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ABSTRACT

Hysteresis in smart materials hinders the wider applicability of such materials in actuators. In this paper, a systematic
approach for coping with hysteresis is presented. The method is illustrated through the example of controlling a
commercially available magnetostrictive actuator.

We utilize the low-dimensional model for the magnetostrictive actuator that was developed in earlier work. For
low frequency inputs, the model approximates to a rate-independent hysteresis operator, with current as its input;
magnetization as its output. Magnetostrictive strain is proportional to the square of the magnetization. In this
paper, we use a classical Preisach operator for the rate-independent hysteresis operator.

In this paper, we present the results of experiments conducted on commercial magnetostrictive actuators, the
purpose of which was the control of the displacement/strain output. A constrained least-squares algorithm is em-
ployed to identify a discrete approximation to the Preisach measure. We then discuss a nonlinear inversion algorithm
for the resulting Preisach operator, based on the theory of strictly-increasing operators. This algorithm yields a
control input signal to produce a desired magnetostrictive response. The effectiveness of the inversion scheme is
demonstrated via an open-loop trajectory tracking experiment.
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1. INTRODUCTION

Hysteresis in smart materials, e.g., magnetostrictives, piezoceramics, and Shape Memory Alloys (SMAs), hinders the
wider applicability of such materials in actuators. A fundamental idea in coping with hysteresis is to formulate the
mathematical model of hysteresis and use inverse compensation to cancel out the hysteretic effect. This idea can be
found in the works of Tao and Kokotović,1 Smith,2 and Galinaitis and Rogers,3 to name a few.

Hysteresis models for smart materials can be classified into physics based models and phenomenological models.
An example of physics based model is the Jiles-Atherton model for ferromagnetic hysteresis,4 where hysteresis is
considered to arise from pinning of domain walls on defect sites. The most popular phenomenological hysteresis
model used in control of smart actuators has been the Preisach model.5–7 A similar type of operator, called
Krasnoselskii-Pokrovskii (KP) operator was used by Galinaitis and Rogers in modeling a piezoelectric actuator.3

Though the Preisach model does not provide any physical insight into the problem, it provides a means of developing
phenomenological models that are capable of producing behaviors similar to physical systems(see Mayergoyz8 for an
excellent exposition).

In this paper we present a systematic approach for control of smart actuators. The method is illustrated through
the example of controlling a commercially available magnetostrictive actuator. The model we use for the magne-
tostrictive actuator is based on earlier work of our group.13,? It was shown that a key component of a low-order
model is as shown in Figure 4. The rate-independent hysteresis operator is a classical Preisach operator followed by
a squaring operator. The input of the hysteresis operator is the current input to the actuator, and the output of
the squaring operator is a quantity with the dimensions of force. In this paper, we deal with low frequency inputs
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of less than 5 Hz, as we wish to focus on the hysteresis operator only. For this case, the linear system in Figure 4
approximates to a constant with dimensions of length/force.

A constrained least-squares algorithm is employed to identify a discrete approximation to the Preisach measure
(also called weighting function in literature). We then discuss a nonlinear inversion algorithm for the resulting
Preisach operator, based on the theory of strictly-increasing operators. This algorithm yields a control input signal
to produce a desired magnetostrictive response.

The remainder of the paper is organized as follows. Section 2 provides an introduction to the Preisach operator,
where the emphasis is put on how to evaluate the output of the Preisach operator given an initial memory curve and
the input. Disretization scheme and identification algorithm will be discussed in Section 3. Section 4 is devoted to
an inverse algorithm, which fully exploits the strictly-increasing property of the Preisach operator and the discrete
structure of the problem. Experimental results are given in Section 5. Concluding remarks and discussions on
possible future work are provided in Section 6.

2. THE PREISACH MODEL

Consider a simple hysteretic element (relay) shown in Figure 1. The relationship between the “input” variable u and
the “output” variable v at each instant of time t can be described by:





v = +1 if u > α,
v = −1 if u < β,
v remains unchanged if β ≤ u ≤ α.

