
SANDIA REPORT
SAND2006-4466
Unlimited Release
Printed July 2006

The Effect of Boundary Conditions
within Pressure Convection–Diffusion
Preconditioners †

Victoria E. Howle, Jacob Schroder, Ray Tuminaro

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94-AL85000.

Approved for public release; further dissemination unlimited.



Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia
Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government, nor any agency thereof, nor any of their employees,
nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied,
or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any infor-
mation, apparatus, product, or process disclosed, or represent that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government, any agency thereof, or any of their contractors
or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of
the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available
copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
EP

ARTMENT OF ENERG
Y

• •U
N

IT
ED

STATES OF AM

ER
IC

A

2



SAND2006-4466
Unlimited Release
Printed July 2006

The Effect of Boundary Conditions within Pressure
Convection–Diffusion Preconditioners ‡

Victoria E. Howle § Jacob Schroder ¶ Ray Tuminaro ‖

Abstract

We explore choices of boundary conditions within pressure convection–diffusion preconditioners for the
incompressible Navier–Stokes equations. While these methods have been shown to be efficient, choosing
the proper boundary conditions for the preconditioning operator is not well understood. In this paper,
we first explore the effect of having “ideal” boundary conditions within the preconditioner. While not
computationally feasible, the ideal boundary condition results highlight the importance of suitable boundary
conditions. The remainder of the paper explores somewhat more practical approximations to the ideal
conditions based on ILU factorizations and probing [5].

∗This work was supported by Sandia National Labs. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed
Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under contract DE-AC04-
94AL85000.

†This work was supported by Sandia National Labs. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed
Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under contract DE-AC04-
94AL85000.

‡This work was supported by Sandia National Labs. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed
Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under contract DE-AC04-
94AL85000.

§Sandia National Laboratories, PO Box 969, MS 9159, Livermore, CA 94551, vehowle@sandia.gov.
¶Department of Computer Science, University of Illinois at Urbana-Champaign, 201 N Goodwin Ave, Urbana, IL 61801,

jschrod@uiuc.edu.
‖Sandia National Laboratories, PO Box 969, MS 9159, Livermore, CA 94551, rstumin@sandia.gov.

3



4



1 Introduction

We explore choices of boundary conditions within pressure convection–diffusion preconditioners for the in-
compressible Navier–Stokes equations. While these methods have been shown to be efficient, choosing the
proper boundary conditions for the preconditioning operator is not well understood. In this paper, we first
explore the effect of having “ideal” boundary conditions within the preconditioner. While not computation-
ally feasible, the ideal boundary condition results highlight the importance of suitable boundary conditions.
The remainder of the paper explores somewhat more practical approximations to the ideal conditions based
on ILU factorizations and probing [5].

Consider the Navier–Stokes equations

αut −ν∇2u+(u ·grad)u+grad p = f
−divu = 0 (1)

on Ω ⊂ R
d , d = 2 or 3. Here, u is the d-dimensional velocity field, which is assumed to satisfy suitable

boundary conditions on ∂Ω, p is the pressure, and ν is the kinematic viscosity, which is inversely proportional
to the Reynolds number. The value α = 0 corresponds to the steady-state problem and α = 1 to the transient
case. Linearization and discretization of (1) by finite elements, finite differences, or finite volumes lead to a
sequence of linear systems of equations of the form

[
F BT

B − 1
ν C

][
u
p

]
=

[
f
g

]
. (2)

These systems, which are the focus of this paper, must be solved at each step of a nonlinear (Picard or
Newton) iteration or at each time step. Here, B and BT are matrices corresponding to discrete divergence
and gradient operators, respectively, and F operates on the discrete velocity space. This paper only considers
C = 0 corresponding to div-stable discretizations (see, e.g., [1]), which satisfy an inf-sup condition.

