This cover sheet must be attached as the top page of your homework.

1. Sketch the graph of f. Determine whether f^{-1} exists. Find and sketch a graph of its inverse if it exists.
(a) $f(x)=\cos x$, on $[0, \pi]$
(b) $f(x)=x^{2}$, for all x
(c) $f(x)=x^{2}$, for $x \leq 0$
2. Simplify the following expression: $\cos 2\left(\sin ^{-1} x+\cos ^{-1}\right)$
3. Given the function $f(x)$ defined by the following graph:

(a) Evaluate the following limits if they exist:

$$
\lim _{x \rightarrow-4} f(x), \quad \lim _{x \rightarrow 1^{-}} f(x), \quad \lim _{x \rightarrow 1^{+}} f(x), \quad \lim _{x \rightarrow 1} f(x)
$$

(b) Is $f(x)$ continuous at the point $x=-4$? Explain why or why not.
(c) Is $f(x)$ continuous at the point $x=1$? Explain why or why not.
(d) Is $f(x)$ continuous on the interval $(-4,1)$? Explain why or why not.
(e) Is $f(x)$ continuous on the interval $[-4,1]$? Explain why or why not.
4. Evaluate the limit:

$$
\lim _{x \rightarrow 0} \frac{x^{2} \cos 2 x}{1-\cos x}
$$

5. Prove using the formal definition of the limit (epsilon-delta definition) that

$$
\lim _{x \rightarrow 3}(4 x-2)=10
$$

