
A parallel block multi-level preconditioner for the
3D incompressible Navier–Stokes equations

Howard C. Elman a,1, Victoria E. Howle b, John N. Shadid c,*, Ray S. Tuminaro b

a Department of Computer Science and Institute for Advanced Computer Studies, University of Maryland, College Park, MD 20742, USA
b Sandia National Laboratories, P.O. Box 969, MS 9217 Livermore, CA 94551, USA

c Sandia National Laboratories, Parallel Computational Sciences, P.O. Box 5800, MS 1111, Albuquerque, NM 87185, USA

Received 24 October 2002; received in revised form 17 February 2003; accepted 18 February 2003

Abstract

The development of robust and efficient algorithms for both steady-state simulations and fully implicit time inte-

gration of the Navier–Stokes equations is an active research topic. To be effective, the linear subproblems generated by

these methods require solution techniques that exhibit robust and rapid convergence. In particular, they should be

insensitive to parameters in the problem such as mesh size, time step, and Reynolds number. In this context, we explore

a parallel preconditioner based on a block factorization of the coefficient matrix generated in an Oseen nonlinear it-

eration for the primitive variable formulation of the system. The key to this preconditioner is the approximation of a

certain Schur complement operator by a technique first proposed by Kay, Loghin, and Wathen [SIAM J. Sci. Comput.,

2002] and Silvester, Elman, Kay, and Wathen [J. Comput. Appl. Math. 128 (2001) 261]. The resulting operator entails

subsidiary computations (solutions of pressure Poisson and convection–diffusion subproblems) that are similar to those

required for decoupled solution methods; however, in this case these solutions are applied as preconditioners to the

coupled Oseen system. One important aspect of this approach is that the convection–diffusion and Poisson subproblems

are significantly easier to solve than the entire coupled system, and a solver can be built using tools developed for the

subproblems. In this paper, we apply smoothed aggregation algebraic multigrid to both subproblems. Previous work

has focused on demonstrating the optimality of these preconditioners with respect to mesh size on serial, two-di-

mensional, steady-state computations employing geometric multi-grid methods; we focus on extending these methods

to large-scale, parallel, three-dimensional, transient and steady-state simulations employing algebraic multigrid (AMG)

methods. Our results display nearly optimal convergence rates for steady-state solutions as well as for transient so-

lutions over a wide range of CFL numbers on the two-dimensional and three-dimensional lid-driven cavity problem.

� 2003 Elsevier Science B.V. All rights reserved.

Keywords: Navier–Stokes; Preconditioner; Approximate block factorization; Approximate Schur complement; Convention–diffusion

operator; Multi-level; Algebraic multigrid

Journal of Computational Physics 187 (2003) 504–523

www.elsevier.com/locate/jcp

*Corresponding author. Tel.: +1-505-845-7876; fax: +1-505-845-7442.

E-mail addresses: elman@cs.umd.edu (H.C. Elman), vehowle@sandia.gov (V.E. Howle), jnshadi@cs.sandia.gov (J.N. Shadid),

rstumin@sandia.gov (R.S. Tuminaro).
1 The work of this author was supported by the National Science Foundation under Grant DMS0208015.

0021-9991/03/$ - see front matter � 2003 Elsevier Science B.V. All rights reserved.

doi:10.1016/S0021-9991(03)00121-9

mail to: elman@cs.umd.edu


1. Introduction

Recently, the development of efficient iterative methods for the fully implicit solution of the Navier–

Stokes equations has seen considerable activity. Significant increases in computing power due to large-scale

parallel systems coupled with a decade of work on efficient parallel CFD algorithms (e.g. [16,29,43,48])

have now begun to make large-scale implicit calculations tractable in time frames that are consistent with

engineering analysis and scientific exploration. Further, an enhanced need to model stiff nonlinear multiple-

time-scale PDE systems such as the Navier–Stokes equations coupled with additional transport/reaction
physics has increased interest in fully implicit solution techniques.

The use of fully implicit solvers allows the time stepping algorithm to resolve the appropriate time scales

of interest (the dynamical modes) as opposed to the much stiffer short time scale physics [2,30]. The ability

to produce a stable integrator for large time steps can also be employed in a nontime-accurate mode within

pseudo-transient methods [9,28]. Further, similar iterative method components can often be utilized in

direct-to-steady-state solution methods for appropriate applications.

The robustness and versatility of the fully implicit schemes, however, come with a significant cost.

These methods place a heavy burden on the development of robust nonlinear and linear solution methods
for the large-scale systems produced at each time step. For this reason many solvers have relied on de-

coupled solution strategies. Often, transient schemes combine semi-implicit methods with fractional-step

(operator splitting) approaches or use fully decoupled solution strategies. In these cases, the motivation is

to reduce memory usage and to produce a simplified equation set for which efficient solution strategies

already exist. Unfortunately, these simplifications place significant limitations on the broad applicability

of these methods. For example, fractional-step methods such as pressure projection [1,6,14] and operator

splitting [36] require time step limitations based on the explicit part of the time integration process as well

as on the stability and accuracy associated with the decoupled physics [8,17,25,30,40,41,50]. This re-
striction can severely limit the step size, and direct-to-steady-state simulations with these methods are not

possible.

Fully decoupled solution strategies (e.g., the SIMPLE [38], SIMPLER [37], and PISO [23] class of

methods) use a successive substitution (or Picard) iteration to simplify the coupled systems of equations.

Nonlinearities at each time step are resolved by an outer nonlinear iteration. Unfortunately, while this

technique should improve time step limitations, steps are frequently reduced to facilitate the nonlinear

iteration. Convergence of these decoupled methods can often be problematic. In particular, the nonlinear

iteration has only a linear rate of convergence and in practice can often exhibit very slow convergence. In
addition, since all the equations have been decoupled artificially, this strategy can sometimes result in non-

convergence for difficult problems in which the essential coupling of the physics has been violated (see for

example [11,12], and the references contained therein). The intent of fully coupling the PDEs in the time

integration and nonlinear solver is to preserve the inherently strong coupling of the physics with the goal to

produce a more robust solution methodology in the process.

Much of the previous work on parallel fully coupled solution methods demonstrate considerable success

for the solution of the incompressible Navier–Stokes equations (e.g. [11,16,42,43]). In these studies, high

parallel efficiencies are attained using preconditioned Krylov methods with additive Schwarz domain de-
composition preconditioning and effective sub-domain solvers based on incomplete factorizations. While

parallel scaling and robustness are encouraging, the algorithmic scaling is non-optimal since the number of

linear iterations increases with increasing problem size or an increase in the number of sub-domains [16,43].

Attempts at mitigating this poor scaling often consider two-level domain decomposition schemes which

accelerate convergence by solving a projected version of the problem on a very coarse grid with a direct

solver. This coarse grid correction is then interpolated to the fine grid and combined with the more tra-

ditional Schwarz preconditioner. These methods exhibit optimal convergence scaling as demonstrated for

coupled solution of Navier–Stokes and Navier–Stokes with thermal energy transport [16,44,55]. The

H.C. Elman et al. / Journal of Computational Physics 187 (2003) 504–523 505



principal drawback is that on large three-dimensional problems with many sub-domains, the cost of the

coarse grid direct solver becomes prohibitive, and the method becomes sub-optimal in terms of CPU time.

Therefore true multi-level preconditioning methods, which can deliver nearly optimal scaling for these

coupled solution methods, are still an open research issue.

The current view towards producing optimal coupled solution techniques for the incompressible

Navier–Stokes equations is based on using preconditioners that approximate the Jacobian (or an ap-

proximate Jacobian for a quasi-Newton method) of the coupled system with some simplified block-

partitioned system of equations. These methods include approximate block LU factorization techniques
[7,13,26,47] and physics-based preconditioning [31,39,62]. When applied to a system of PDEs, there are

many similarities among these preconditioners. They are all motivated by a ‘‘divide and conquer’’ ap-

proach to constructing a preconditioner. The general goal is to approximately invert separate scalar

systems rather than the fully coupled systems. This reduction to scalar systems is motivated by the desire

to apply a composition of multi-level solves on the separate equations to precondition the coupled system

effectively.