In recent years, there has been considerable activity in the development of efficient iterative methods
for the numerical solution of the stationary and fully-implicit versions of this problem. These are based on
new preconditioning methods derived from the structure of the linearized discrete problem given in (2). A
complete overview of the ideas under consideration can be found in the monograph [3]. The key to attaining
fast convergence lies with the effective approximation of the inverse of the Schur complement operator

S = BF−1BT + 1
ν C, (3)

which is obtained by algebraically eliminating the velocities from the system. With C = 0,

S = BF−1BT
. (4)

One approach of interest is the pressure convection–diffusion preconditioner proposed by Kay, Loghin,
and Wathen [4] and Silvester, Elman, Kay and Wathen [6]. In this method, the Schur complement matrix is
approximated as

S ≈ MS = ApF−1
p Q, (5)

where Q is the pressure mass matrix associated with the pressure discretization (or a spectrally equivalent
approximation to it), and Ap and Fp are discrete Laplace and convection–diffusion operators defined on the
pressure space. Although effective for solving the system (2), this method has the drawback of requiring
users to provide the discrete operators Ap and Fp.

It is fairly well understood how to compute a suitable Fp and Ap operator within the domain interior.
However, the situation is less clear for boundary conditions. Currently, there is an accumulated experimental
knowledge of what boundary condition setup works best with a specific type of problem. For instance with a
backward facing step, the inflow boundary conditions for both Fp and Ap should be Dirichlet, while the other
sides should be set to Neumann. As will be demonstrated, other boundary condition setups can result in very

5



poor convergence. But, there is no general understanding of how to compute Fp and Ap such that the boundary
condition setup, i.e., what boundaries are Neumann or Dirichlet, does not strongly affect convergence. In
fact, we suspect that problems associated with Fp and Ap at boundaries sometimes cause mesh dependent
convergence.

The general idea of this paper is to manipulate (5) so that an expression is obtained for updating either Fp

or Ap at the boundary. These updates will occur after an initial Fp and Ap have been formed with somewhat
naı̈ve boundary conditions. Specifically, we consider updates based on the following row-based formulas:

Ap(bcs, :) = S(bcs, :)(Q−1Fp) (6)

and

Fp(bcs, :) = Q(bcs, :)(S−1Ap) , (7)

where S = BF−1BT and bcs refers to the set of all of the boundary rows. Column-based analogs to (6) and
(7) can also be used. These column-based formulas generally give similar convergence rates to the row-based
methods and may be more appropriate within practical code. In particular, the column-based updates are
more efficient because the first matrix operations are at the boundary columns of the right-most operand and
this reduces the size and cost of all the subsequent matrix operations significantly.

While computations of (6) and (7) are expensive, we first use these “ideal” boundary conditions to study
their effect on numerical convergence. Once this effect is established, we explore more computationally
tractable approximations to (6) and (7) based on ILU factorization and probing.

While our results are for a particular problem where suitable boundary conditions are already known,
we hope to gain insight into how to develop a more general pressure convection–diffusion preconditioning
scheme that works well in more complex situations, where it is less clear how to choose the boundaries.

6



2 Results

2.1 Test Problem

Our test problem is a backward facing step generated by the IFISS 2.0 package for MATLAB by Silvester,
Elman and Ramage [7]. A typical solution is shown in Figure 1.

−2 −1 0 1 2 3 4 5 6−2
0

2

−0.1

0

0.1

Pressure field [Navier−Stokes]

Streamlines: non−uniform [Navier−Stokes]

Figure 1. Typical Grid 5 Solution with Re = 100

The problem setup has the following the parameters:

1. The domain consists of a rectangle ([-1, 5] × [-1, 1]) with a square removed from the lower left corner.

2. Grid Parameters used were 4, 5 and sometimes 6, depending on the problem’s computational load. See
Table 1 for grid dimensions.

Grid 4 Grid 5 Grid 6
Pressure Space 24 × 8 48 × 16 96 × 32
Velocity Space 48 × 16 96 × 32 192 × 64

Table 1. Test Problem Grid Sizes

7



3. The following Reynolds numbers are considered: Re = 10, 100, 200. The Reynolds number is related
to the IFISS viscosity parameter, ν , such that ν = 2

Re
.

4. A Q2-Q1 discretization for the velocity - pressure spaces is used.

5. The system solved by GMRES is the final linear system generated by Picard iterations with a nonlinear
tolerance of 10−5 and a maximum iteration count of 9.

All code and pseudo-code that follows is in MATLAB form.

