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ABSTRACT

The Preisach operator and its variants have been successfully used in the modeling of a physical system with
hysteresis. In an application, one has to determine the density function describing the Preisach operator from
measurements. In our earlier work, we described a regularization method to obtain an approximation to the
density function with limited measurements. In this paper, we describe methods for recursively computing the
approximate density function. These methods can be implemented in real-time controllers for smart actuators.

Keywords: Hysteresis, Preisach Operator, Recursive Estimation, Density function Identification, Magnetostric-
tion, Piezoelectric materials, Smart materials, EAPs.

1. INTRODUCTION

The Preisach operator is a mathematical tool that has been used to model the phenomena of hysteresis occurring
in ferromagnetism,1 magnetostriction,2 shape memory alloys3 and piezoelectricity4 for many years. In each
phenomenon, the constitutive relation between conjugate variables, for example, magnetic field intensity H
and magnetization M in ferromagnetism or electric field intensity E and polarization P in ferroelectricity, is
described by a hysteresis operator, usually the Preisach operator or a variant. Part of what is needed to describe
the Preisach operator for a particular phenomenon is a non-negative and integrable, density function defined
on a subset of IR2 called the Preisach domain. Several researchers starting with Mayergoyz1 have studied the
problem of identifying the density function. A synopsis of the various approaches can be found in our earlier
work.5, 6

In our earlier work,6 the identification problem was systematically studied and it was shown to be an ill-
posed problem. This was shown using the fact that the Preisach operator with the density function as the
independent variable, is a compact operator and, hence, has an unbounded inverse. The unboundedness of the
inverse operator indicates a need for regularization, so that one obtains a sequence of bounded approximations.
A non-parametric, SVD truncation-based regularization was proposed and numerical results were presented for
magnetostrictive actuators and electro-active polymers.6 Collocation in time and discretization of the input
signal levels were used, along with truncation of singular directions corresponding to very small singular values.

It was found that finer discretizations lead to much larger computation times6(which is to be expected). In
this paper, we propose iterative methods with a view to (a) reduce computation times, (b) produce a sequence of
approximate density functions that can be used in a real-time controller. The second item is more important from
an implementation point of view, and slow changes in the density function can be accommodated by periodic
resetting or using short recurrence sequences.

As far as we are aware, adaptive identification of the Preisach density function and its use in the inverse control
of hysteresis has only been studied by Tan and Baras.7 They proposed a recursive least squares algorithm to
identify a discretized density function. They accommodated the non-negativity condition for the density function
by a simple projection at each iteration. It is well-known that a simple projection into the feasible region does not
minimize a convex cost function. Figure 1 shows the level surfaces of a quadratic cost function in two variables
- three cases are considered, with the unconstrained minimum in the second, third and fourth quadrants. If
the minimum has to satisfy a non-negativity constraint, then it is clear that in each case, the projection of the
unconstrained minimum xp into the first quadrant does not yield the desired solution xmin. Furthermore, the
implementation of the algorithm requires the inversion of a matrix, which leads to the persistency of excitation
condition in Tan and Baras. The fulfilment of this condition would require an enormous amount of data for fine
mesh selections. Our method in this paper is to numerically obtain the best approximation of the density function



at each iteration, even in the absence of persistency of excitation - or in other words, when only limited data is
available. This is achieved by applying a primal-dual interior point method after a partial SVD computation.
As the SVD computation is independent of the interior point method, convergence follows from standard results
for each of these methods.

(a) Case 1: Unconstrained min-
imum in second quadrant

(b) Case 2: Unconstrained min-
imum in third quadrant

(c) Case 3: Unconstrained min-
imum in fourth quadrant

Figure 1. Examples of simple projection after unconstrained minimization.

2. PRELIMINARIES

In this section, we briefly recall the Preisach operator and the need for regularization. A detailed treatment on
the Preisach operator can be found in.1, 8, 9 For a pair of thresholds (β, α) with β ≤ α, consider a relay Rβ,α[·, ·]
(called a Preisach hysteron), as illustrated in Fig. 2. For u ∈ C[0, T ]

vβ,α(t)
4
=




−1 if u(t) < β
1 if u(t) > α
vβ,α(t−) if β ≤ u(t) ≤ α

,
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4
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Figure 2. Input-output relationship for the relay.