In this manuscript, we focus on the evaluation of an efficient fully implicit time integration and direct-

to-steady-state solution method using a parallel coupled solver for the incompressible Navier–Stokes
equations. This solver is based on an Oseen nonlinear iteration with a multigrid method for the linear

subproblems. The Oseen iteration is a successive substitution approach that retains the pressure velocity

coupling and relaxes (by means of the nonlinear iteration) the coupling of the convection operator (see

Section 2). Since part of the Jacobian coupling that is fully utilized within a Newton scheme is retained,

studying the Oseen equations serves as an intermediate step towards the development of a fully coupled

multi-level solution process. Additionally, preconditioners for the Oseen system can be employed within a

Newton code. This is particularly natural in the matrix-free Newton–Krylov setting [27]. It is in this context

that our study of the Oseen iteration nonlinear solver and the Kay et al. [26] and Silvester et al. [46]
preconditioner is carried out. Previous work with these methods has demonstrated optimality with respect

to mesh size on serial, two-dimensional, steady-state computations using geometric multigrid; we focus on

extending these methods to large-scale, parallel, three-dimensional, transient and steady-state simulations

with algebraic multi-grid (AMG) methods.

The remainder of this paper is organized as follows. Section 2 provides background on the Oseen it-

eration and the approximate block preconditioners. In Section 3 we describe in some detail the algebraic

multigrid methods that are used for the component scalar solvers for the preconditioner systems. Section 4

provides a brief overview of the MAC discretization of Navier–Stokes equations and the parallel imple-
mentation of the nonlinear and linear solvers. Details of the numerical experiments and the results of these

experiments are described in Section 5. Concluding remarks are provided in Section 6.

2. Background

We are concerned with the incompressible form of the Navier–Stokes equations

aut � mr2uþ ðu � gradÞuþ gradp ¼ f

�divu ¼ 0;
in X � R3; ð2:1Þ

where u satisfies suitable boundary conditions on oX, say Dirichlet conditions u ¼ g. The value a ¼ 0

corresponds to the steady-state problem and a ¼ 1 to the transient case.

Our focus is on solution algorithms for the systems of equations that arise after linearization of the

system (2.1). We will use a nonlinear iteration derived by lagging the convection coefficient in the quadratic

term ðu � gradÞu. For the steady-state problem, this procedure starts with some initial guess uð0Þ for the
velocities and then computes updated velocities and pressures by solving the Oseen equations

506 H.C. Elman et al. / Journal of Computational Physics 187 (2003) 504–523



� mr2uðkÞ þ ðuðk�1Þ � gradÞuðkÞ þ gradpðkÞ ¼ f

� divuðkÞ ¼ 0:
ð2:2Þ

For transient problems, a strategy of this type can be combined with an implicit time discretization, see
[49,56]. For example, a variant of the backward Euler discretization uses a first order time discretization for

ut and treats all other terms implicitly except the nonlinear convection term. The nonlinear term at each

time step is then solved by employing the Oseen iteration described above. This gives the combined time-

stepping strategy with index (m) and Oseen iteration with index (k) as

uðkÞ � uðm�1Þ
Dt

� mr2uðkÞ þ ðuðk�1Þ � gradÞuðkÞ þ gradpðkÞ ¼ f

� divuðkÞ ¼ 0:

ð2:3Þ

At convergence of the Oseen iteration the solution ðuð	Þ; pð	ÞÞ of the nonlinear Eq. (2.3) is then taken as the
solution at the next time step (i.e. ðuðmÞ; pðmÞÞ ¼ ðuð	Þ; pð	ÞÞ. This iteration can also be used to solve the steady-
state problem by integrating in time until a steady solution is obtained. Customarily, when large time steps

are used (or equivalently, large CFL numbers) and no error control is applied, this scheme is termed a

pseudo-transient method [9,28].

For both (2.2) and (2.3), a stable finite difference or finite volume discretization leads to a linear system

of equations of the form

F BT

B 0

� �
u

p

� �
¼ f

0

� �
; ð2:4Þ

which must be solved at each step. For the steady problem, the matrix F has block diagonal form in which

each individual diagonal block consists of a discretization of a convection–diffusion operator

�mr2 þ ðw � gradÞ; ð2:5Þ

where w ¼ uðm�1Þ. For the transient problem, the blocks of F represent discretizations of the operator

1

Dt
I � mr2 þ ðw � gradÞ; ð2:6Þ

which arises from implicit time discretization of the time-dependent convection–diffusion equation.

The strategy we employ for solving (2.4) is derived from the block factorization

F BT

B 0

� �
¼ I 0

BF �1 I

� �
F BT

0 �S

� �
;

where S ¼ BF �1BT is the Schur complement. This implies that

F BT

B 0

� �
F BT

0 �S

� ��1

¼ I 0

BF �1 I

� �
; ð2:7Þ

which, in turn, suggests a preconditioning strategy for (2.4). If it were possible to use the matrix

Q ¼ F BT

0 �S

� �
ð2:8Þ

H.C. Elman et al. / Journal of Computational Physics 187 (2003) 504–523 507



as a right-oriented preconditioner, then the preconditioned operator would be the one given in (2.7). All the

eigenvalues have the value 1, and it can be shown that this operator contains Jordan blocks of dimension at

most 2, and consequently that at most two iterations of a preconditioned GMRES iteration would be

needed to solve the system [34].

When any preconditioner Q is used in a Krylov subspace iteration, each step requires the application of
Q�1 to a vector. To see the computational issues involved for the particular choice (2.8), it is useful to

express Q�1 in factored form

F BT

0 �S

� ��1

¼ F �1 0

0 I

� �
I �BT

0 I

� �
I 0

0 �S�1

� �
:

This shows that two nontrivial operations are required to apply Q�1: application of S�1 to a vector in the

discrete pressure space, and application of F �1 to a vector in the discrete velocity space. These tasks, es-

pecially the first one, are too expensive for a practical computation. However, an effective preconditioner

can be derived by replacing these two operations with inexpensive approximations.

Applying the action of F �1 to a vector v entails solving the discrete convection–diffusion equation, i.e.,
solving Fx ¼ v where F is a discrete version of (2.5) or (2.6). For this computation, we will use a multigrid

iteration, as outlined in the next section.

The key component for the preconditioner is the availability of an accurate and inexpensive approxi-
mation to the action of the inverse of the Schur complement operator BF �1BT. Here, we will use a strategy
developed in [26,46]. To derive it, we begin with the convection–diffusion operator of (2.5). (The treatment

of the transient version (2.6) is identical.) Suppose there is an analogous operator

ð�mr2 þ ðw � gradÞÞp

defined on the pressure space. It is not necessary to ascribe any physical meaning to this operator; it will

only be used to construct an algorithm. Suppose in addition that the convection–diffusion operators for-

mally commute with the gradient operator, i.e.,

ð�mr2 þ ðw � gradÞÞgrad ¼ gradð�mr2 þ ðw � gradÞÞp: ð2:9Þ

A discrete version of this (posited) relation, using the discrete versions of the operators given in (2.4) to-

gether with a discretization Fp of the convection–diffusion operator on the pressure space, is

FBT ¼ BTFp: ð2:10Þ

A straightforward algebraic manipulation then gives

BF �1BT ¼ ðBBTÞF �1
p : ð2:11Þ

In reality, the formal relation (2.9) is not valid except in special cases (such as constant w). However, we can

still take the matrix on the right side of (2.11) as an approximation to the Schur complement, leading to the

preconditioner

Q ¼ F BT

0 �ŜS

� �
ð2:12Þ

for (2.4), where ŜS ¼ ðBBTÞF �1
p . Application of ŜS�1 to a vector is now a relatively straightforward operation,

entailing application of the action of ðBBTÞ�1 (i.e., solving a system of equations with coefficient matrix

BBT), followed by a matrix–vector product by Fp. The matrix BBT is essentially a scaled discrete Laplacian,

508 H.C. Elman et al. / Journal of Computational Physics 187 (2003) 504–523



and there are many approaches for solving the required systems. We will again use algebraic multigrid

methods for these computations. 2

To implement this methodology, it is necessary to construct the matrix Fp, i.e., a discrete convection–

diffusion operator on the pressure space. This requires a convention for specifying boundary conditions

associated with this operator. Our strategy has been to choose conditions that ensure that the resulting

operator is elliptic over the discrete pressure space [10]. When (2.1) is posed with Dirichlet boundary

conditions, Fp is defined using Neumann boundary conditions; if a component oX is an outflow boundary,

then Dirichlet conditions would be used for Fp. (Similar conditions also apply to Ap if that needs to be
defined.) The issues involved here appear to be essentially the same as what is required for the pressure

Poisson equation in other settings [15, Section 3.8.2]. Note, however, that here the choice of pressure

boundary conditions only affects the algorithm used to solve the discrete equations (i.e., the definition of the

preconditioner) and is unrelated to the accuracy of the underlying solution method.