2.2 Testing Strategy

The IFISS package initially builds Fp and Ap with Neumann boundary conditions on all sides. In a second
stage, IFISS normally then modifies the inflow boundary conditions for Ap and Fp so that they correspond
to Dirichlet boundaries. For our overall testing strategy, we modify IFISS to experiment with different com-
binations of Dirichlet boundary conditions on the top, bottom, inflow and outflow sides of the domain. Our
intention here is to mimic situations where it is less clear how to choose boundary conditions. We then mea-
sure the effect of these changes on convergence with GMRES while using different preconditioning strategies
to update the rows that correspond to all the boundary points in the Fp or Ap matrices. Our goal is to find a
preconditioner that is mesh independent, insensitive to the initial boundary condition setup, and still yields
good convergence.

We define “inflow only Dirichlet” to mean that the inflow side of the domain is set to Dirichlet while
all the other sides of the domain are set to Neumann. “Outflow only Dirichlet” is defined analogously. We
present in this paper convergence data for only these two experiment types, although 8 combinations of
Dirichlet boundary conditions were tried for each preconditioning strategy. These combinations correspond
to the following set of Dirichlet boundary conditions:

1. Inflow

2. Outflow

3. Top

4. Bottom

5. Inflow and outflow

6. Inflow and bottom

7. Inflow and top

8. Inflow, top, and bottom

The data for inflow only Dirichlet and outflow only Dirichlet captures the range of performance observed
for all 8 combinations. Inflow only Dirichlet is generally the best and is considered the correct bound-
ary condition setup based on accumulated experimental knowledge within the pressure convection–diffusion
community. Outflow only Dirichlet, on the other hand, is generally the worst boundary condition setup. The
convergence rate of the other combinations generally fell in between these two boundary condition setups.

2.3 IFISS Data without Ap and Fp Updates

In Table 2, GMRES (unrestarted) iterations are given for the standard IFISS code applied to the backward
facing step. In Table 3, we make one modification to IFISS so that the outflow boundary conditions are
changed to Dirichlet and the inflow conditions are Neumann. Note that 500+ refers to the fact that the
experiment did not converge after 500 GMRES iterations.

This data is not mesh independent, even for Table 2. Also as expected, inflow only Dirichlet was the best
performer, and outflow only Dirichlet was the worst. The large difference in convergence rates; however, is
surprising and disturbing. Obviously, how one chooses the boundary conditions is very important. This large

8



Grid Param Re = 10 100 200
4 22 31 43
5 25 33 41
6 30 42 47

Table 2. Inflow only Dirichlet, GMRES iterations

Grid Param Re = 10 100 200
4 36 59 79
5 44 500+ 500+
6 54 500+ 500+

Table 3. Outflow only Dirichlet, GMRES iterations

disparity argues strongly for the development of a general preconditioning strategy that eliminates the need
for an accumulated experimental knowledge of what boundary condition setup works best for every specific
problem type.

2.4 Concept Testing

Our concept testing consisted of explicitly forming the exact Schur complement and then using the Schur
complement in the update for Fp or Ap’s rows at all of the boundaries. We did this for only grid sizes 4 and
5, because this operation is too expensive for grid size 6. The Fp update is especially expensive because an
LU factorization of the Schur complement must be formed and then the L and U factors are used to do a
forward-solve and back-solve with the columns of Ap. While these experiments are much too expensive to be
practical methods, they do test in an exact manner what we will later want to do in an approximate fashion.

Table 4 and Table 5 present the data for updating Fp based on (7). Table 6 and Table 7 give data for
updating Ap based on (6).

Grid Param Re = 10 100 200
4 12 23 37
5 14 21 34

Table 4. Inflow only Dirichlet with Fp update, GMRES iterations

Grid Param Re = 10 100 200
4 12 22 39
5 14 20 32

Table 5. Outflow only Dirichlet with Fp update, GMRES iterations

9



Grid Param Re = 10 100 200
4 14 30 51
5 15 25 41

Table 6. Inflow only Dirichlet with Ap update, GMRES iterations

Grid Param Re = 10 100 200
4 21 46 70
5 23 500+ 164

Table 7. Outflow only Dirichlet with Ap update, GMRES iterations

The most important observation is that the Fp row-update exhibits grid independence and excellent con-
vergence in both cases. That is, a proper choice of boundary conditions appears to fix a loss of mesh inde-
pendence that has been observed for pressure convection–diffusion preconditioners on the backward facing
step. Further, the initial placement of Dirichlet boundaries within the Ap and Fp operators is less critical, if a
suitable Fp update algorithm is used.