To construct the Preisach operator from the elementary hysterons when the input is u(·), denote vβ,α(·) =
Rβ,α[u](·). The Preisach operator’s input is u(·), and the output is given by1:



ȳ(t) =
∫∫

α≥β

µ(β, α)Rβ,α[u](t) dβdα (1)

where µ(·, ·) ∈ L2(K) where K is a compact region in the (β, α) plane with α ≥ β and support(µ) = K. Thus for
a given µ, we can define a Preisach operator to be a map Γµ : Cpm[0, T ] → Cpm[0, T ], where Cpm[0, T ] denotes
the space of piecewise monotone continuous functions on [0, T ]. For compatibility with experimental evidence, we
restrict µ(·, ·) to be a non-negative function. During the identification experiments, the fixed input u ∈ Cpm[0, T ]
usually only affects a portion of the set K in the Preisach plane. Without loss of generality, we can restrict
attention to this portion. In the following, the set Ku is the subset of K affected by the input u. Define the set
of density functions:

Ku := {µ ∈ L2(Ku) |µ ≥ 0}. (2)

Due to the assumption on Ku, the output at time 0 given by Γ[u](0) is the same for all density functions in Ku.

An important class of Preisach operators from the applications point of view, are the piecewise, strictly
increasing (PSI) Preisach operators.

Definition 2.1. A Preisach operator is said to be piecewise strictly increasing (PSI) if (Γµ[u](T )−Γµ[u](0))(u(T )−
u(0)) > 0 for a monotone input u ∈ C[0, T ] with u(0) 6= u(T ). .

Under the mild condition that the density function is continuous, and greater than zero along the diagonal
α = β, it is easy to show that the Preisach operator is PSI. Clearly, the definition of PSI is for a fixed density
function and varying monotone increasing input functions u. However, in the identification problem the input
function is fixed while the density function is the independent variable. For a non-constant u ∈ Cpm[0, T ], let
0 = T0 < T1 < · · · < TN = T be the standard partition (see Brokate and Sprekels9). As u is non-constant,
u(Ti−1) 6= u(Ti) for i = 1 · · ·N. Denote ∆i = [Ti−1, Ti] for i = 1 · · ·N. Define the set of density functions:

Ku,PSI := {0} ∪ {
µ ∈ L2(K) |µ ≥ 0; and

(Γ[u](t1)− Γ[u](t2))(u(t1)− u(t2)) > 0
for t1, t2 ∈ ∆i, t1 6= t2; i = 1, · · · , N.} (3)

The idea is that the density function for a PSI Preisach operator (that can be identified) should come from this
set. The sets Ku and Ku,PSI are clearly non-empty with Ku,PSI ⊂ Ku. To further study their properties, recall
that a convex set C is a subset in a vector space, such that if x1, x2 ∈ C, then θ x1 +(1− θ)x2 ∈ C for 0 ≤ θ ≤ 1
(Luenberger10). A cone with vertex at the origin is a set C in a vector space with the property that if x ∈ C, then
θ x ∈ C for all θ ≥ 0. A convex cone is defined as a set that is both convex and a cone. Closed convex sets are
important from the point of view of numerical methods for constrained optimization problems. The following
lemma was proved in Iyer and Shirley.6

Lemma 2.2. The set Ku is a closed convex cone with vertex at the origin, while the set Ku,PSI is a convex cone
with vertex at the origin that is not closed.

Now, for all µ in Ku, the initial output w = Γ[u](0) is fixed. For a given u(·) ∈ Cpm[0, T ], define the operator:

Φu : Ku → L2[0, T ]
µ(β, α) 7→ y = Φu µ(·) = Γµ[u](·)− w

(4)

The operator Φu is a linear operator between L2(Ku) and L2[0, T ] which is not true for the Preisach operator Γ!
The key is that Φu maps the function µ = 0 to the function y = 0. The following important theorem concerning
the identification problem for a PSI Preisach operator was proved in Iyer and Shirley.6

Theorem 2.3. Let u be a non-constant function in Cpm[0, T ] and Φu : Ku → L2[0, T ] be as defined in (4).
Then,

1. {µ ∈ Ku |Φu µ(t) = 0} = {0};



2. Φu : Ku → L2[0, T ] is injective;

3. Range [Φu] 6= L2[0, T ];

4. Suppose that y ∈ Range[Φu] and Γ is PSI. Then there exists a unique µ ∈ Ku,PSI such that Φu µ = y.

Remarks

We conclude from the above theorem and Lemma 2.2 that:

• Even though µ ∈ Ku,PSI for a PSI Preisach operator, we have to carry out the identification over the set
Ku, as Ku,PSI is not a closed convex set.