We highlight some aspects of using the preconditioner of (2.12). Considerable empirical evidence for

two-dimensional problems indicates that it is effective, leading to convergence rates that are independent of

mesh size, only mildly dependent on Reynolds numbers for steady problems, and essentially independent of

Reynolds numbers in the transient case [13,26,46]. A proof that convergence rates are independent of the
mesh is given in [32]. As observed above, each step of a Krylov subspace iteration then requires a Poisson

solve on the pressure space and a convection–diffusion solve on the velocity space. Both of these operations

can be performed or approximated using multigrid methods.

3. Multigrid

It is well known that multigrid methods are among the most effective methods for solving discrete partial
differential equations, see e.g. [5,19,53]. In this study we employ a particular multilevel method called an

algebraic multigrid method (AMG). These methods require no mesh (or geometric) information and

therefore are attractive for solving problems in complex domains discretized with unstructured meshes.

Although multigrid methods have been developed for the incompressible Navier–Stokes equations (see, for

example [4,63]), there has been only a modest amount of work on using algebraic multigrid in this setting.

One reason for this is the strong coupling inherent in the complex block structure of the discretized gov-

erning PDE system as described in Section 2. A key advantage of the block preconditioning approach is

that the resulting component block solvers require separate solutions of equations with coefficient matrices
F (a discrete convection–diffusion operator) and Ap (a discrete Laplacian), each of which is amenable to

solution by AMG.

We begin by briefly recalling the philosophy behind traditional (geometric) multigrid methods. The basic

idea is to capture errors by utilizing multiple resolutions in an iterative scheme. High energy (or oscillatory)

components are effectively reduced through a simple smoothing procedure, while low energy (or smooth)

components are tackled using an auxiliary lower resolution version of the problem (coarse grid). The idea is

2 This derivation is essentially a full description of the preconditioner for the finite-difference discretization that we will use in Section

5. A more careful derivation, applicable in particular to finite element methods, leads to the approximation

BF �1BT 
 ðBM�1
v BTÞF �1

p Mp ¼ ApF �1
p Mp

where Mv and Mp are the mass matrices corresponding to the L2 representation of the finite element bases. Ap ¼ BM�1
v BT represents a

scaled discrete Laplacian operator on the pressure space, and this leads to the more general definition ŜS ¼ ApF �1
p Mp. We will not discuss

this more general formulation here. It introduces no serious computational difficulties but enables an extension of this approach to

handle stable finite element discretizations; see [26,46] for details. For finite differences on a uniform grid of width h, Mp ¼ h2I and
BBT ¼ ApMp.

H.C. Elman et al. / Journal of Computational Physics 187 (2003) 504–523 509



applied recursively on the next coarser level. In standard multigrid, this is accomplished by generating a

hierarchy of meshes, Gk, corresponding to differing resolutions. Grid transfer (i.e., interpolation and re-

striction) operators are defined to move data (residuals and corrections) between meshes, and discretiza-

tions are constructed on all the meshes. On coarse meshes, it is common to employ the same discretization

technique (often the same subroutine) that is used on the finest mesh. However, it is also possible to project

the fine grid operator algebraically via

Akþ1 ¼ PTk AkPk; ð3:1Þ

where Pk interpolates a solution from grid Gk to Gkþ1, PTk restricts a solution from grid Gkþ1 to Gk, and Ak is

the discretization on Gk. In this paper, we only use restriction which is the transpose of interpolation.

However, this does not have to be the case and for highly nonsymmetric problems it is often more ap-

propriate to consider alternatives. This is planned for future work. A sample multilevel iteration is given in
Fig. 1 to solve

A1u1 ¼ b1: ð3:2Þ

To specify the method fully, the smoothers Sk and the grid transfers Pk must be defined for each level k.
The key to fast convergence is the complementary nature of these two operators. That is, errors not reduced

by Sk must be well interpolated by Pk. In our implementation, we employ a standard Gauss–Seidel smoother

for the Sk when solving the Poisson operator. For the convection–diffusion operator, we present experi-

ments with a few different choices. These experiments are discussed in Section 5.

An algebraic multigrid algorithm has the same structure as a standard multigrid algorithm (e.g., Fig. 1).

The main difference is that no grid hierarchy is supplied and so a notion of a mesh must be developed from
matrix data. This mesh must then be coarsened, and finally grid transfer operators Pk must be deduced,

from purely algebraic principles. We will use one particular approach, called smoothed aggregation. This is

an algebraic multigrid technique for determining the operators Pk that interpolate the aggregated graph to

its refinement given only the n� n discretization matrices Ak. We give a brief description of a simplified

smoothed aggregation scheme for scalar partial differential equations. More details can be found in

[51,54,58,59,61].

The key feature of AMG methods is that no mesh information is supplied. Instead, a matrix graph is

defined, and this graph effectively occupies the role of the mesh used in traditional multigrid methods (with
the exception that no coordinates are associated with a matrix graph). Specifically, define the matrix graph

Gk ¼ fVk;Ekg

with vertices

Fig. 1. Multigrid V cycle consisting of �Nlevel� grids to solve A1u1 ¼ b1.

510 H.C. Elman et al. / Journal of Computational Physics 187 (2003) 504–523



Vk ¼ f1; 2; . . . ; ng

and undirected edges

Ek ¼ fði; jÞ : i; j 2 Vk; j6 i; Akði; jÞ 6¼ 0g:

For this discussion, it is assumed that Ak is structurally symmetric with nonzero diagonal entries. In our

notation, ði; jÞ and ðj; iÞ refer to the same undirected edge. To produce the �next� mesh within the multigrid
hierarchy, Gk must be automatically coarsened. In smoothed aggregation, Gk is coarsened by grouping or

aggregating neighboring vertices together. Each aggregate will effectively become a mesh point on the next

coarser mesh. Formally, an aggregate corresponds to a set aggk such that

aggp \ aggj ¼ ;; p 6¼ j

and

Vk ¼
[m
j¼1

aggj;

where m is the total number of aggregates and ; is the empty set. For details on aggregation algorithms, we
refer the reader to [54,61]. In this paper, it is sufficient to consider an ideal aggregate, aggk, as comprising a

single central vertex and all of its immediate neighbors. In practice, it is not possible to a coarsen a graph
completely with ideal aggregates. This is further discussed at the end of this section.

Using the above aggregates, a simple interpolation operator can be defined corresponding to piecewise

constants. Specifically, a value at a coarse grid point is interpolated by assigning it to all fine grid vertices

within its corresponding aggregate. This interpolation is referred to as the tentative prolongator and is

represented by an n� m matrix ~PPk, where n is the dimension of Ak and m is the total number of aggregates.

Each row of ~PPk corresponds to a grid point, and each column corresponds to an aggregate. Formally, the

entries are given by 3

~PPkði; jÞ ¼
1 if i 2 aggj;
0 if i 62 aggj:

�

The main point is that this simple prolongator is easily constructed without geometric information. Un-

fortunately, however, using ~PPk within a multigrid algorithm gives rise to suboptimal (not mesh independent)

convergence. Instead, a more robust method is realized by smoothing the piecewise constant basis func-
tions.