. (1)

Call the operator relating u(·) to v(·) as γ̂β,α[u](·), where we now view the input and output variables as functions of
time. This operator is sometimes referred to as an elementary Preisach hysteron since it is a basic block from which
the Preisach operator Γ[·] will be constructed. We now outline this construction. Suppose u(·) ∈ C[0, T ] is the input
to the elementary hysteron. The output of the Preisach operator is defined as:

ω(t) = Γ[u](t) =
∫ ∫

α≥β

µ(β, α)γ̂β,α[u](t)dβdα, (2)

where µ(·, ·) is a density function (also called weighting function or the Preisach measure). This representation is the
most natural one for the Preisach operator and is closest to Preisach’s original definition.8 The Preisach operator has
non-local memory and it “remembers” the dominant maximum and minimum values of the past input. For a review
of this and other basic properties of the Preisach operator, please refer to Mayergoyz8 and Brokate and Sprekels.10
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Figure 1.
Illustration of the Elementary Preisach Hysteron

The memory effect of the Preisach operator can be captured by curves in the Preisach (β, α) plane. To simplify
the discussion, we assume the Preisach measure µ(·, ·) has a compact support, i.e., µ(β, α) = 0 if β < β0 or α > α0



for some β0, α0. Then the Preisach plane P
4
= {(β, α)|α ≥ β, β ≥ β0, α ≤ α0}. Each (β, α) ∈ P is identified with the

hysteron γ̂β,α, as shown in Figure 2(a). At each time instant t, P can be divided into two regions:

P (t)
4
= {(β, α) ∈ P | output of γ̂β,α at t is− 1},

P+(t)
4
= {(β, α) ∈ P | output of γ̂β,α at t is + 1},

so that P = P (t) ∪ P+(t) at all times. Equation (2) can be rewritten as:

ω(t) =
∫ ∫

P+(t)

µ(β, α)dβdα−
∫ ∫

P (t)

µ(β, α)dβdα. (3)

Now assume that at some initial time t0, the input u(t0) = u0 < β0. Then the output of every hysteron operator
is -1. Therefore P (t0) = P , P+(t0) = ∅ and it corresponds to the “negative saturation”(Figure 2(b)). Next we
assume that the input is monotonically increased to some maximum value at t1 with u(t1) = u1. The output of γ̂β,α

is switched to +1 as the input u(t) increases past α. Thus at time t1, the boundary between P (t1) and P+(t1) is the
horizontal line α = u1(Figure 2(c)). Next we assume that the input starts to decrease monotonically until it stops at
t2 with u(t2) = u2. It’s easy to see that the output of γ̂β,α becomes -1 as u(t) sweeps past β, and correspondingly,
a vertical line segment β = u2 is generated as part of the boundary(Figure 2(d)). Further input reversals generate
additional horizontal or vertical boundary segments.
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Figure 2.
Memory Curve in the Preisach Plane

From the above illustration, we can see that each of P and P+ is a connected set, and the output of the
Preisach operator is determined by the boundary between P and P+. The boundary is also called memory curve,
since it provides information about the state of any hysteron. We also note that due to its staircase structure, the
memory curve is fully captured by its corner points, which correspond exactly to the past dominant maximum and
minimum input values. Motivated by this observation, we store and update only these corner points in our numerical
implementation of the Preisach model.



