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ABSTRACT

The (approximate) diagonalization of symmetric matrices has been studied in the past in the context of dis-
tributed control of an array of collocated smart actuators and sensors. For distributed control using a two
dimensional array of actuators and sensors, it is more natural to describe the system transfer function as a
complex tensor rather than a complex matrix. In this paper, we study the problem of approximately diagonal-
izing a transfer function tensor for a locally spatially invariant system, and study its application along with the
technique of recursive orthogonal transforms to achieve distributed control for a smart structure.
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1. INTRODUCTION

The area of active noise suppression and interior acoustics control involves distributed actuation and sensing,
usually with piezoelectric devices.1–4 In these applications the actuators and sensors are collocated and dis-
tributed. If these actuator-sensor units are also provided with processing power, then it is possible to envisage
a truly distributed control system. In the following, we will refer to such actuator-sensor-processor units as
controller units. Though a general distributed parameter system would have to be treated using tools of partial
differential equations, considerable simplification can be achieved if one assumes that the controlled system is
spatially invariant. In the literature, there are two different notions of spatial invariance, one global and the
other local. The global notion of spatial invariance for a linear system described by a partial differential equation
on an infinite non-compact spatial domain, is akin to reducing the problem to one on a compact domain with
periodic boundary conditions.5 Mathematically, this reduction procedure amounts to “factoring” the domain
using a symmetry group. The factored system (with full actuation and sensing) which is a partial differential
equation, but now described on a spatially compact domain, could still exhibit extensive coupling. The notion
of local spatial invariance6 is for a system such as those considered in active noise suppression, defined on a
compact spatial domain, with finite number of collocated actuators and sensors laid out in an array or matrix
fashion. Our notion of local spatial invariance is slightly more general and includes that of Kantor.6 Consider
the transfer function between any pair of actuator inputs and sensor outputs on the array of collocated actuators
and sensors. If this transfer function depends only on the spatial distance between the actuator and the sensor
considered, then the controlled system is said to be locally spatially invariant.

Recently, Chou, Flamm, Guthart and Ueberschaer7; Bamieh, Paganini and Dahleh5; and Kantor and Kr-
ishnaprasad6, 8, 9 have considered the problem of distributed control of spatially invariant systems from slightly
different points of view. Bamieh, Paganini and Dahleh consider the distributed system to arise from a linear
(parabolic) partial differential equation that is described on an infinite domain with spatial periodicity, and full
control and sensing - that is control authority and sensing capability can be exercised at each point of the spatial
domain. The (global) spatial invariance that they consider leads naturally to the idea of block diagonalization
via the Fourier transform applied to the spatial variable. However, inside each block the system could still be
extensively coupled. For spatially localized control, they arrive at a condition that is based on a Hamiltonian
function having a rational realization. The spatial invariance concept used by Bamieh, Paganini and Dahleh has
been considered by several authors in the past (see references in5).

On the other hand, Chou, Flamm, Guthart and Ueberschaer7 and Kantor, Krishnaprasad6, 8, 9 consider
systems with what we term local spatial invariance. The term local spatial invariance implies that the transfer
function of a system on a compact domain with finite number of controller units has a special form – specifically,



the transfer function between the i-th input and j-th output only depends on the physical distance between the
inputs and outputs. Chou et al.7 consider a finite rectangular array of collocated actuators and sensors, and
implicitly make the assumption of local spatial invariance given in this paper. They consider the problem of
transforming the given system into a sparser form (not necessarily diagonal form) using wavelet transforms in
the spatial domain. They observe that for Calderon-Zygmund operators, the coefficients obtained after a wavelet
transformation have certain decay properties. Thus by observing the decay of Green’s function appropriate for
the problem, they estimate the number of wavelet coefficients needed to implement a local controller. One of the
interesting aspects of their work, is that they realize that a two dimensional array of controller units require a
tensor transfer function description. They use a tensor product of 1-D wavelet transforms to obtain the wavelet
transform of the entire tensor. Even though the transformed tensor has a sparse characteristic which enables
the design of a controller that uses local information, the implementation of the wavelet transform might need
global data rather than local data.