The situation for the Ap updates is less clear. Table 6 seems more mesh independent than either Table 2 or
Table 3. However, Table 7, while outperforming Table 3, still shows a marked lack of mesh independence and
very slow convergence for Re = 100, 200. Overall, the initial choice of Dirichlet boundary conditions is still
very important in the Ap update case. While we are not completely sure why the Ap update results in slower
convergence than the Fp update, it is worth noting one major difference between the Ap and Fp updates. In
particular, while we update Ap, we use A−1

p within the preconditioner. Thus, modifications to Ap’s boundaries
have a more global effect and must be performed carefully.

Since one of our main goals is to develop a preconditioning strategy that does not require any previous ex-
perimental knowledge of what boundary condition setup works best, we decided not to investigate Ap−based
preconditioning strategies further. All subsequent preconditioning strategies are meant to be approximations
of the exact solves and exact Schur complements in (7). Unfortunately the Fp updates are inherently much
more expensive than the Ap updates, as they require the multiplication by the inverse Schur complement.

2.5 Employing Structured Probing and ILU to Update Fp

The exact application of (7) requires first a factorization of F followed by the computation of the exact Schur
complement and then finally a factorization of the Schur complement. There are several possibilities for
trying to approximate (7) inexpensively. In this paper, we explore two replacements for the inverses in (7)
using ILU factorizations and probing ideas. We point out that there are several other possible replacements,
including using simple iterative methods, coarse grid approximations or sparse approximate inverses.

Our general strategy for updating Fp is to first approximate S by some S̃ and then to further approximate
S̃−1. We found the most effective approximations of Fp updates were accomplished by using

1. The structured probing algorithm of [5] to approximate the Schur complement followed by using
ILU(S̃) to approximate S−1. ILU was also used with good results in [5] to approximate an inverse
Schur complement produced by probing.

2. ILU(F) to approximate the Schur Complement S̃ followed by using ILU(S̃) to approximate S−1.

10



To test the potential effectiveness of approximating Fp, we initially tried sparsifying the “ideal” Fp by
dropping values below a certain threshold. This was done such that the number of non-zeros in Fp was
reduced by a factor of 5 to 70, and this lead to encouraging results. A reduction factor of 3-5 increases
convergence by generally less than 5 iterations. A reduction factor of around 15 generally almost doubles the
convergence rate, and a reduction factor of around 70 essentially causes a loss of convergence.

2.5.1 Updating Fp with a Probed S and ILU

The probing scheme used to calculate S is the structured probing algorithm of [5]. The idea of probing is to
reconstruct an operator by repeatedly applying it to a carefully chosen sequence of vectors containing only
0’s and 1’s. For example, a simple probing method can be used to reconstruct a tridiagonal matrix exactly.
This is illustrated by the following example




1 2
3 4 5

6 7 8
9 10 11

12 13







1 0 0
0 1 0
0 0 1
1 0 0
0 1 0




=




1 2 0
3 4 5
8 6 7

10 11 9
12 13 0




. (8)

The structured probing algorithm of [5] is a more sophisticated extension of this idea that involves doing
a graph coloring on a desired sparsity structure and using that coloring to choose probing vectors such that a
matrix with the desired sparsity structure would be reproduced exactly. The carefully chosen probing vectors
are then applied to a matrix-vector multiply routine to generate the approximate matrix. The structured
probing code used in these experiments implements only one graph coloring algorithm, the greedy-sequential
coloring algorithm.

To call the probing routine, we do the following:

• Form the LU factors [L,U] = lu(F) once.

• Provide a sparsity pattern which is used to generate a graph coloring and the probing vectors. This
sparsity pattern is chosen to be identical to the Ap sparsity pattern provided by IFISS before the rows
corresponding to the Dirichlet boundary conditions are zeroed.

• Provide a matrix-vector multiply function, mat-vec, that calculates
B(F−1(BT probe)) for each probing vector, probe. This function is used by the probing software to
build the approximate S after a coloring has been computed for the sparsity structure and the probing
vectors have been defined from the coloring.