3. IDENTIFICATION OF THE PREISACH MEASURE

3.1. Review of identification methods
A classical method for identifying the Preisach measure is using the so called first order reversal curves, detailed in
Mayergoyz.8 A first order reversal curve can be generated by first bringing the input to the negative saturation,
followed by a monotonic increase to α, then a monotonic decrease to β. The term “first order reversal” comes from
the fact that each of these curves is formed after the first reversal of the input. Denote the output value as f(β, α)
when the input reaches β. Then the measure µ(β, α) can be obtained as

µ(β, α) =
1
2

∂2f(β, α)
∂β∂α

. (4)

Equatin (4) is useful only when the two-dimensional surface f(β, α) is smooth, which is not the case for measured
curves in experiments. To overcome this difficulty, a smooth approximation surface f̃(β, α) is fit to the data points.6,7

Hughes and Wen6 approximated the surface by polynomials using a least squares method. Gorbet, Wang and Morris
employed functions with specific forms, and the parameters were obtained via a weighted least square algorithm.7

As pointed out in Gorbet, Wang and Morris,7 deriving the measure by differentiating a fitted surface is inherently
imprecise, since different type of approximating functions lead to quite different measure distributions.

Hoffmann and Sprekels11 proposed a scheme to identify the Preisach measure directly. By devising the input
sequence carefully, they set up independent blocks of linear equations involving the output measurements and the
atomic measures in the discretized Preisach plane. Each block of equations can be solved successively to obtain
the measures. This scheme is very sensitive to experimental errors as one can easily see. Using the identified
discrete measures,11 Hoffman and Meyer12 approximated the (continuous) Preisach measure in terms of a set of
basis functions. A least squares method was applied to compute the coefficients.

Another way to obtain the measure is driving the system with a “reasonably” rich input signal, measuring the
output and then estimating the Preisach measure by a least squares method. Galinaitis and Rogers3 used this idea
to identify the weights for a KP operator. We will also adopt this method for measure identificaiton in this paper.

3.2. Identification scheme
Magnetostrictive actuators, due to the capacity of the windings or other practical reasons, have to be operated with
their inputs within a specific range. As a consequence, we will not be able to visit the whole Preisach plane and
identify the measure everywhere during the identification process. We assume the input range is [umin, umax]. Since
the input u(t) never goes beyond the limits, the state of hysterons in the area Ω0 (Figure 3) remain unchanged. Thus
the bulk contribution to the output from Ω0 is a constant and we denote it by ω0.

The input is discretized into L levels uniformly and we label the discretized Preisach plane as illustrated in
Figure 3. The quantities we want to identify include atom measures µij , i = 1, · · · , L, j = 1, · · · , i and ω0. To
simplify the discussion, with a little bit notation abuse, we write µij , i = 1, · · · , L, j = 1, · · · , i into a column vector
µk, k = 1, · · · ,K, where K = L(L+1)

2 .

To initialize the states of hysterons, We first increase the input to umax and then reduce it to umin. This sets
the state of each hysteron in P/Ω0 to -1. We may also initialize each hysteron to +1 by decreasing the input to
umin followed by bringing it to umax. We then apply some piecewise monotone continuous input u(t), t ∈ [0, T ]
which contains sufficient information, and measure the output ω(t). Signal u(t), ω(t) are sampled into sequences
u[n], ω[n], n = 1, · · · , N . The input sequence u[n] (after discretization) is fed into the discretized Preisach operator
and the state of each hysteron, γ̂k[n], k = 1, · · · ,K is computed. The output of the Preisach model at time instant
n can be expressed as:

ω̃[n] = ω0 +
K∑

k=1

µkγ̂k[n], (5)

where µ′ks are yet to be found.

We use the least squares method to estimate the parameters, i.e. the parameters are determined in such a way
that

N∑
n=1

|ω[n]− ω̃[n]|2 (6)
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Figure 3.
Discretization of the Preisach plane (L = 9)

is minimized. This can be written in a more compact form. Let

θ =




µ1

µ2

...
µK

ω0




, A =




γ̂1[1] γ̂2[1] · · · γ̂K [1] 1
γ̂1[2] γ̂2[2] · · · γ̂K [2] 1

...
...

...
...

...
γ̂1[N ] γ̂2[N ] · · · γ̂K [N ] 1


 , b =




ω[1]
ω[2]

...
ω[N ]


 .