Kantor and Krishnaprasad consider a similar problem to Chou et al., that is, a distributed system on a
finite domain with the controller units arranged in a linear or circular fashion6, 9 or in the form of a two-
dimensional array.8 They investigate the problem of implementation of orthogonal wavelet transforms using
local information on the input and output signals so as to achieve approximate diagonalization of the transfer
function. Their conclusion is that by systematically applying a sequence of multiplications by orthogonal matrices
and permutations - each of which can be accomplished using local data - one can indeed achieve approximate
diagonalization. This sequence of operations (that they term recursive orthogonal transforms) can be performed
locally with each actuator only using information from nearby sensors. Practical implementation was shown
to be possible by showing that there is a finite sequence of orthogonal transformations and permutations that
achieves exact diagonalization. Once the transfer function is approximately diagonalized, it is clear that only
localized controllers at each actuator is required to control the system, and decentralization has been achieved
for linear arrays.

In this paper, we combine the lines of investigation of Chou et al., and Kantor, Krishnaprasad. One of the
problems that was not addressed by the latter authors is that for two dimensional arrays,8 the approximate di-
agonalization might mean that data from non-neighbouring controller units might be required at an intermediate
computation step. This problem arises due to the labeling of a two-dimensional array using only one index. An
early recognition of the role tensors play in electrical networks can be found in Kron.10 However, as far as we
are aware, there does not seem to be a systematic study of tensors in the control theory framework apart from
its mention in Chou et al. In this paper, we investigate transfer function tensors that arise in distributed control
systems and the use of the tensor singular value decomposition (TSVD)11 for designing distributed controllers
that only rely on local sensor information. The interesting connection with Chou et al. is that while they arrive
at a sparse but not diagonal structure for the wavelet transformed transfer function by choosing the appropriate
transform, we argue using the results of TSVD that diagonalization is not possible and a sparse structure is per-
haps the best result one can achieve! As the orthogonal transforms that result in the TSVD can be approximated
by recursive orthogonal transforms, we complete the link between Chou et al. and Kantor, Krishnaprasad.

2. TRANSFER FUNCTION MATRICES AND TENSORS IN DISTRIBUTED
CONTROL

In this section, we examine symmetry properties enjoyed by transfer function matrices and tensors arising from
the property of local spatial invariance and their implication for numerical computation. As mentioned in the
Introduction, Kantor and Krishnaprasad consider the controller units to be arranged in a linear or circular
array,6, 9 or in the case of a two dimensional array, numbered using only one index.8 In both of these cases the
transfer function matrix Gj

i (s) = Y j(s)
Ui(s) (where U i is the i-th input and Y j is the j-th output) is a (1,1) tensor.

Here s ∈ IC denotes the Laplace transform variable. However, for more general topologies where the controller
units are distributed in two or more dimensions (see Frecker12 and references therein), a better numbering system
that corresponds to the number of spatial dimensions is needed. This is because no matter how one numbers the
actuated elements using one variable, one can always find numerically neighboring elements that are physically
separate!. Please see Figure 2 at this time. To overcome this problem, it is natural to introduce two variables for
actuated elements distributed in a plane and three variables for actuated elements distributed on the surface of a



Figure 1. A distributed network of collocated smart actuators and sensors

three dimensional structure (see Figure 1). Such topologies arise in active noise control, for example see Savran,
Atalla and Hall.3 With the inputs and outputs numbered U ij(s) and Y ij(s), we have a correlation between the
labels and the physical layout. Then the transfer function is given by

Gkl
ij (s) =

Y kl(s)
U ij(s)

; i, k,∈ {1, · · ·m}; j, l,∈ {1, · · ·n}, (1)

and is thus a complex (2, 2) tensor. A three dimensional arrangement of actuated elements would lead to a (3, 3)
tensor. The interesting aspect of local spatial invariance is that it leads to transfer function tensors with various
types of symmetry.