Table 8 and Table 9 contain GMRES iterations using Fp updates of the form:

S = probing(mat-vec,SparsityStruct = Ap);
[L,U ] = luinc(S,optns); %compute ILU

F p(bcs, :) = Q(bcs, :)∗ (U\(L\Ap)); (9)

where optns is optns.droptol = 1e-2; optns.udiag = 1; 1. Luinc(‘0’), which performs ILU(0), does not work
in this case because 0’s appear on the diagonal, so these options have to be employed to replace 0’s on the
diagonal with droptol. droptol is also used by luinc as a drop tolerance. Using optns resulted in approximately
the same number of non-zeros as using ILU(0).

The Fp row-update shows mesh independence at Re = 100,200, but not at Re = 10. Encouragingly
though, the convergence rate goes down significantly for Re = 200 with increasing grid size. Possibly, the

1The udiag option forces zeros on the diagonal to be replaced with optns.droptol.

11



Grid Param Re = 10 100 200
4 20 38 77
5 23 32 70
6 27 30 44

Table 8. Inflow only Dirichlet with Fp update, GMRES iterations

Grid Param Re = 10 100 200
4 25 50 82
5 31 41 72
6 34 50 65

Table 9. Outflow only Dirichlet with Fp update, GMRES iterations

physics is better captured numerically on the finer mesh. Overall, the convergence rates are good but not
nearly as good as the “ideal” Fp updates, and the choice of boundary conditions had only a modest effect on
convergence. In this case, updating Fp’s rows did perform significantly better than updating columns.

We also did experiments where the mat-vec routine used by the probing software calculated F−1 using
luinc(‘0’) instead of lu(). This approximation had little effect on convergence rates and made the probing step
noticeably quicker.

2.5.2 Updating Fp with ILU only

Another promising method of approximating the Fp updates is by using ILU twice, as shown below.

[L,U ] = luinc(F, ‘0’); %compute ILU

S = B∗ (U\(L\BT ));
[L,U ] = luinc(S, ‘0’); %compute ILU

F p(bcs, :) = Q(bcs, :)∗ (U\(L\Ap)); (10)

where luinc(‘0’) refers to the MATLAB ILU(0) factorization.2 Table 10 and Table 11 give the corresponding
number of GMRES iterations. When comparing these with Table 4 and Table 5, it is apparent that the use of
ILU does not seriously degrade convergence.

Grid Param Re = 10 100 200
4 14 26 40
5 16 24 33
6 20 24 31

Table 10. Inflow only Dirichlet with Fp update, GMRES iterations

The results exhibit grid independence, virtually no variability due to boundary condition choices and
excellent convergence rates. Yet, we will see in 2.5.3 that this method is much more expensive than probing.

2Using ILU with optns as in (9) gives nearly identical convergence.

12



Grid Param Re = 10 100 200
4 15 26 44
5 17 27 38
6 21 32 39

Table 11. Outflow only Dirichlet with Fp update, GMRES iterations

2.5.3 Efficiency

In order to better determine the feasibility of the methods outlined in 2.5.1 and 2.5.2, a modest attempt
is made to examine the computational cost of their current form in MATLAB. This cost analysis could,
however, be mitigated by the possibility that the Fp updates might not need to be done at every nonlinear step.
Computational cost is measured by

• Timing the computation of S using probing or ILU with the tic\toc calls in MATLAB.

• An examination of the computational bounds on calculating S with probing or ILU.

• Recording the number of non-zeros in S from probing or ILU in order to gauge the cost of the luinc(S)
call prior to updating FP.

Timing Table 12 contains average times, in seconds, to calculate S using probing, luinc(‘0’), and luinc(optns).
The times for luinc() also reflect the matrix-matrix multiplications required to form S = BF−1BT

.

Grid Param Probing luinc(‘0’) luinc(optns)
4 0.280 0.357 0.242
5 1.850 5.611 3.679

Table 12. Timing Data is Average Value in Seconds

Timing luinc() accurately was hampered by the fact that MATLAB 7 has unexpected and unexplainable
timing results when luinc() is used with the parameters luinc(‘0’) and luinc(optns). Using optns speeds up
the execution of the luinc() call by a factor of around 5. This speed up occurs even if the convergence rate of
GMRES and the number of non-zeros in the resulting factors changes negligibly when comparing ‘0’ with
optns.3 Nonetheless, the MATLAB timings do indicate that using ILU instead of probing is significantly
more expensive, especially for larger grids.