Then the problem becomes finding the parameter vector θ, such that

‖ Aθ − b ‖

is minimized, where ‖ · ‖ stands for the Euclidean norm in RN . Since we require µk ≥ 0, k = 1, · · · ,K, it is a least
square error optimization problem with constraints.

4. INVERSION OF THE PREISACH OPERATOR

The general structure of models for smart actuators that capture both hysteresis and dynamic behaviour is shown
in Figure 4. In the figure, G(s) represents the transfer function of the linear part in the actuator, while W denotes
a rate-independent hysteretic nonlinearity. Venkataraman13 has shown that a key component of a low-order model
for magnetostriction in Terfenol-D has a structure resembling Figure 4.

A basic idea for controller synthesis for such systems is to design an right inverse operator W−1 for W as shown
in Figure 5. Then ω(·) = ū(·) and the controller design problem is reduced to designing a linear controller K(s) for
the linear system G(s).
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Structure of models for smart actuators
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Figure 5.
Controller design schematic

In the context of this paper, we consider W as a Preisach operator. The Preisach operator is highly nonlinear,
and in general, we cannot find closed form formulas for the inverse operator, unless the measure function is of some
special form.14 Hughes and Wen6 utilized the first order reversal curves f(β, α) in computing the numerical inverse
of the Preisach operator. They define F (β, α) = 1

2 [f(α, α) − f(β, α)](called the Everett surface).For output change
4ω,

4ω = 2F (β, α) (7)

defines two inverse maps Gα(·, ·) and Gβ(·, ·):

α = Gα(4ω, β), (8)
β = Gβ(β,4ω). (9)

Gα(·, ·) and Gβ(·, ·) is then used to compute the desired input given the desired output and past input history. This
method relies on measurement of all first order reversal curves and therefore is subject to experimental errors. Also
computing Gα, Gβ involves solving nonlinear equations and therefore is not a trivial task.

4.1. Contraction mapping algorithm for inversion

Under mild assumptions, the Preisach operator is Lipshitz continuous and incrementally strictly increasing.10 Venkatara-
man and Krishnaprasad15,16 exploited these properties and proposed an inversion algorithm for the Preisach operator
based on the contraction mapping principle. The algorithm is summarized in the following theorem:

Theorem 4.1:[Contraction Mapping Algorithm for Inversion]15,16 Let X = CI [0, T ], whereI = [a, b].
CI [0, T ] denotes the space of continous functions defined on [0, T ] taking values in I. Let Γ : X → Y , where Γ is a



strictly increasing, strongly Lipshitz continuous Preisach operator (with Lipshitz constant k2), some initial memory
curve ψ−1, and Y is the range of Γ. Let ε > 0 and the operator equation

Γ(x) = y, (10)

where y ∈ Y is given. Consider the algorithm:

• pick any x0 ∈ X;

• while ‖ xn − xn−1 ‖≥ ε:

xn+1 =
1
k2

(y + (k2xn − Γ(xn))). (11)

The sequence {xn} terminates at z which satisfies ‖ z−x ‖≤ ε where x is the solution of (10). The rate of convergence
is linear.

When the Preisach measure is discretized, the Preisach operator is no longer Lipschitz continuous and therefore
the contraction mapping algorithm for inversion does not work efficiently. Indeed, since the output of Γ at any time
instant can take only finite number of possible values (due to the finite number of measure atoms), from (11), we see
that for almost all y,

‖ xn − xn−1 ‖= 1
k2
‖ y − Γ(xn−1) ‖≥ δy > 0.

In addition, the disrete measures are, in general, not uniform. These factors make it difficult to choose an appropriate
stopping criterion ε: picking ε big we lose accuracy; picking ε small we will get stuck if ε < δy. Note that these
remarks don’t invalidate Theorem 4.1: Theorem 4.1 works perfectly for continuous measure distribution. However,
we need a more practical inversion algorithm for the discrete measure case.