The main idea of smoothed aggregation is to smooth the basis functions (i.e., the matrix columns) and

thereby lower the energy (i.e., essentially reduce kPkkAk
) associated with ~PPk. We omit the theory details and

refer the interested reader to the smoothed aggregation references. Specifically, a simple damped Jacobi

iteration is applied

Pk ¼ ðI � aD�1
k AkÞ ~PPk; ð3:3Þ

where Dk is the diagonal of Ak, and a is a damping parameter. Typically, a is taken as 4=3qðD�1
k AkÞ where

qð�Þ denotes the spectral radius. This smoothing step is critical to obtaining h-independent multigrid
convergence [3,58]. Fig. 2 illustrates the piecewise constant basis functions (or matrix columns) associated

with ~PPk. Fig. 3 illustrates the effect of smoothing by depicting the basis functions (or matrix columns)

3 For specific applications such as elasticity problems more complicated tentative prolongators are defined based on rigid body

motions.

H.C. Elman et al. / Journal of Computational Physics 187 (2003) 504–523 511



associated with Pk when Ak is a Laplace operator. Intuitively, it should be no surprise that in this example

the multigrid method using piecewise linear interpolation 4 is superior to that using piecewise constant

interpolation. It is important to notice that the aggregates in Fig. 2 are ideal aggregates. That is, they are

comprised of a central vertex and its immediate neighbors (i.e., they have a diameter of three). If the di-
ameter is greater than three, the smoothed basis functions have a region where they are locally constant

(i.e., the hat functions have a plateau). This leads to slower multigrid convergence due to inferior inter-

polation properties. When the diameter is less than three, the leftmost and rightmost smoothed basis

functions in Fig. 3 will overlap. This implies that the coarse grid discretization matrix obtained via PTk AkPk

will have additional nonzeros. This can cause the multigrid iteration cost to very quickly increase. Though

this example is simple, the situation in higher dimensions and on unstructured grids is identical. In practice,

multigrid schemes with convergence/cost properties similar to the ideal aggregate case are achieved using

good aggregation heuristics that keep the number of nonideal aggregates to a minimum and prevent
nonideal aggregates from becoming too small or large. We refer the reader to [61] for more details.

The basic idea and most of the theory for smoothed aggregation has been developed for symmetric

positive definite systems. For the nonsymmetric system with coefficient matrix F , we make one modification
to the algorithm described here. Specifically, we replace Ak in (3.3) by the symmetric part of F (i.e.,

ðF þ F TÞ=2) and estimate the spectral radius of the symmetric part of F . In this way, the smoothing of the
prolongator maintains a sense of energy minimization. We have found that this procedure is quite effective

when an incomplete LU factorization [24] is used as a smoother. For the Reynolds numbers that we have

considered, the resulting multigrid procedure is quite efficient. Our numerical results (Section 5) demon-
strate convergence for the F solve within about 25 multigrid iterations. However, for highly convective

flows it should be possible to further improve the multigrid by considering more sophisticated general-

izations of smoothed aggregation to nonsymmetric problems which allow for different restriction schemes

[18,60].

4. Implementation

For the steady-state Oseen equations in three dimensions, the structure of the convection–diffusion

operator F is a 3� 3 block diagonal matrix corresponding to the three velocity components ½u; v;w�. That
is,

Fig. 2. Three piecewise constant basis functions associated with three aggregates. Each function corresponds to a single prolongator

column.

Fig. 3. Three smoothed basis functions. Each corresponds to a single prolongator column.

4 In general, smoothed aggregation does not reproduce linear interpolation nor is this necessary to obtain mesh independent

convergence.

512 H.C. Elman et al. / Journal of Computational Physics 187 (2003) 504–523



F ¼
�mr2 þ w � r

�mr2 þ w � r
�mr2 þ w � r

0
@

1
A; ð4:1Þ

where w ¼ ½u; v;w�. The matrix BT is a simple gradient operator applied to the pressure unknowns. A

marker-and-cell (MAC) finite difference scheme [20] is used to discretize the saddle-point linear subproblem

½F B;BT 0�. This discretization is stable and first-order accurate in a discrete H1-norm [35,64]. All of our

experiments are on a uniform mesh of width h. Pressures are on the cell centers and velocities are on the cell
faces. In two dimensions, we have N 2 cells and approximately 3N 2 degrees of freedom. In three dimensions,

we have N 3 cells and approximately 4N 3 degrees of freedom. The operator Fp needed for the preconditioner

is also a convection–diffusion operator (2.5) but on the pressure space. Specifically, in three dimensions, the
Fp operator on a pressure vector p corresponds to

Fpp ¼ ð�mr2 þ ðw � gradÞÞpp ¼ �mðpxx þ pyy þ pzzÞ þ upx þ vpy þ wpz: ð4:2Þ

The discrete Laplacian term is the usual seven point stencil. Discretization of the convection terms uses

velocities at the cell edges. Finally, the operator Ap also required by the preconditioner is a standard seven

point Laplace operator with Neumann boundary conditions. Since this operator is singular, the constant

vector is projected out of the right hand side and the resulting Ap solution. This singularity also makes

solution of the coarse grid equations somewhat more difficult than usual, and we handle the coarse grid
system by iteration.

The implementation of the preconditioned Krylov subspace solution algorithm was done using the

software packages Petra and Trilinos developed at Sandia National Laboratories [22,33]. Petra provides

fundamental construction and support for many basic linear algebra functions and facilitates matrix

construction on parallel distributed machines. Each processor constructs the subset of matrix rows assigned

to it via a static domain decomposition partitioning, and a local matrix–vector product is defined. The static

decomposition was based on a partioning of the square and cube domain into regular subdomains. For

more complex domains this step can be replaced by a static partitioning tool such as CHACO [21]. Once F
and B are defined, a global matrix–vector product for the saddle point linear system S ¼ ½F B;BT 0� is
defined using the matrix–vector products for the individual systems. Petra handles all the distributed

parallel matrix details (e.g., local indices versus global indices, communication for matrix–vector products,

etc.). Construction of the preconditioner follows in a similar fashion. That is, the individual components are

defined and then grouped together to form the preconditioner. All of the Krylov methods (i.e., those for the

saddle point solve and for the F and Ap subsystems) are supplied by Trilinos [22], a high-performance

parallel solver library that makes available linear and nonlinear solvers along with several preconditioning

options. The multigrid preconditioning for the subsystems is done by ML [52], a multigrid preconditioning
package, which we access through Trilinos.

Once all of the matrices and matrix–vector products are defined, we can use Trilinos to solve the in-

compressible Navier–Stokes equations using our block preconditioner with specific choices of linear solvers

for the saddle-point problem and the convection–diffusion and pressure Poisson subproblems. To solve the

saddle-point linear problem associated with each Oseen iteration, we use GMRESR. GMRESR is a var-

iation on GMRES proposed by van der Vorst and Vuik [57] allowing the preconditioner to vary at each

iteration. For the pressure Poisson problem, Ap, we use CG preconditioned with algebraic multigrid, and

for the convection–diffusion problem, F , we use GMRES preconditioned with algebraic multigrid. For
transient and pseudo-transient problems, we use backward Euler for the time-stepping loop. These choices

are summarized in Fig. 4 to solve the nonlinear problem

FðuðmÞ; uðm�1Þ; pðmÞ; uðmÞÞ ¼ 0

H.C. Elman et al. / Journal of Computational Physics 187 (2003) 504–523 513



at each time step where

FðuðmÞ; uðm�1Þ; pðmÞ;wÞ ¼ a u
ðmÞ�uðm�1Þ

Dt � mr2uðmÞ þ ðw � gradÞuðmÞ þ gradpðmÞ � f
�divuðmÞ

� �

and a ¼ 1 for transient problems and a ¼ 0 for steady-state problems.

5. Numerical results

Numerical experiments are performed on the lid driven cavity problem in two and three dimensions.

Specifically, we consider a square region with unit length sides in two dimensions and a cube with unit
length sides in three dimensions. Velocities are zero on all edges except the top (lid), which has a driving

velocity of one. The two-dimensional lid driven cavity is a well-known benchmark for fluids problems. It

contains many features of harder flows. The three-dimensional problem is less well studied and is actually a

much more difficult problem. Lid driven cavity flows exhibit unsteady solutions and multiple solutions at

high enough Reynolds numbers. In two dimensions, unsteady solutions appear around Reynolds number

7000–10,000. In three dimensions, these unsteady solutions can occur at much lower Reynolds number,

Re < 1000 [45]. Fig. 5 shows the velocity field and pressure field for an example solution to a two-di-

mensional lid driven cavity problem with h ¼ 1=128.
Results are presented for both steady-state and transient problems. In all presented results, the values for

�oseen, �saddle, �F , �A, and NtimeSteps in Fig. 4 are defined as follows. The relative stopping tolerances for the
nonlinear and saddle-point problems are �oseen ¼ 10�5 and �saddle ¼ 10�2. For experiments using �exact�
solutions of the convection–diffusion and pressure Poisson subproblems, we have relative stopping toler-

ances �F ¼ �A ¼ 10�10. All time-stepping studies employ backward Euler and take ten time steps (i.e.,

Fig. 4. Implementation pseudo-code.