2.1. Symmetric, Persymmetric and Circulant Matrices and (1,1) Tensors

First, we define the concepts of symmetry and persymmetry for (1,1) tensors Gj
i (s); i, j ∈ {1, · · · , N}. As

these tensors can be represented by square matrices G(s) whose (i, j)-th entry is the transfer function Gj
i (s),

we can simply borrow the concepts of symmetry and persymmetry from matrix theory.13, 14 The concept of
symmetry for (1, 1) tensors is then: Gj

i (s) = Gi
j(s); i, j ∈ {1, · · · , N}. Persymmetry can be defined to be:

Gj
i (s) = G

(N+1−i)
(N+1−j)(s); i, j ∈ {1, · · · , N}. The condition of symmetry can be simply expressed as:

G(s) = GT (s), (2)

where the right-hand-side denotes the transpose of G(s), while the condition of persymmetry can be expressed
as:

G(s) = J GT (s)J ; where J = [en en−1 · · · e1]; with ek = [0 · · · 0︸ ︷︷ ︸
k−1

1
↑
k

0 · · · 0︸ ︷︷ ︸
n−k

]. (3)

A centrosymmetric matrix G(s) is one that satisfies14:

G(s) = J G(s) J. (4)

The following lemma is immediate.

Lemma 2.1. If a matrix satisfies any two of symmetry, persymmetry and centrosymmetry, then it also satisfies
the third.

Proof. The proof is straightforward and uses the fact that J = J−1.



Figure 2. A 3× 2 network of collocated smart actuators and sensors

The set of eigenvectors for a persymmetric matrix has an interesting structure,14 and furthermore, a persym-
metric matrix has a canonical decomposition depending on whether is odd or even dimensional. An investigation
along these lines needs to be done for persymmetric tensors. A particular case of a persymmetric (but not
symmetric) matrix is a circulant matrix.13 It is very easy to show that one can diagonalize any circulant matrix
via the Discrete Fourier Transform (DFT),15, 16 as the columns of the normalized Discrete Fourier Transform
(denoted by Q) is identical to the eigenvector space of any circulant matrix. In other words, we have for each
s ∈ IC: G(s) = Q Σ(s)Q∗, where Q∗ is the conjugate-transpose of Q and represents the normalized Inverse
Discrete Fourier Transform (IDFT) matrix. The following equations show how a circulant transfer function can
be diagonalized by applying the IDFT to the output and DFT to the input signals:

Y (s) = G(s) U(s)
G(s) = QΣ(s) Q∗

Ỹ (s) = Σ(s) Ũ(s) (5)
Ỹ (s) = Q∗ Y (s) =⇒ ỹ(t) = Q∗ y(t) (6)
U(s) = QŨ(s) =⇒ u(t) = Q∗ ũ(t) (7)

Due to the special eigenspace structure of all circulant matrices, one can simply apply the IDFT to the out-
put signals y(t) of the sensors; send this to the local controllers designed using the diagonal system (5); then
take the output ũ(t) of a controllers and construct the signal u(t) by the DFT. A similar observation can be
found in Kantor,6 who further shows that we can approximate Q by a sequence of local orthogonal transforma-
tions and permutations (in other words, a recursive orthogonal transform), and in essence, achieve approximate
diagonalization. This result easily carries over to a two dimensional array in the form of a torus.

2.2. Symmetric and Persymmetric (2,2) Tensors

Now, consider for simplicity a m×n network (with m = 3 and n = 2) of controller units as shown in Figure 2. We
have shown two different types of indexing schemes for this network in Figure 2. The first is an single indexing
scheme where each of the controller units is given a unique single number from the set {1, · · · , mn}, while the
second is a double indexing scheme (i, j) where i ∈ {1, · · · ,m} and j ∈ {1, · · · , n}. In the single indexing scheme,
one obtains a transfer function matrix Gj

i (s) = Y j(s)
Ui(s) ; i, j ∈ {1, · · · , mn}, where U i is the i-th input and Y j is

the j-th output. On the other hand, with the double indexing scheme, one obtains a transfer function tensor
Gkl

ij (s) = Y kl(s)
Uij(s) where i, k,∈ {1, · · ·m} and j, l ∈ {1, · · · , n}.