4.2. Closest matching algorithm for inversion

We propose a new inversion algorithm in this subsection. This algorithm, like the contraction mapping algorithm,
is also based on the strictly increasing property of the Preisach operator. It fully utilizes the discrete structure of
the problem. We name it closest matching algorithm because it always generates input whose output matches the
desired output most closely among all possible inputs. We now describe the algorithm in detail.

Note that due to discretization, the input can only take values from a finite set U
4
= {ul, 1 ≤ l ≤ L} with each

ul, 1 ≤ l ≤ L, representing an input level. To be precise, let

4u =
umax − umin

L
,

then ul = umin + (l − 1)4 u. The inversion problem is: given an initial memory curve ψ(0)(from which the initial
input u(0) and output ω(0) can be derived) and a desired output ω̄, find u∗ ∈ U , such that

|Γ(u∗;ψ(0))− ω̄| = min
u∈U

|Γ(u;ψ(0))− ω̄|. (12)

Also the algorithm should return the resulting memory curve ψ∗. Note in (12) we explictly put ψ(0) as argument of
Γ to emphasize the effect of the memory curve on the output.

Closest Matching Algorithm:

• Step 0. Set n=0. Compare ω(0) and ω̄: if ω(0) = ω̄, let u∗ = u(0), ψ∗ = ψ(0), go to Step 3; if ω(0) < ω̄, go to
Step 1.1; otherwise go to Step 2.1;

• Step 1.

– Step 1.1: If un = uL, let u∗ = un, ψ∗ = ψn, go to Step 3; otherwise u(n+1) = u(n) +4u, ψ̃ = ψ(n)[backup
the memory curve], n = n + 1, go to Step 1.2;



– Step 1.2: Evaluate ω(n) = Γ(un;ψ(n−1)), and (at the same time) update the memory curve to ψ(n).
Compare ωn with ω̄: if ω(n) = ω̄, let u∗ = u(n), ψ∗ = ψ(n), go to Step 3; if ω(n) < ω̄, go to Step 1.1;
otherwise go to Step 1.3;

– Step 1.3: If |ω(n)− ω̄| ≤ |ω(n−1)− ω̄|, let u∗ = u(n), ψ∗ = ψ(n), go to Step 3; otherwise u∗ = u(n−1), ψ∗ = ψ̃
[restore the memory curve], go to Step 3;

• Step 2.

– Step 2.1: If un = u1, let u∗ = un, ψ∗ = ψn, go to Step 3; otherwise u(n+1) = u(n) −4u, ψ̃ = ψ(n)[backup
the memory curve],n = n + 1, go to Step 1.2;

– Step 2.2: Evaluate ω(n) = Γ(un;ψ(n−1)), and (at the same time) update the memory curve to ψ(n).
Compare ωn with ω̄: if ω(n) = ω̄, let u∗ = u(n), ψ∗ = ψ(n), go to Step 3; if ω(n) > ω̄, go to Step 2.1;
otherwise go to Step 2.3;

– Step 2.3: If |ω(n)− ω̄| ≤ |ω(n−1)− ω̄|, let u∗ = u(n), ψ∗ = ψ(n), go to Step 3; otherwise u∗ = u(n−1), ψ∗ = ψ̃
[restore the memory curve], go to Step 3;

• Step 3. Exit.

It’s not hard to see the above algorithm yields the best input u∗ in at most L iterations.