514 H.C. Elman et al. / Journal of Computational Physics 187 (2003) 504–523



NtimeSteps ¼ 10) using a constant time step. All two-dimensional results were obtained in serial on a DEC

Alpha ES40. All three-dimensional results were obtained on 100 processors of Sandia�s ASCI Red machine.
Each of Red�s compute nodes consists of two Intel Pentium II Xeon Core processors with a peak per-
formance of 333 MFLOPs each.

5.1. Steady-state results

We first explore the performance of the algebraic multigrid solver for the discrete convection–diffusion

equations. Performance on the simple Poisson subproblems is optimal and well understood. For the

convection–diffusion subproblem Fx ¼ v, we explore two multigrid choices: the smoothing operator and the
grid transfer operator. In Table 1, both ILU and symmetric Gauss–Seidel smoothers are considered within

smoothed aggregation multigrid. The ILU and symmetric Gauss–Seidel smoothers are actually used in

conjunction with Schwarz domain decomposition ideas. In particular, each processor performs one itera-

tion of the smoother on the subdomain defined by the matrix partitioning (independent of the others) and

performs communication between smoothing iterations. These subdomains include one level of overlap
(i.e., the processor-based subdomains are expanded by one layer of equations around the subdomain pe-

rimeter) though only solution values from the non-overlapped regions are used in the preconditioner. In the

case of symmetric Gauss–Seidel, we compare using one and four iterations of symmetric Gauss–Seidel

(referred to as 1-Gauss–Seidel and 4-Gauss–Seidel, respectively), performed before and after the coarse grid

correction on each level of the V-cycle. For ILU, one ILU sweep is performed before and after the coarse

grid correction on each V-cycle level. Tables 1 and 2 show the average multigrid iteration counts and CPU

times required to solve the convection–diffusion subproblems arising in the block preconditioner. The

Table 1

Smoothed aggregation multigrid performance on 3D steady-state problems corresponding to N ¼ 64 and P ¼ 100

1-Gauss–Seidel 4-Gauss–Seidel ILU

Iters AMG time Iters AMG time Iters AMG time

Re ¼ 20 14 2.89 10 5.37 11 3.95

Re ¼ 50 15 3.06 11 5.53 12 4.03

Re ¼ 100 15 3.40 11 5.96 12 3.96

Re ¼ 200 65 14.1 116* 62.1 12 4.82

Average times (seconds) and iterations per convection–diffusion subproblem are given. (*Note. In the Re ¼ 200, 4-GS case, some of

the convection–diffusion subproblems reached the maximum number of iterations of 200 without converging.)

Fig. 5. Sample velocity field and pressure field from 2D lid driven cavity. h ¼ 1=128, Re ¼ 100.

H.C. Elman et al. / Journal of Computational Physics 187 (2003) 504–523 515



timings include the entire time within the Krylov solver and the algebraic multigrid preconditioners. They

do not, however, include algebraic multigrid setup times. These will be discussed later in this section.

Table 2 gives the same information as Table 1, except using unsmoothed aggregation for the grid

transfers. This corresponds to simple piecewise-constant interpolation. We see in Table 1 that the sym-
metric Gauss–Seidel smoother has difficultly converging when the Reynolds number is too large for the

smoothed aggregation method. This is due to the grid transfers, which are built ignoring nonsymmetric

information. The resulting coarse grid discrete operators (constructed via (3.1)) can correspond to unstable

discretizations for which the Gauss–Seidel method is divergent. This occurs on the coarsest grid for

Re ¼ 200 in Table 1 and helps explain why four Gauss–Seidel iterations perform worse than a single Gauss–

Seidel iteration. Though unsmoothed aggregation generally gives poorer grid transfers (and non-mesh

independent convergence), the coarse discretization stability problem does not arise. Thus, in some high

Reynolds number cases, unsmoothed aggregation can actually perform better than smoothed aggregation.
We are continuing to explore this issue and are working on combinations of smoothed and unsmoothed

aggregation to handle convection–diffusion flows. For the remainder of the experiments in this paper we use

smoothed aggregation with ILU smoothing in the solution of the discrete convection–diffusion equations as

it is the most robust and gives good solution times. For the Poisson problem we use the standard Gauss–

Seidel smoother which has been demonstrated to be effective in many studies [53,63].

In Table 3 we illustrate the breakdown of time spent within the saddle-point linear subproblem for a

three-dimensional steady-state Re ¼ 100 calculation. In each case the multigrid times for separate solutions

of the pressure Poisson and convection–diffusion subproblems are lumped together. In all cases, one
symmetric Gauss–Seidel iteration is performed before and after the coarse grid correction within each V-

cycle level for the solution of the pressure Poisson subproblem. while results are shown with three different

smoothers for the solution of the convection–diffusion subproblem. Overall, it is clear that the multigrid

setup time is small. The grid transfer time is also small. Most of the time is spent computing the ILU

factorization, applying the smoother, and performing matrix–vector products (this includes both residual

calculations and within the Krylov solver). For the rest of this paper, we use the ILU smoother for the

Table 3

Breakdown of the total time spent in various parts of the solution of the saddle-point subproblem over a complete nonlinear, 3D,

steady-state problem corresponding to Re ¼ 100 and N ¼ 64

1-Gauss–Seidel 4-Gauss–Seidel ILU

AMG setup 59.4 59.7 59.3

ILU factorization N/A N/A 74.6

Matrix–vector products 116.0 623.0 184.0

Smoother 424.0 1022.80 630.0

Grid transfers 38.6 31.1 30.2

Total 638.0 1737.0 978.0

Different AMG smoothers are shown for solution of the convection–diffusion subproblem.

Table 2

Unsmoothed aggregation multigrid performance on 3D steady-state problems corresponding to N ¼ 64 and P ¼ 100

1-Gauss–Seidel 4-Gauss–Seidel ILU

Iters AMG time Iters AMG time Iters AMG time

Re ¼ 20 45 10.3 27 12.3 32 7.1

Re ¼ 50 53 12.0 30 13.0 36 7.6

Re ¼ 100 64 11.6 35 15.5 43 9.9

Re ¼ 200 76 14.4 37 16.4 49 10.5

Average times (seconds) and iterations per convection–diffusion subproblem are given.

516 H.C. Elman et al. / Journal of Computational Physics 187 (2003) 504–523



convection–diffusion subproblems and one symmetric Gauss–Seidel iteration before and after the coarse

grid correction for the pressure Poisson subproblem.

We now begin to explore the performance of the block preconditioner. Table 4 demonstrates h-inde-
pendent (i.e., mesh-independent) convergence on the two-dimensional steady-state problem. This table

displays the average number of iterations per linear saddle-point subproblem of the Oseen iteration.

For moderate Reynolds numbers, 10–15 algebraic multigrid iterations are required to reach convergence

on the convection–diffusion and pressure Poisson subproblems. In the Re ¼ 1000 example, 15–30 iterations

were required for convergence in the convection–diffusion subproblem. The number of saddle-point
problem iterations is h-independent, which is in agreement with theory [32]. As expected, the number of
iterations grows moderately with increasing Reynolds number.

Table 5 demonstrates h-independence on the three-dimensional steady-state problem. For the three-
dimensional problems in this table, the convection–diffusion and pressure Poisson subproblems required

10–25 algebraic multigrid iterations for convergence to the given tolerance. As mentioned above, nonlinear

difficulties for the three-dimensional lid driven cavity occur at much lower Reynolds numbers than in the

two-dimensional case. In three dimensions, the nonlinear Oseen solver failed to converge for Reynolds

numbers above 200 and converges quite poorly for Reynolds number 200 (see Tables 8 and 9). We will
consider Newton�s method (in conjunction with Oseen preconditioners) in a future work to address these
difficulties.