Probing seems to scale much better to larger grid sizes, which indicates it would be a better method for
larger problems. Also, substituting luinc(optns) for lu() in the mat-vec routine used by the probing software
lowers the probing timings by 21% for grid size 4 and 46 % for grid size 5. Using luinc(optns) instead of lu()
did not affect the convergence of GMRES significantly, although it did have a slight negative effect.

Computational Bounds on Probing and ILU Computational bounds for structured probing are provided
in [5]. The expensive steps in structured probing are

3MathWorks technical support explained that using optns with a droptol executes a completely different algorithm than ‘0’. Using
optns with a droptol executes an algorithm which is more concerned with maintaining the large values in the incomplete factors, while
using ‘0’ executes an algorithm that maintains the sparsity structure of the original matrix exactly. How this makes ‘0’ significantly
slower is still not clear, however.

13



1. O(nv2) operations for graph coloring

2. O(nv p) operations for matrix vector multiplies to build the resulting approximate matrix

where n is the dimension of the n× n matrix, S, which is to be approximated, v is the number of non-zeros
per row, and p is the number of colors used. For all of our problems regardless of grid size and Reynolds
number, p = v = 9. In our experiments, we chose the probing sparsity pattern to match the sparsity pattern of
Ap. Ap never has more than 9 non-zeros in a row, so p = v = 9.

Using ILU to approximate S requires computations of the form:

[L,U ] = luinc(F, ‘0’); %compute ILU

S = B(U\(L\BT )); (11)

In examining the cost of (11), the most important operations to understand are (U\(L\BT )). The main
problem is that a back-solve and forward-solve produce a dense result. This makes not only the repeated
back-solves and forward-solves expensive, but also the subsequent matrix-matrix multiplication with B. The
computational cost of (11) is

1. O(k2r) operations to compute an ILU on F, where k is the number of non-zeros in a row of F and r is
the number of rows in F. It should be noted that in certain circumstances performing an ILU(F) might
be natural for the full version of the preconditioner and may be already available.

2. O(k r) operations to do a single back-solve or forward-solve with U and L, respectively, where k r is the
total number of non-zeros in the factors which is also approximately equal to the number of non-zeros
in F when ILU(0) is done. The back-solve and forward-solve will have to be done for every column in
BT , so this effectively makes this operation cost O(k r s), where s is the number of columns in BT and
s equals the number of pressure variables.

3. O(x y m) operations for matrix-matrix multiplication of B and the resulting operand to its right, where
x is the number of non-zeros in a row of B, y is the number of non-zeros in a column of (U\(L\BT ))
and m is the number of non-zeros in the resulting matrix, S. Note that y À 0 and hence m À 0.

It should be clear that doing ILU to approximate S is more computationally expensive. With probing,
we have operations on the order of O(81 n). With ILU, we have operations on the order of O(xym). In our
experiments, m is in the thousands to hundreds of thousands, depending on the grid (see Table 13), xy À 81
and n is in the hundreds to thousands, depending on grid size.

Non-zeros in S In order to gauge the cost of the luinc(S) call that both (9) and (10) make, we present the
number of non-zeros in each method’s approximate S. The number of non-zeros for each method was the
same for all Reynolds numbers and only varied with respect to grid size.

The number of non-zeros in S from (10) did not change if luinc(optns) was used instead of luinc(‘0’).
Using method (10) also yielded an equal number of non-zeros as the actual Schur complement, despite the
fact that the incomplete factors are much sparser than the full LU factors. The forward-solves and back-solves
against the columns of BT in forming the approximate S from (10) are the steps where the density is restored
to that of the exact S. A possible alternative to using ILU(F) to calculate S that would avoid such a dense
result would be sparse approximate inverses. We do not explore this option in this paper.

Probing results in far fewer non-zeros and again scales better than ILU when moving from grid size 4 to
5. Probing scales better in the sense that its number of non-zeros increases at a much slower rate .

14



Grid Param Probing luinc()
4 1,681 43,681
5 6,529 591,361

Table 13. Number of Non-zeros in S

2.6 Other Fp Updates

We experimented with other Fp updates that did not yield reasonable or improved convergence. These were

1. Iterated solves of Fp or Ap, where both the rows and the columns of only Fp or only Ap were updated
in succession. This generally had little noticeable impact on performance, and never made conver-
gence faster than just updating only the rows or only the columns. However with probing, this method
exhibited much worse convergence when compared to row only or column only updates.