The property of local spatial invariance can be expressed more easily in the matrix numbering scheme:

Gkl
ij (s) = g|k−i|,|l−j|(s).. (8)



Observe that this property implies that the transfer function tensor is symmetric and per-symmetric:

Gkl
ij (s) = Gij

kl(s) (Symmetry) (9)

Gkl
ij (s) = G

(m+1−i)(n+1−j)
(m+1−k)(n+1−l)(s) (Persymmetry). (10)

However, the single indexing schemes need not always lead to symmetry and persymmetry. For instance, the
indexing scheme shown in Figure 2 leads to the following transfer function when local spatial invariance is taken
into account:

G(s) =




g0(s) g1(s) g2(s) g1(s) g3(s) g4(s)
g1(s) g0(s) g1(s) g3(s) g1(s) g3(s)
g2(s) g1(s) g0(s) g4(s) g3(s) g1(s)
g1(s) g3(s) g4(s) g0(s) g1(s) g2(s)
g3(s) g1(s) g3(s) g1(s) g0(s) g1(s)
g4(s) g3(s) g1(s) g2(s) g1(s) g0(s)




Notice that the above matrix can be written in the block diagonal form:

G(s) =
[

G0(s) G1(s)
G1(s) G0(s)

]

which is a block symmetric and persymmetric matrix, where each of the blocks {Gk; k = 0, 1} is itself a 3 × 3
symmetric and persymmetric matrix! Furthermore, there are several indexing schemes that lead to a similar
description of the transfer function matrix – for instance those considered in Figures 3(a) - 3(c). However, the
indexing system considered in Figure 3(d) only leads to a symmetric but not a persymmetric matrix:

G(s) =




g0(s) g1(s) g3(s) g4(s) g2(s) g1(s)
g1(s) g0(s) g1(s) g2(s) g4(s) g3(s)
g3(s) g1(s) g0(s) g1(s) g3(s) g1(s)
g4(s) g2(s) g1(s) g0(s) g1(s) g3(s)
g2(s) g4(s) g3(s) g1(s) g0(s) g1(s)
g1(s) g3(s) g1(s) g3(s) g1(s) g0(s)




In this case, the block description:

G(s) =
[

G0(s) G1(s)
G1(s) G0(s)

]

which is a block symmetric and persymmetric matrix, where the block G0(s) is a 3×3 symmetric and persymmetric
matrix, but the block G1(s) is only symmetric.

A similar situation arises for a 3× 3 array – consider Figure 4. Invoking local spatial invariance, we can say
that the transfer function for the array given in Figure 4(a) (using the single indexing scheme) has the form:

G(s) =




g0(s) g1(s) g2(s) g1(s) g3(s) g4(s) g2(s) g4(s) g5(s)
g1(s) g0(s) g1(s) g3(s) g1(s) g3(s) g4(s) g2(s) g4(s)
g2(s) g1(s) g0(s) g4(s) g3(s) g1(s) g5(s) g4(s) g2(s)
g1(s) g3(s) g4(s) g0(s) g1(s) g2(s) g1(s) g3(s) g4(s)
g3(s) g1(s) g3(s) g1(s) g0(s) g1(s) g3(s) g1(s) g3(s)
g4(s) g3(s) g1(s) g2(s) g1(s) g0(s) g4(s) g3(s) g1(s)
g2(s) g4(s) g5(s) g1(s) g3(s) g4(s) g0(s) g1(s) g2(s)
g4(s) g2(s) g4(s) g3(s) g1(s) g3(s) g1(s) g0(s) g1(s)
g5(s) g4(s) g2(s) g4(s) g3(s) g1(s) g2(s) g1(s) g0(s)




(11)

Again, notice that the above matrix can be written in the block diagonal form:

G(s) =




G0(s) G1(s) G2(s)
G1(s) G0(s) G1(s)
G2(s) G1(s) G0(s)






(a) Array indexing scheme 2 (b) Array indexing scheme 3

(c) Array indexing scheme 4 (d) Array indexing scheme 5

Figure 3. Possible different array indexing schemes for a 3× 2 distributed control system

which is a block symmetric and persymmetric matrix, where each of the blocks {Gk; k = 0, 1, 2} is itself a 3× 3
symmetric and persymmetric matrix. There are a number of indexing schemes that result in such a transfer
function matrix. However, the indexing scheme in Figure 4(b) results in the transfer function form:

G(s) =




g0(s) g1(s) g2(s) g4(s) g5(s) g4(s) g2(s) g1(s) g3(s)
g1(s) g0(s) g1(s) g3(s) g4(s) g2(s) g4(s) g3(s) g1(s)
g2(s) g1(s) g0(s) g1(s) g2(s) g4(s) g5(s) g4(s) g3(s)
g4(s) g3(s) g1(s) g0(s) g1(s) g3(s) g4(s) g2(s) g1(s)
g5(s) g4(s) g2(s) g1(s) g0(s) g1(s) g2(s) g4(s) g3(s)
g4(s) g2(s) g4(s) g3(s) g1(s) g0(s) g1(s) g3(s) g1(s)
g2(s) g4(s) g5(s) g4(s) g2(s) g1(s) g0(s) g1(s) g3(s)
g1(s) g3(s) g4(s) g2(s) g4(s) g3(s) g1(s) g0(s) g1(s)
g3(s) g1(s) g3(s) g1(s) g3(s) g1(s) g3(s) g1(s) g0(s)






This matrix can be written in the block diagonal form:

G(s) =




G0(s) G1(s) G2(s)
GT

1 (s) G0(s) G3(s)
GT

2 (s) G3(s) G0(s)


 ,

where the block G0(s) is symmetric and persymmetric; the block G3(s) is symmetric but not persymmetric; and
the other blocks are neither. Overall, the transfer function matrix is only symmetric and not persymmetric. It
is apparent that the indexing scheme has destroyed or perhaps hidden the special form that can be seen in the
form (11).

(a) Array and matrix indexing scheme (b) Array indexing scheme 2

Figure 4. Two different array indexing schemes for a 3× 3 distributed control system

It is clear that the indexing scheme is an artifice, and has the capacity to make the numerical computation of
the orthogonal transforms perhaps more difficult. More importantly, if one uses recursive orthogonal transforms
on the resulting transfer function matrix with the goal of approximate diagonalization, then the resulting form
could have non-zero entries along the main diagonal8 which defeats the purpose of local computation. For
instance, in the indexing scheme seen in Figure 4(a), the controller units with indices 3 and 4 are not physically
near. To overcome this problem, let us consider the tensor transfer function description of the system in Figure
4(a):

Gkl
ij =





g0(s) if i = k; j = l
g1(s) if |i− k|+ |j − l| = 1
g2(s) if |i− k|+ |j − l| = 2; with i = k or j = l
g3(s) if |i− k|+ |j − l| = 2; with i 6= k and j 6= l
g4(s) if |i− k|+ |j − l| = 3;
g5(s) if |i− k|+ |j − l| = 4;

(12)

It is clear that no matter how one chose to index the system as a two dimensional array, one always gets the same
transfer function matrix! Furthermore, this transfer function matrix is both symmetric (as Gkl

ij (s) = Gij
kl(s)) and

persymmetric (as Gkl
ij (s) = G

(4−i)(4−j)
(4−k)(4−l)(s) ).

3. TENSOR SINGULAR VALUE DECOMPOSITION

Our description of Tensor Singular Value Decomposition (TSVD) is from Lathauwer, De Moor and Vandewalle11

who call it Higher-Order Singular Value Decomposition (HOSVD). As we are primarily interested in (2, 2)



Figure 5. The 1 unfolding of the transformation tensor for a 3× 3 array.

tensors, we will specialize their theory to this case. For (1, 1) tensors, the description will match the usual matrix
singular value decomposition (SVD). As noted by Lathauwer, De Moor and Vandewalle,11 and by Kofidis and
Regalia,17 it is possible to extend the usual notion of SVD from matrices to tensors in several different ways,
depending on what property is emphasized. In the case of matrices, the SVD has 4 properties simultaneously:
(a) it diagonalizes a given matrix; (b) the right and left transformation matrices are unitary; and (c) it can
be obtained as the result of solving the least-squares diagonality criterion Σ

i
|sii|2 (see Golub and Van Loan,18

page 426); (d) the number of nonzero diagonal elements in the singular value matrix is equal to the rank of
the given matrix. However, in the case of tensors each of these properties do not imply the others, and so
one can extend the SVD to tensors while emphasizing any one of these particular properties. But as noted by
Lathauwer, De Moor and Vandewalle,11 the most natural extension is obtained by emphasizing the property
that the transformation matrices be unitary. However, this means that the core singular value tensor need not
be diagonal. This ties in with the result that we believe was observed by Chou et al.7 in the numerical studies
on a rectangular array of controller units.