In Tables 6–9 we compare steady-state solutions in which the convection–diffusion and pressure Poisson

subproblems are solved exactly and inexactly within the preconditioner. For the exact solutions, the

Table 4

2D steady-state results demonstrating h-independence

N 8 16 32 64 128 256

Re ¼ 100 12 14 15 16 16 17

Re ¼ 300 18 22 25 27 27 30

Re ¼ 1000 26 39 44 50 56 57

Average number of iterations to solve each linear saddle-point subproblem are shown. The convection–diffusion and pressure

Poisson subproblems are solved exactly.

Table 5

3D steady-state results demonstrating h-independence

N 8 16 32 64

Re ¼ 20 8 9 9 10

Re ¼ 100 13 15 17 18

Re ¼ 200 17 20 22 23

Average number of iterations to solve each linear saddle-point subproblem are shown. The convection–diffusion and pressure

Poisson subproblems are solved exactly.

Table 6

The average number of iterations per linear saddle-point subproblem are shown for exact vs. inexact solutions in the 2D steady-state

problem

N ¼ 64 Ap exact, F exact Ap 3, F exact Ap 3, F 7 Ap 3, F 5 Oseen steps

Re ¼ 100 16 16 18 20 8

Re ¼ 300 27 27 31 36 11

Re ¼ 1000 50 57 255 290* 19*

The last column shows the number of nonlinear iterations required for each solution. (*Note. The ‘‘Ap3, F 5’’ example took 32 Oseen
steps and reached the maximum 300 saddle-point iterations.)

H.C. Elman et al. / Journal of Computational Physics 187 (2003) 504–523 517



subproblems are solved to a tolerance of �F ¼ �A ¼ 10�10. (This is how the results for Tables 4 and 5 were

generated.) For the inexact solutions, we perform three, five, or seven iterations. All problems in Tables 6–9

were run with N ¼ 64 (producing approximately one million degrees of freedom for the three-dimensional

problems).
Table 6 shows the average number of iterations per linear saddle-point problem and Table 7 shows the

total CPU time to solution in the two-dimensional case. Tables 8 and 9 show the same information for the

three-dimensional case. For moderate Reynolds numbers, solving the convection–diffusion and pressure

Poisson subproblems inexactly increases the average number of iterations per linear saddle-point problem,

however the total time to solution improves due to the less expensive convection–diffusion and pressure

Poisson solutions. In the Re ¼ 1000 two-dimensional case, the convection–diffusion problem is much more

difficult, and solving it inexactly increases the total time to solution. This is due to the GMRES/multigrid

solver, which initially converges very slowly and then proceeds quite rapidly to the solution. Thus, while
only approximately 30 iterations are required to obtain a solution, very little progress is made after just

seven iterations. We expect stronger multigrid smoothers to resolve this difficulty but have not pursued this

here. 5 It should also be noted that it may be possible to reuse Krylov vectors from previous convection–

diffusion solutions to accelerate the overall convergence for the current convection–diffusion subproblem.

In the preceding steady-state examples, the difficulties encountered with large Reynolds number are

largely due to the poor performance of the nonlinear Oseen iteration. One method of avoiding this difficulty

is by introducing time stepping. In the next section, we examine the performance of the block precondi-

tioner in the context of transient and pseudo-transient problems.

Table 8

Average number of iterations per linear saddle-point subproblem are shown for exact vs. inexact solutions in the 3D steady-state

problem

N ¼ 64 Ap exact, F exact Ap 3, F exact Ap 3, F 7 Ap 3, F 5 Oseen steps

Re ¼ 20 10 11 13 15 6

Re ¼ 100 18 18 23 28 13

Re ¼ 200 23 24 31 37 90

Table 7

Total CPU time to solution (in seconds) is shown for exact vs. inexact solutions in the 2D steady-state problem

N ¼ 64 Ap exact, F exact Ap 3, F exact Ap 3, F 7 Ap 3, F 5

Re ¼ 100 66.5 52.2 44.7 40.3

Re ¼ 300 164.0 130.0 110.0 104.0

Re ¼ 1000 1073 930.0 1675.0 2675.0

Table 9

Total CPU time to solution (in seconds) is shown for exact vs. inexact solutions in the 3D steady-state problem

N ¼ 64 Ap exact, F exact Ap 3, F exact Ap 3, F 7 Ap 3, F 5

Re ¼ 20 567.0 495.0 408.0 391.0

Re ¼ 100 2500.0 2045.0 1490.0 1440.0

Re ¼ 200 24800.0 24200.0 15300.0 11800.0

5 In our case, the ILU method does not smooth certain modes on coarse grids. Modifications to ILU for multigrid smoothers

discussed in [53] may improve the method as well as alternative grid transfers that better capture non-symmetry.

518 H.C. Elman et al. / Journal of Computational Physics 187 (2003) 504–523



5.2. Transient solver results

In this section, transient solver performance is demonstrated. In our first set of experiments, a moderate

range of CFL numbers are considered. Our main emphasis is to demonstrate how convergence of the

method is relatively insensitive to CFL number. This implies that artificially small time increments are not

required for the solver. Instead, time steps can be chosen based entirely on accuracy concerns and the time

scales associated with the physics being resolved.

In all of the tables in this section, 10 time steps are performed and averages are reported within each of

the columns. Specifically, ‘‘Time’’ is the average time per step, ‘‘Oseen Steps’’ indicates the average number

of nonlinear steps per time step, ‘‘Linear Solves’’ denotes the average number of linear saddle-point iter-
ations per Oseen step, and ‘‘Ap’’ and ‘‘F ’’ show the average number of multigrid iterations for each pressure
Poisson, Ap, and convection–diffusion, F , subproblem. Table 10 illustrates performance for the case where
the convection–diffusion and pressure Poisson subproblems are solved exactly.

We conclude this section with some results for very large CFL numbers. Table 11 illustrates performance

for �exact� solution of the convection–diffusion and pressure Poisson subproblem. These results are intended
to be indicative of a pseudo-transient solver, where time stepping is introduced to improve the nonlinear

Oseen iteration, and very large time steps are chosen to step quickly to steady-state. Ten pseudo-time steps

are taken, and the results given are averaged per time step and per solve as in the previous table. Once
again, good convergence rates are observed for the linear solvers and the iteration counts are relatively

insensitive to CFL numbers. In this case, the nonlinear Oseen method performs acceptably and solutions

are obtained for larger Reynolds numbers. The physical relevance of these higher Reynolds number so-

lutions is unclear, as these Reynolds numbers approach regimes where the three-dimensional lid driven

cavity no longer exhibits steady flows. The use of higher Reynolds numbers in this table and the one that

Table 10

Transient solver results on a 3D problem corresponding to Re ¼ 500 for various CFL numbers

N ¼ 64 CFL Time (s) Oseen steps Linear solves Ap F

Re ¼ 500 0.1 83.0 2 2 20 2

Re ¼ 500 0.5 85.6 2 2 20 2

Re ¼ 500 1 79.3 2 2 20 2

Re ¼ 500 10 110.0 2 2 20 2

Re ¼ 500 50 92.8 2 2 20 3

Re ¼ 500 100 104.0 3 2 20 3

The columns show total CPU time to solutions (in seconds), the number of Oseen steps required for convergence of the nonlinear

problem, the number of iterations required for convergence in the linear saddle-point problem and in the pressure Poisson and

convection–diffusion subproblems.

Table 11

Pseudo-transient solver results on a 3D problem corresponding to Re ¼ 500 and Re ¼ 1000 for various large CFL numbers

N ¼ 64 CFL Time (s) Oseen steps Linear solves Ap F

Re ¼ 500 5000 239.0 5 5 18 5

Re ¼ 500 10 000 270.0 5 6 18 6

Re ¼ 500 50 000 404.0 6 9 19 8

Re ¼ 1000 5000 212.0 5 5 18 4

Re ¼ 1000 10 000 236.0 5 6 18 5

Re ¼ 1000 50 000 525.0 7 10 19 9

The columns show total CPU time to solutions (in seconds), the number of Oseen steps required for convergence of the nonlinear

problem, the number of iterations required for convergence in the linear saddle-point problem and in the pressure Poisson and

convection–diffusion subproblems.

