Homework 7
 Due Tuesday 5/3/2011 in discussion section

This cover sheet must be attached as the top page of your homework.

1. A ball is thrown directly upward from ground level with an initial velocity $v(0)=96 \mathrm{ft} / \mathrm{s}$. Assuming that the ball's only acceleration is that due to gravity (i.e., $a(t)=-32 \mathrm{ft} / \mathrm{s}^{2}$), determine the maximum height reached by the ball and the time it takes to return to ground level.
2. Given the following integral:

$$
\int_{1}^{3} 4 x^{2}+2 d x
$$

(a) Estimate the value of the integral using a Riemann sum $S_{n}=\sum_{k=1}^{n} f(a+k \Delta x) \Delta x$ with $n=4$ and using right endpoints.
(b) Evaluate the definite integral using the definition. Use equal width subintervals and evaluate the function at right endpoints. So in this case, you are evaluating

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{n} f(a+k \Delta x) \Delta x
$$

where $\Delta x=\frac{b-a}{n}$.
3. Find the area of the region under the curve given by $y=t \sqrt{t^{2}+9}$ on $[0,4]$.
4. Find the average value of the function $f(x)=\frac{x}{\sqrt{x^{2}+1}}$ on the interval $[0,3]$.

