays essentially mesh-independent iteration counts and a slight dependence on the Reynolds
number. The SIMPLEC method produces iteration counts that are less dependent on the Reynolds number
than domain decomposition, but it is competitive and in many cases faster than domain decomposition in
terms of CPU time.

5.2.2. Flow over an obstruction

The pressure convection–diffusion preconditioner, SIMPLEC, and the domain decomposition precondi-
tioner are compared for the two-dimensional diamond obstruction problem in Table 3. The trends are sim-



Table 2
Comparison of the iteration counts and CPU time for the pressure convection–diffusion, SIMPLEC, and domain decomposition
preconditioners for the 3D lid driven cavity problem

Re number Mesh size Pressure C–D SIMPLEC One-level DD Procs

Iters Time Iters Time Iters Time

Re = 10 32 · 32 · 32 28.0 803.2 30.5 1205.6 67.0 634.6 1
64 · 64 · 64 28.4 865.2 50.8 2034.1 159.8 1507.5 8
128 · 128 · 128 31.1 1249.0 280.8 12490.5 356.2 4529.3 64

Re = 50 32 · 32 · 32 40.2 946.9 33.3 1302.6 62.2 615.5 1
64 · 64 · 64 47.8 1061.6 52.5 2457.6 162.6 1533.2 8
128 · 128 · 128 50.1 2101.2 291.2 14987.2 385.5 6460.9 64

Re = 100 32 · 32 · 32 56.0 1232.7 40.8 1884.4 61.7 730.7 1
64 · 64 · 64 62.1 1697.8 61.6 3184.4 168.5 2131.6 8
128 · 128 · 128 64.2 3019.2 299.1 17184.2 404.6 6953.9 64

Table 1
Comparison of the iteration counts and CPU time for the pressure convection–diffusion, SIMPLEC, and domain decomposition
preconditioners for the 2D lid driven cavity problem

Re number Mesh size Pressure C–D SIMPLEC DD one-level Procs

Iters Time Iters Time Iters Time

Re = 10 64 · 64 19.4 17.2 41.8 32.9 79.4 19.4 1
128 · 128 21.2 28.4 66.0 78.9 220.6 79.8 4
256 · 256 23.0 69.3 104.3 229.2 467.2 619.4 16
512 · 512 23.2 257.2 164.0 619.4 1356.8 2901.9 64

Re = 100 64 · 64 35.0 28.7 52.0 50.8 86.5 26.4 1
128 · 128 35.9 59.5 71.8 87.9 300.3 130.2 4
256 · 256 41.3 102.1 109.8 410.5 528.8 593.1 16
512 · 512 41.0 345.7 169.4 941.2 NC NC 64

Re = 500 64 · 64 73.0 200.5 73.9 206.7 89.7 44.4 1
128 · 128 79.1 385.6 107.5 401.2 334.9 215.9 4
256 · 256 84.3 607.4 177.6 1600.6 896.1 1592.5 16
512 · 512 90.2 1811.1 204.3 4109.2 NC NC 64

Re = 1000 64 · 64 NC NC NC NC NC NC 1
128 · 128 126.4 570.9 142.0 1220.4 352.5 275.8 4
256 · 256 126.6 1207.6 251.6 3494.2 839.5 2009.6 16
512 · 512 143.2 2563.2 401.2 7598.2 NC NC 64

NC stands for no covergence. For the 512 · 512 DD solver results, we could not converge to a solution for a Krylov subspace size of 900
and 4500 max iterations.
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ilar to the results from the driven cavity problem; in particular, iteration counts for PCD are largely inde-
pendent of mesh size for a given Reynolds number. The domain decomposition preconditioner and SIM-
PLEC do not display mesh independent convergence behavior as the mesh is refined. For Re 10 and Re

25, the pressure convection–diffusion preconditioner was faster in all cases. For Re 40, it was faster for
all meshes except for the small problems with 62,000 unknowns on one processor. Note that the GMRES
solver preconditioned with domain decomposition stagnated before a solution was found for the problems
with 4 million unknowns. The pressure convection–diffusion preconditioner converged without difficulty on
this problem. On modest sized problems (those with more than 256 K unknowns) where both methods con-
verged, the pressure convection–diffusion preconditioner ranged from 4 to 14 times faster than domain
decomposition.