H.C. Elman et al. / Journal of Computational Physics 187 (2003) 504–523 519



follows is intended to demonstrate that our method does not preclude solving problems with higher

Reynolds numbers when they are appropriate and physically relevant. It should be noted that this Oseen

performance is achieved with very large time steps. However, as progressively larger time increments are

chosen, the Oseen method eventually struggles as in the steady-state case.

Table 12 explores the effects of �inexact� solution of the subproblems. For the inexact solutions, the
convection–diffusion subproblem is �solved� with five iterations, and the pressure Poisson subproblem is

�solved� with three iterations. The last two columns of the table report the number of iterations required for
an exact solution to the subproblems or the number of iterations specified in an inexact solution.

Tables 10–12 demonstrate that the multigrid method and the saddle-point preconditioner require very

few iterations for these transient computations, and that the iteration counts are relatively insensitive to the

CFL number. Unlike the large Reynolds number steady-state simulations, good nonlinear convergence is

also obtained with the Oseen iteration for the transient and pseudo-transient problems. Thus a pseudo-

transient strategy to obtain steady-state results would appear to mitigate, to some degree, the relatively slow
convergence of the Oseen iteration at higher Reynolds numbers.

6. Conclusions

The multilevel block preconditioner presented and examined in this paper has been developed for linear

systems arising from the implicit solution of the incompressible Navier–Stokes equations. The block pre-

conditioner approximates the Schur complement (corresponding to pressure unknowns) using a convec-
tion–diffusion operator in the pressure space. This method requires component scalar block solvers that

have similarities to pressure projection schemes and existing decoupled solution strategies. These compo-

nent solves are based on a set of momentum convection–diffusion equations and a pressure Poisson-type

problem. Unlike the pressure projection and fully decoupled solution methods, the technique considered

here does not suffer from overly restrictive time-step limitations for stability and the essential nonlinear

coupling of the velocity and pressure variables can be retained. An important aspect of this preconditioner

is the relative ease of implementation using existing software kernels.

In this study we have demonstrated mesh independent convergence in 2D and 3D of the saddle-point
solver based on the Kay et al. [26] and Silvester et al. [46] block preconditioner. The convergence of the

saddle-point problem for transient problems was demonstrated to be fairly uniform over a wide range of

Reynolds numbers and for CFL conditions (time steps size) that varied from time-accurate to pseudo-

transient solutions. For steady-state problems a mild degradation is observed with increasing Reynolds

number. This study extends the current literature by providing, three dimensional steady results and both

steady and transient 2D and 3D results. These have been obtained with both serial and parallel algorithms.

Additionally, we have provided new results on the application of parallel smoothed aggregation AMG

solvers to the momentum and pressure Poisson-type component block systems. It should be noted that

Table 12

Exact vs. inexact pseudo-transient solver results on a 3D problem corresponding to Re ¼ 500 and Re ¼ 1000 with CFL¼ 50 000

N ¼ 64 Exact/inexact Time (s) Oseen steps Linear solves Ap F

Re ¼ 500 Exact 404.0 6 9 19 8

Re ¼ 500 Inexact 358.0 6 12 3 5

Re ¼ 1000 Exact 525.0 7 10 19 9

Re ¼ 1000 Inexact 396.0 7 13 3 5

The columns show total CPU time to solutions (in seconds), the number of Oseen steps required for convergence of the nonlinear

problem, and iterations required for convergence in the linear saddle-point problem. In the exact solution cases, the last two columns

show the number of iterations required for convergence of the pressure Poisson and convection–diffusion subproblems. In the inexact

solution cases, these columns report the number iterations taken for the subproblems.

520 H.C. Elman et al. / Journal of Computational Physics 187 (2003) 504–523



while our results are for structured grid problems, the actual solver code does not take advantage of this

structure. In fact the coarse operators that are constructed by our methods would correspond to an un-

structured coarse mesh. This general technique has been demonstrated to be an effective solver for these

systems over a wide range of Reynolds numbers and CFL conditions.

While the overall results were obtained by employing an Oseen nonlinear iteration we believe they are

more broadly applicable. Specifically this study is intended as a first step towards applying similar ideas

within a more robust nonlinear solver such as Newton�s method. In a future manuscript we intend to
evaluate this technique as a preconditioner to a Newton–Krylov method and to extend the results to more
complex flow problems and unstructured meshes.

References

[1] J.B. Bell, P. Colella, H.M. Glaz, A second-order projection method for the incompressible Navier–Stokes equations, J. Comput.

Phys. 85 (1989) 257.

[2] J.U. Brackbill, B.I. Cohen (Eds.), Multiple Time Scales, Academic Press, Orlando, 1985.

[3] J. Bramble, J. Pasciak, J. Wang, J. Xu, Convergence estimates for multigrid algorithms without regularity assumptions, Math.

Comput. 57 (1991) 23–45.

[4] A. Brandt, N. Dinar, Multigrid solutions to elliptic flow problems, in: S.V. Parter (Ed.), Numerical Methods for Partial

Differential Equations, Academic Press, New York, 1979, pp. 53–147.

[5] W.L. Briggs, V.E. Henson, S. McCormlck, A Multigrid Tutorial, second ed., SIAM, Philadelphia, 2000.

[6] A.J. Chorin, A numerical method for solving incompressible viscous problems, J. Comput. Phys. 2 (1967) 12.

[7] E. Chow, Y. Saad, Approximate inverse techniques for block-partitioned matrices, SIAM J. Sci. Comput. 18 (1997) 1657–

1675.

[8] R. Codina, Pressure stability in fractional step finite element methods for incompressible flow, J. Comput. Phys. 170 (2001) 112–

140.

[9] T.S. Coffey, C.T. Kelley, D.E. Keyes, Pseudo-transient continuation and differential-algebraic-equations, SIAM J. Sci. Comput.,

2002, submitted.

[10] E. Dean, R. Glowinski, On some finite element methods for the numerical simulation of incompressible viscous flow, in: M.D.

Gunzburger, R.Y. Nicolaides (Eds.), Incompressible Computational Fluid Dynamics, Cambridge University Press, New York,

1993, pp. 17–65.

[11] G.B. Deng, J. Piquet, P. Queutey, M.A. Visonneau, A new fully coupled solution of the Navier–Stokes equations, Int. J. Numer.

Meth. Fluids 19 (1994) 605–639.

[12] G.B. Deng, J. Piquet, X. Vasseur, M.A. Visonneau, A new fully coupled method for computing turbulent flows, Comput. Fluids

30 (2001) 445–472.

[13] H.C. Elman, D.J. Silvester, A.J. Wathen, Performance and analysis of saddle point preconditioners for the discrete steady-state

Navier–Stokes equations, Numer. Math. 90 (2002) 665–688.

[14] P.M. Gresho, On the theory of semi-implicit projection methods for viscous incompressible flow and its implementation via a

finite element method that also introduces a nearly consistent mass matrix I: Theory, Int. J. Numer. Meth. Fluids 11 (1990) 587.

[15] P.M. Gresho, R. Sani, Incompressible Flow and the Finite Element Method, Wiley, Chichester, 1998.

[16] W.D. Gropp, D.K. Kaushil, D.E. Keyes, B.F. Smith, High-performance parallel implicit CFD, Par. Comput. 27 (2001) 337–362.

[17] J.L. Guermond, L. Quartapelle, On stability of convergence of projection methods based on pressure poisson equation, Int.

J. Numer. Meth. Fluids 26 (1998) 1039–1053.

[18] H. Guillard, P. Vanek, An aggregation multigrid solver for convection–diffusion problems on unstructured meshes, Technical

Report Center for Comput. Math Report 130, University of Denver, June 1998.

[19] W. Hackbusch, Multigrid Methods and Applications, vol. 4 of Computational Mathematics, Springer, Berlin, 1985.

[20] F.H. Harlow, J.E. Welch, Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface, Phys.

Fluids 8 (1965) 2182–2189.

[21] B. Hendrickson, R. Leland, A users guide to chaco, version 1.0., Technical Report SAND93- 2339, Sandia National Laboratories,

1993.

[22] M.A. Heroux, Trilinos/Petra: linear algebra services package, Technical Report SAND2001-1494W, Sandia National

Laboratories, 2001.