As we use the notation of Lathauwer, De Moor and Vandewalle, we consider a (2, 2) transfer function tensor
as an element of ICm×n×m×n where m and n denote the maximum index values for the i, k and j, l co-ordinates
respectively. According to the definition of Tensor Unfolding on page 1255 of Lathauwer, De Moor and Van-
dewalle,11 we have the following 1-unfolding of the tensor 12 (see Figure 5 for a pictorial explanation of the
1-unfolding with a couple of (i, j, k, l) terms shown):

A(1)(s) =




g0 g1 g2 g1 g3 g4 g2 g4 g5

g1 g3 g4 g0 g1 g2 g1 g3 g4

g2 g4 g5 g1 g3 g4 g0 g1 g2

g1 g0 g1 g3 g1 g3 g4 g2 g4

g3 g1 g3 g1 g0 g1 g3 g1 g3

g4 g2 g4 g3 g1 g3 g1 g0 g1

g2 g1 g0 g4 g3 g1 g5 g4 g2

g4 g3 g1 g2 g1 g0 g4 g3 g1

g5 g4 g2 g4 g3 g1 g2 g1 g0


 (13)

The 1-tensor unfolding is a IC3×9 matrix and hence can be decomposed into the SVD:

A(1) = U (1) · Σ(1) · V (1)H

(14)



The local spatial invariance of the system leads to the following result:

Lemma 3.1. Suppose that the (2, 2) transformation tensor G(s) ∈ ICm×n×m×n arises from a locally spatially
invariant system. Then the unitary matrix U (1) = U (3) and U (2) = U (4). Furthermore, if m = n, then U (1) =
U (2) = U (3) = U (4).

Proof. The proof is elementary and is based on the observation that a spatially invariant system satisfies the
tensor symmetry condition (9).

This lemma considerably simplifies the computation of the core singular value tensor whose 1 unfolding is
given by11:

S(1) = U (1)H · A(1) ·
(
U (2) ⊗ U (3) ⊗ U (4)

)
(15)

3.1. Numerical Results

Similar to Chou et al.,7 and Kantor, Krishnaprasad,8 we first chose a 3 × 3 array of controller units, so that
the nature of the tensor SVD becomes clear. Following Kantor and Krishnaprasad, the transfer functions at a
specific frequency s = 2 π f i, which we simply denote gr(s); r = 0, · · · , 5 in (12) were chosen as follows:

g0(s) = 1
g1(s) = 1

d2 e
2πi
3

g2(s) = 1
4 d2 e

4πi
3

g3(s) = 1
2 d2 e

2
√

2πi
3

g4(s) = 1
5 d2 e

2
√

5πi
3

g5(s) = 1
8 d2 e

4
√

2πi
3 ,

(16)

where d = 2. This choice led to the following results (only two significant digits are shown for simplicity):

U (1) =




−0.5 0.7 0.5
0.8 + 0.1 i 0 0.7 + 0.1 i
−0.5 −0.7 0.5




It was observed that U (2) = U (3) = U (1) as expected.

S(1) =




1.1− 0.4i 0 0.2i 0 0 0 0 0 0
0 0 0 1.2− 0.2i 0 0.2i 0 0 0
0 0 0 0 0 0 1.2 + 0.1i 0 −0.1 + 0.2i

0 1.2− 0.3i 0 0 0 0 0 0.1i 0
0 0 0 0 1.1 + 0.1i 0 0 0 0
0 0.1i 0 0 0 0 0 0.8 + 0.4i 0

0.2i 0 1.2 0 0 0 0 0 0.2i
0 0 0 0.2i 0 0.8 + 0.5i 0 0 0
0 0 −0.1 + 0.1i 0 0 0 −0.1 + 0.2i 0 0.3 + 0.5i




The other unfoldings S(2) and S(3) are identical to S(1) as expected. The core singular value tensor S is then
constructed from the unfolding S(1). We note here that Chou, Flamm and Guthart7 arrived at a similar conclusion
that one cannot diagonalize the transfer function tensor in general, through ad hoc means. The following
properties were verified for S :