Results for the three-dimensional flow over a cube in Table 4. Once again the trends are similar; we omit a
detailed discussion.



Table 3
Comparison of the iteration counts and CPU time for the pressure convection–diffusion, SIMPLEC and domain decomposition
preconditioners for the 2D flow over a diamond obstruction

Re number Unknowns Pressure C–D SIMPLEC DD one-level Procs

Iters Time Iters Time Iters Time

Re = 10 62K 21.7 138.8 52.8 502.2 110.8 186.6 1
256K 22.6 192.7 83.6 1203.9 282.6 1054.9 4
1M 25.6 252.3 130.8 1845.3 890.2 6187.4 16
4M 29.7 397.5 212.6 5834.6 NC NC 64

Re = 25 62K 34.9 248.0 66.5 760.5 101.7 198.8 1
256K 40.4 384.6 104.7 1920.3 273.8 1118.6 4
1M 43.6 445.9 160.8 2985.2 864.5 6226.0 16
4M 49.1 736.6 402.1 8241.3 NC NC 64

Re = 40 62K 64.6 565.8 74.8 1278.7 70.4 267.2 1
256K 68.9 975.2 113.6 2718.9 203.9 1269.3 4
1M 72.7 1039.2 260.9 7535.0 770.0 6933.5 16
4M 78.3 1528.6 410.1 11992.2 NC NC 64

NC stands for no convergence.

Table 4
Comparison of the iteration counts and CPU time for the pressure convection–diffusion and domain decomposition preconditioners for
the flow over a 3D cube

Re number Unknowns Pressure C–D SIMPLEC DD one-level Procs

Iters Time Iters Time Iters Time

Re = 10 270K 20.7 997.7 45.2 1897.1 67.2 859.8 1
2.1M 21.7 1507.5 79.3 4593.2 151.2 2004.0 8
16.8M 24.7 1997.7 118.7 19907.1 667.2 20908.0 64

Re = 50 270K 35.9 1209.7 49.2 2109.2 69.4 889.2 1
2.1M 38.7 1797.7 84.9 3201.3 132.4 2676.1 8
16.8M 44.7 2397.7 140.2 28156.1 637.2 18646.0 64

NC stands for no convergence.

Table 5
Comparison of the iteration counts and CPU time for the inexact pressure convection–diffusion, exact pressure convection–diffusion and
domain decomposition preconditioners for the 2D flow over a diamond obstruction

Re number Unknowns Inexact Pressure C–D Exact P-C–D DD one-level Procs

Iters Time Iters Time Iters Time

Re = 10 62K 21.7 138.8 18.7 194.8 110.8 186.6 1
256K 22.6 192.7 16.8 294.0 282.6 1054.9 4
1M 25.6 252.3 16.1 406.4 890.2 6187.4 16
4M 29.7 397.5 14.8 655.8 NC NC 64

Re = 25 62K 34.9 248.0 32.8 695.2 101.7 198.8 1
256K 40.4 384.6 31.6 621.4 273.8 1118.6 4
1M 43.6 445.9 28.6 778.8 864.5 6226.0 16
4M 49.1 736.6 25.3 1312.8 NC NC 64

Re = 40 62K 64.6 565.8 44.4 781.3 70.4 267.2 1
256K 68.9 975.2 39.2 1116.7 203.9 1269.3 4
1M 72.7 1039.2 38.7 1352.7 770.0 6933.5 16
4M 78.3 1528.6 35.2 2280.3 NC NC 64