[23] R. Issa, Solution of the implicitly discretized fluid flows equations by operator splitting, J. Comput. Phys. 62 (1) (1986) 40–65.

[24] J.A. Meijerink, H.V. der Vorst, An iterative solution method for linear systems of which the coefficient matrix is a symmetric

m-matrix, Math. Comput. 31 (1977) 148–162.

H.C. Elman et al. / Journal of Computational Physics 187 (2003) 504–523 521



[25] G.E. Karniadakis, M. Israeli, S.A. Orszag, High-order splitting methods for the incompressible Navier–Stokes equations,

J. Comput. Phys. 97 (1991) 414–443.

[26] D. Kay, D. Loghin, A.J. Wathen, A preconditioner for the steady-state Navier–Stokes equations, SIAM J. Sci. Comput. 24 (2002)

237–256.

[27] C.T. Kelley, Iterative Methods for Linear and Nonlinear Equations, SIAM, Philadelphia, 1995.

[28] C.T. Kelley, D.E. Keyes, Convergence analysis of pseudo-transient continuation, SIAM J. Numer. Anal. 35 (1998) 508–523.

[29] D. Keyes, A. Ecer, J. Periaux, N. Satofuka (Eds.), Parallel Computational Fluid Dynamics: Towards Teraflops, Optimization, and

Novel Formulations: Proceedings of the Parallel CFD�99 Conference, Elsevier, New York, 2000.

[30] D.A. Knoll, L. Chacon, L.G. Margolin, V.A. Mousseau, On balanced approximations for time integration of multiple time scale

systems, J. Comput. Phys. 185 (2003) 583–611.

[31] D.A. Knoll, V.A. Mousseau, On Newton–Krylov multigrid methods for the incompressible Navier–Stokes equations, J. Comput.

Phys. 163 (2000) 262–267.

[32] D. Loghin, Analysis of preconditioned picard iterations for the Navier–Stokes equations, Technical Report 01/10, Oxford

University Computing Laboratory, 2001.

[33] K. Long, M. Heroux, The trilinos solver framework, in: O. Marques, T. Drummond (Eds.), 2002 ACTS Workshop Proceedings,

Berkeley, CA, September 3–6, 2002.

[34] M.F. Murphy, G.H. Golub, A.J. Wathen, A note on preconditioning for indefinite linear systems, SIAM J. Sci. Comput. 21 (2000)

1969–1972.

[35] R.A. Nicolaides, Analysis and convergence of the MAC scheme I, SIAM J. Numer. Anal. 29 (1992) 1579–1591.

[36] E.S. Oran, J.P. Boris, Numerical Simulation of Reactive Flow, Cambridge University Press, Cambridge, 2001.

[37] S.V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere, New York, 1980.

[38] S.V. Patankar, D.B. Spalding, A calculation procedure for heat, mass and momentum transfer in three dimensional parabolic

flows, Int. J. Heat Mass Transfer 15 (1972) 1787–1806.

[39] M. Pernice, M.D. Tocci, A multigrid-preconditioned Newton–Krylov method for the incompressible Navier–Stokes equations,

SIAM J. Sci. Comput. 123 (2001) 398–418.

[40] J.B. Perot, An analysis of the fractional step method, J. Comput. Phys. 108 (1993) 51–58.

[41] A. Quateroni, F. Saleri, A. Veneziani, Factorization methods for the numerical approximation of Navier–Stokes equations,

Comput. Meth. Appl. Mech. Eng. 188 (2000) 505–526.

[42] J.N. Shadid, A fully-coupled Newton–Krylov solution method for parallel unstructured finite element fluid flow, heat and mass

transfer simulations, Int. J. CFD 12 (1999) 199–211.

[43] J.N. Shadid, S.A. Hutchinson, G.L. Hennigan, H.K. Moffat, K.D. Devine, A.G. Salinger, Efficient parallel computation of

unstructured finite element reacting flow solutions, Par. Comput. 23 (1997) 1307–1325.

[44] J.N. Shadid, R.S. Tuminaro, K.D. Devine, P.T. Lln, Parallel preconditioned Krylov solvers for unstructured finite element

reacting flow solutions, to be submitted to J. Comp. Phys.

[45] P.N. Shankar, M.D. Deshpande, Fluid mechanics in the driven cavity, Annu. Rev. Fluid Mech. 32 (2000) 93–136.

[46] D. Silvester, H. Elman, D. Kay, A. Wathen, Efficient preconditioning of the linearized Navier–Stokes equations for

incompressible flow, J. Comput. Appl. Math. 128 (2001) 261–279.

[47] D. Silvester, A. Wathen, Fast iterative solution of stabilised Stokes systems. Part II: Using general block preconditioners, SIAM

J. Numer. Anal. 31 (1994).

[48] H.D. Simon (Ed.), Parallel CFD�90; Parallel Computational Fluid Dynamics: Implementation and Results, MIT Press,

Cambridge, MA, 1992.

[49] A. Smith, D. Silvester, Implicit algorithms and their linearisation for the transient incompressible Navier–Stokes equations, IMA

J. Numer. Anal. 17 (1997) 527–545.

[50] J.C. Strikwerda, Y.S. Lee, The accuracy of the fractional step method, SIAM J. Numer. Anal. 37 (1999) 37–47.

[51] K. Stuben, A review of algebraic multigrid, J. Comput. Appl. Math. 128 (2001) 281–309.

[52] C. Tong, R. Tuminaro, K. Devine, J. Shadid, Design of a multilevel preconditioning module for unstructured calculations,

Technical Report in preparation, Sandia National Laboratories, Albuquerque NM, 87185, 2000.

[53] U. Trottenberg, C. Oosterlee, A. Sch€uuller, Multigrid, Academic Press, London, UK, 2001.

[54] R. Tuminaro, C. Tong, Parallel smoothed aggregation multigrid: aggregation strategies on massively parallel machines, in:

J. Donnelley (Ed.), SuperComputing 2000 Proceedings, 2000.

[55] R.S. Tuminaro, C.H. Tong, J.N. Shadid, K.D. Devine, D.M. Day, On a multilevel preconditioning module for unstructured mesh

Krylov solvers: two-level Schwarz, Commun. Numer. Meth. Eng. 18 (2002) 383–389.

[56] S. Turek, A comparative study of time-stepping techniques for the incompressible Navier–Stokes equations: from fully implicit

non-linear schemes to semi-implicit projection methods, Int. J. Numer. Meth. Fluids 22 (1996) 987–1011.

[57] H.A. van der Vorst, C. Vuik, GMRESR: a family of nested GMRES methods, Numer. Linear Algebra Appl. 1 (1994) 369–386.

[58] P. Vanek, M. Brezina, J. Mandel, Convergence of algebraic multigrid based on smoothed aggregation, Numer. Math. 88 (2001)

559–579.

522 H.C. Elman et al. / Journal of Computational Physics 187 (2003) 504–523



[59] P. Vanek, M. Brezina, R. Tezaur, Two-grid method for linear elasticity on unstructured meshes, SIAM J. Sci. Comput. 21 (1999)

900–923.

[60] P. Vanek, A. Janka, H. Guillard, Convergence of the algebraic multigrid based on smoothed aggregation II: Extension to a

Petrov–Galerkin method, Technical Report, Report No. 3683, INRIA, May 1999.

[61] P. Vanek, J. Mandel, M. Brezina, Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems,

Computing 56 (1996) 179–196.

[62] C. Vuik, A. Saghir, G. Boerstoel, The Krylov accelerated SIMPLE(R) method for flow problems in industrial furnaces, Int.

J. Numer. Meth. Fluids 33 (2000) 1027–1040.

[63] P. Wesseling, An Introduction to Multigrid Methods, Wiley, West Sussex, 1992.

[64] P. Wesseling, Principles of Computational Fluid Dynamics, Springer, Heidelberg, 2000.

H.C. Elman et al. / Journal of Computational Physics 187 (2003) 504–523 523


	A parallel block multi-level preconditioner for the 3D incompressible Navier-Stokes equations
	Introduction
	Background
	Multigrid
	Implementation
	Numerical results
	Steady-state results
	Transient solver results

	Conclusions
	References