< S(r, :, :, :), S(s, :, :, :) >= 0
< S(:, r, :, :),S(:, s, :, :) >= 0
< S(:, :, r, :),S(:, :, s, :) >= 0
< S(:, :, :, r),S(:, :, :, s) >= 0





when r 6= s; r, s ∈ {1, 2, 3},

where the product shown is the standard inner-product for tensors, for example:

< S(:, r, :, :),S(:, s, :, :) >=
∑

i

∑

k

∑

l

S(i, r, k, l)S(i, s, k, l).



Furthermore, it was also verified that the n-mode singular values satisfy:

‖S(1, :, :, :)‖F = [< S(1, :, :, :),S(1, :, :, :) >]
1
2 = 1.25

‖S(2, :, :, :)‖F = 1.23
‖S(3, :, :, :)‖F = 1.23
‖S(4, :, :, :)‖F = 1.22,

which confirms the inequalities ‖S(1, :, :, :)‖F ≥ ‖S(2, :, :, :)‖F ≥ ‖S(3, :, :, :)‖F ≥ ‖S(4, :, :, :)‖F predicted by
Theorem 2 of Lathauwer, De Moor and Vandewalle.11

On the other hand, we indexed the 3× 3 array as in Figure 4(a), and obtained the matrix transfer function
given by (11) with the individual transfer functions again chosen according to (16). On doing a SVD of this
matrix, the following singular values were obtained:

Σ = [1.25, 1.23, 1.23, 1.22, 1.21, 1.10, 0.92, 0.92, 0.65]T .

Observe that the first four singular values are exactly the same as the Frobenius norms ‖S(r, :, :, :)‖F ; r =
1, 2, 3, 4.

The significance of the TSVD for distributed control is that one can ascribe a physical meaning to the unitary
matrices U (r); r = 1, 2, 3, 4. They correspond to transforms along the i, j, k and l directions of the tensor Gkl

ij .
One cannot ascribe such meaning to the unitary matrices obtained after a SVD of the matrix transfer function.
Notice that as the SVD and TSVD computations can be performed off-line to determine the transformations of
the input and the output, speed is not a concern here. But once the exact unitary matrices have been computed,
one would like to obtain a Recursive, Orthogonal Transform (ROT)6, 9 as close as possible to the exact unitary
matrices, because ROT’s only utilize local data. At this point we realize that there is another important reason
to use the TSVD. As ROT’s only approximately diagonalize the system, it is possible that the system after
transformation has significant terms close to the main diagonal.8 This can be problematic because neighboring
terms index-wise need not correspond to spatial neighbors, when a single index is used. On the other hand,
with the tensor description, spatial neighbors correspond uniquely to index neighbors! To find the ROT that
is close to a given unitary matrix U, one needs to take a different approach from the one taken by Kantor and
Krishnaprasad, who (a) did not compute U before hand and (b) set up a minimization problem for the sum of
the square of the absolute values of the diagonal terms. This approach is related to the Jacobi method, but is not
applicable to Tensor SVD. We propose to compute the matrices U (n) by (14), and then compute a ROTs O(n)

that are ”close” to U (n) in some sense. That ROT’s are dense in the space of orthogonal matrices was proved
by Kantor and Krishnaprasad. We will deal with the computational aspect of O(n) in a future publication.

4. CONCLUSION

In this paper, we have examined the use of the Tensor Singular Value Decomposition for the distributed control
of locally spatially invariant linear systems. Collecting together ideas from Chou et al.7 who first proposed the
idea of diagonalization using wavelet transforms for distributed control; and Kantor, Krishnaprasad,6, 8, 9 who
proposed the idea of using Recursive Orthogonal Transforms (ROTs) to achieve approximate diagonalization of
the transfer function matrix for a linear array, we have proposed the use of Tensor Singular Value Decomposition
along with ROT’s, for two or three dimensional arrays of collocated actuators and sensors. This approach uses
a multiple indexing scheme that is natural to the layout of the actuators and sensors, and we showed that it is
indeed superior to a simple single indexing scheme.
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