NC stands for no convergence.
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Finally, in Table 5, we compare the impact of inexact solves of the subsidiary systems required for the pres-
sure convection–diffusion preconditioner. In particular, we look at the ‘‘exact’’ pressure convection–diffusion
preconditioner, where we solved the subsidiary systems to a tolerance of 10�5. The exact PCD preconditioner
shows iteration counts that are mesh independent and reduce as the mesh is refined, but with increasing CPU
cost. However, the exact method is still considerably faster than domain decomposition for this problem. For
a user of these methods, we recommend the inexact variant because the iteration counts are nearly indepen-
dent and require less CPU time.

5.2.3. Additional discussion

We comment on some additional points concerning costs and scalability of the PCD preconditioner. In
most of the examples with this preconditioner, as the mesh is refined we do notice an increase in the compu-
tational time for a given Reynolds number. A representative example is from Table 3, Re 25, where the CPU
times are 445.9 and 736.6 in the cases of 1M and 4M unknowns, respectively. There are two causes for this.
One is iteration counts: both the outer iterations needed to satisfy the stopping criterion (6) and the inner iter-
ations needed for (25) in the approximate convection–diffusion solve show some increase as the mesh is
refined.2 The convection–diffusion solve is the dominant computation of the outer iteration, and this leads
to an increase in CPU time even though the number of unknowns per processor is constant. In the example
cited from Table 3, the average inner iteration counts increased from 10 (for 1M unknowns) to 13, and the
average outer iteration counts increased from 43.6 to 49.1. If we use the factor ð43:6

49:1
Þð10

13
Þ ¼ :68 to adjust the

CPU time in the case of 4M unknowns, we obtain an adjusted CPU time of 503.1, which is 13% higher than
the time for 1M unknowns.

The second main cause of performance sensitivity to mesh size is the increasing cost of the coarsest level
solve in the multi-level method, which in these tests was done with a serial sparse direct solver. One can control
this cost by adding additional levels to the multi-level method or by using either a parallel solver or an iterative
method for the coarse direct solve. However, we have found that this computation is not responsible for sig-
nificant overhead (about 13% in the example cited above) and we have not explored this further.

6. Conclusions

We have described a taxonomy for preconditioning techniques for the incompressible Navier–Stokes equa-
tions. We have included traditional methods of pressure projection and pressure correction type along with
newer approximate commutator methods derived from an approximation of the Schur complement. This tax-
onomy is based upon a block factorization of the Jacobian matrix in the Newton nonlinear iteration where
methods are determined by making choices on the grouping of the block upper, lower, and diagonal factors
along with approximations to the action of the inverse of certain operators and the Schur complement. All the
methods require solutions of discrete scalar systems of convection diffusion and pressure Poisson-type that are
significantly easier to solve than the entire coupled system.

In experiments with these methods using benchmark problems from MPSalsa we have demonstrated that
the pressure convection–diffusion method gives superior iteration counts and CPU times for 2D and 3D prob-
lems with the one-level additive Schwarz domain decomposition method. For the approximate commutator
methods we have demonstrated asymptotic convergence behavior that is essentially mesh independent in
2D and 3D for problems generated by an application code, MPSalsa, over a range of Reynolds numbers
and problems discretized on structured and unstructured meshes with inflow and outflow conditions. For
the steady-state problems explored, the iteration counts show only a slight degradation for increasing Rey-
nolds number. In the future, we intend to further expand this technique to time dependent problems and prob-
lems posed on more complex domains.
2 We expect the former count to tend to a constant as the mesh is refined, but smoothed aggregation multigrid can display some mild
mesh dependence [31,33]. The convection–diffusion solve also has an impact on costs as the Reynolds number is increased. Solving
nonsymmetric problems with algebraic multigrid is an active research topic; if a more effective scalable solver did exist for this subproblem,
then the CPU would be considerably lower and more scalable [2].
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