2. Iterated Fp and Ap updates, where the rows or columns of Fp would be updated followed by updating
the rows or columns of Ap, or vice versa. This had similar convergence to just updating Fp.

3. Probing twice, once for S and once for S−1.

4. Using ILU to approximate F−1 in order to form an approximate S followed by probing to form an
approximate S−1.

5. Using the Least Squares Commutator formula [2] to form our own Fp. We used the following equation

S =
(
B
(
G−1BT ))

Fp = S−1B
(
G−1FG−1BT )

, (12)

where G is the velocity mass-matrix.

Using probing to form an approximate S−1 in 3 and 4 yielded some of the worst convergence rates.
Probing was used to form S−1 by simply changing the mat-vec function used by the probing software so that
given a matrix, S, the function would form the L and U factors of S once and then output (U\L \probe) for
any probing vector, probe.

15



3 Conclusions

We have experimented with pressure convection–diffusion preconditioners on a backward facing step prob-
lem. The choice of boundary conditions with the Fp and Ap operators can have a very significant effect on the
convergence of the standard pressure convection–diffusion scheme. The use of “ideal” boundary conditions
for Fp significantly reduces the convergence sensitivity to the boundary conditions chosen for Ap. These
“ideal” conditions are defined by algebraically requiring that the preconditioned Schur complement on the
boundary points correspond to the identity matrix. Further, “ideal” boundary conditions for Fp give rise to
mesh independent convergence rates for the backward facing step. While mesh independent convergence
rates have been reported for other problems, e.g., lid-driven cavity problems, they have not generally been
observed for standard pressure convection–diffusion preconditioners on the backward facing step. Our re-
sults imply that the culprits for this loss of mesh independence are the boundary conditions used within the
preconditioner. While significant improvements were also observed with “ideal” Ap boundary conditions, the
results were generally less satisfying than ideal Fp boundary conditions.

Inexpensive approximations to the “ideal” boundary conditions have also been explored based on probing
and ILU ideas. In general, the ILU methods give excellent convergence results, but are still too expensive to be
used in practice. The probing approximations lead to a fairly practical algorithm in terms of computational
cost. While the convergence with probing is good, it leads to noticeably inferior convergence rates when
compared with ILU.

Overall, the effectiveness of 2.5.2 and 2.5.1 indicate promise in the direction of developing a general pre-
conditioning strategy that does not require extensive experimental knowledge of which boundary conditions
to choose. Further research should be performed to identify other approximations to the “ideal” boundary
conditions based on either sparse approximate inverses, coarse grid approximations or more expensive prob-
ing variants.

16



4 Acknowledgments

We would like to thank Chris Siefert for providing us with the MATLAB structured probing code, which we
used in our probing experiments.

17



References

[1] F. BREZZI AND M. FORTIN, Mixed and Hybrid Finite Element Methods, vol. 15, Springer–Verlag,
Berlin, 1991.

[2] H. C. ELMAN, V. E. HOWLE, J. SHADID, R. SHUTTLEWORTH, AND R. TUMINARO, Block precondi-
tioners based on approximate commutators, SIAM J. Sci. Comput., to appear.

[3] H. C. ELMAN, D. J. SILVESTER, AND A. J. WATHEN, Finite Elements and Fast Iterative Solvers,
Oxford University Press, Oxford, 2005.

[4] D. KAY, D. LOGHIN, AND A. WATHEN, A preconditioner for the steady-state Navier–Stokes equations,
SIAM J. Sci. Comput., 24 (2002), pp. 237–256.

[5] C. SIEFERT AND E. DE STURLER, Probing methods for generalized saddle-point problems, Tech. Rep.
UIUCDCS-R-2005-2540, University of Illinois, Urbana-Champaign, Urbana, IL 61801, 2005.

[6] D. SILVESTER, H. ELMAN, D. KAY, AND A. WATHEN, Efficient preconditioning of the linearized
Navier–Stokes equations for incompressible flow, J. Comp. Appl. Math., 128 (2001), pp. 261–279.

[7] D. J. SILVESTER, H. C. ELMAN, AND A. R. RAMAGE, Incompressible Flow Iterative Solution Software
Package. http://www.ma.umist.ac.uk/djs/ifiss/.

18



v1.27