5. EXPERIMENTAL RESULTS

In this section, we will apply the identification and inversion schemes to open loop control of a magnetostrictive
actuator. Magnetostriction is the phenomenon of strong coupling between magnetic properties and mechanical
properties of some ferromagnetic materials (e.g., Terfenol-D): strains are generated in response to an applied magnetic
field, while conversely, mechanical stresses in the materials produce measurable changes in magnetization. Figure 6
shows a sectional view of a Terfenol-D actuator manufactured by ETREMA Products, Inc. By varying the current
in the coil, we vary the magnetic field in the Terfenol-D rod and thus control the motion of the rod head.
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�
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Threaded Preload Cap
with Bronze Bushing

Figure 6.
Sectional view of the Terfenol-D actuator

Magnetostriction λ can be empirically expressed in terms of bulk magnetization M as9:

λ =
∞∑

i=0

aiM
2i. (13)

We can obtain a reasonable approximation by including terms up to i = 1 and ignoring the constant term, which is
simply the elastic strain and does not play an active rold in the magnetomechanical effect.9 This gives

λ = a1M
2. (14)
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We can identify the coefficient a1 from the saturation magnetization Ms and the saturation magnetostriction λs

provided by the manufacturer:

a1 =
λs

M2
s

.

Let the length of the magnetostrictive rod be lrod. Given a measurement of the displacement d, the underlying
magnetization M is determined by,

M = ±
√

d

a1lrod
, (15)

and the sign of M is determined with further information on the input. The applied magnetic field H is related to
the input current through

H = NI + Hbias, (16)

where N is the number of coils per unit length and Hbias is the bias magnetic field produced by permanent magnets.
Hbias is necessary for generating bidirectional strains and it can be identified easily.

We will treat the magnetic field H as input and the bulk magnetization M as output using transformations (15)
and (16). And we employ the Preisach operator to model the hysteretic relationship between M and H. We will
identify the Preisach measure, and then carry out inverse compensation based on the identified measure. An open
loop tracking experiment will be done to check the performance of the identification and inversion algorithms.

5.1. Experiment setup

Our experimental setup is as shown in Figure 7. DSpace ControlDesk is a powerful tool for real-time simulation
and control. It can generate system models from Simulink of Matlab, downloads real-time applications into a DSP
board, and collect data or send out commands to monitor and control a system in real time. The data it collects can
be displayed or be saved on disk for post-processing. The displacement of the actuator is measured with a LVDT
sensor.

5.2. Measure identification and validation

The magnetic field input H is limited in the range [-40 Oe, 480 Oe] and is discretized into 26 levels. Figure 8 shows
distribution of the identified measures. The constant contribution from Ω0 (see Figure 3) is estimated to be 0.3466.

To verify the identified measures, we apply same input signal (which differs from the input used for identification)
to the actuator and the Preisach model. Figure 9 shows the comparison of the actuator output and the output of
the Preisach model. We can see they agree reasonably well and therefore the identified Preisach operator provides a
good approximation to the actuator.
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5.3. Open loop tracking experiment

Finally, we do an open loop tracking experiment to test the overall performance of our identificaiton and inversion
scheme. Given a desired trajectory, whose amplitude and frequency are both varying, we compute a desired input
using the closest matching inversion algorithm. The computed input signal is then sent to the actuator and the
displacement trajectory is measured. Figure 10 shows the comparison of the desired trajectory and the actual
trajectory. The tracking error lies within a small interval [−3µm, 3µm].

6. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a systematic approach for control of smart actuators. We model the hysteresis by
the Preisach operator and identify the Preisach measure using a constrained least square method. We have presented
an inversion algorithm based on the strictly increasing property of the Preisach operator. The effectiveness of our
approach is demonstrated via an open-loop trajectory tracking experiment.

There are a couple of possible and interesting directions to extend this work:

• The current inversion algorithm generates input in a discrete value set and thus it is not continuous. This
drawback can be taken care of by interpolation between the computed values.

• We have identified measures for discrete atoms in the Preisach plane. Sometimes a continuous measure function
is more useful, especially if we want to do some analysis on the system. In that case, we may fit a smooth
surface from the identified discrete measure masses.

• It is well known that properties of smart actuators may vary with time, temperature, etc. This means we might
need to re-identify the model quite often or even on-line identification is necessary. Also Off-the-shelf algorithms
for solving the constrained least squares problem can be very time-consuming when the discretization gets fine.
Therefore a fast and efficient algorithm will be very useful.
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