• The set Ku is a closed convex cone, and as Φu is a linear injective operator on this set, it is “well-suited”
from a numerical point of view.

• However, as the closure of the range of Φu is not all of L2[0, T ], we need to construct a regularization
scheme to counter-act noise.

¤
The following lemma proved in Iyer and Shirley6 shows that the density identification problem is an ill-posed

one!

Lemma 2.4. The operator Φu : L2(Ku) → L2[0, T ] is a compact linear operator.

Due to this lemma, a regularization scheme based on (i) the SVD of a finite dimensional approximation of Φu,
and (ii) truncation of singular directions corresponding to small singular values was proposed in Iyer and Shirley,6

and is described below.

Let 0 = t1 < · · · < tn = T be a discretization of time, so that we have :

(Φu µ)(tj) = y(tj),∫
K

Rβ,α[u](tj)µ(β, α) dβdα = y(tj),

}
j = 1, · · · , n. (5)

where µ(β, α) is unknown, while u(·) and y(tj) are known. The time instants t1, · · · , tn are known as collocation
points. Once a set of collocation points have been determined, one can discretize the input values so that a
uniform grid is established in the region Ku in the Preisach plane. Then the equation Φu µ = y can be written
as a linear equation

linear equation
Y = AX + ε, (6)

as described in Shirley and Venkataraman.5 Each element of X (except the last) denotes the area under the
density function for a particular grid element. The last element denotes the initial output value (at time 0). To
account for noise, we estimate this value also.

We need is a way to solve for X that will best fit the data, but at the same time keep xi ≥ 0, since X
represents the integral of a density function over a grid element.

We would like to minimize the function

f(X) =
1
2
‖AX − Y ‖2 (7)

where
A : IRn → IRm, X ∈ IRn, Y ∈ IRm,

with the inequality constraint g(X) = X ≥ 0. Let rank(A) = q ≤ min {m, n}. If we perform a singular value
decomposition on AT A, then we get:

AT A = V SV T , (8)

where S is an n × n diagonal matrix with rank q < n, and V T V = In×n (see page 54, Bellman11). The n
singular values of AT A are the diagonal elements of S and be ordered as σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0. By the remarks
following Picard’s theorem,12 we see that “small” singular values should be discarded as they contribute to an
amplification of the noise in the solution. We perform the following steps:



1. Pick a tolerance value ε > 0, and set those singular values that are less than ε to 0. Call the resulting
matrix that is obtained from S as S1.

2. Remove the rows and columns of S1 that are identically zero, and also remove the corresponding columns
of U and V. By this procedure, we obtain a q̄ × q̄ diagonal matrix Ŝ, and a n× q̄ matrices V̂ that satisfies

V̂ T V̂ = Iq̄×q̄. (9)

The operator norm of the matrix AT A− V̂ ŜV̂ T can be seen to be:

‖AT A− V̂ Ŝ V̂ T ‖ = ‖AT A− V S1 V T ‖
= ‖V (S − S1)V T ‖
= ‖S − S1‖
< ε.

We seek solutions of the type X = V̂ Z for the Problem (7). Using Equations (8) and (9), the cost function
can be transformed to ZT ŜZ − Y T AV̂ Z. Thus we form the constrained optimization problem:

minimize f(Z) = 1
2 ZT ŜZ − Y T AV̂ Z, (10)

subject to g(Z) = V̂ Z ≥ 0. (11)

Once we have a minimizer Z∗ to the above problem, then the desired solution is given X∗ = V̂ Z∗.

For a commercial magnetostrictive actuator made by ETREMA Inc., the relation between the average Mag-
netic field Intensity H and average Magnetization M along the axis of the rod was modeled by a classical
Preisach operator in Shirley and Venkataraman5 and Iyer and Shirley.6 Figure 3 reproduces the density func-
tions obtained by the above mentioned procedure for different discretizations (20 Oe, 10 Oe, 6.25Oe) of the input
magnetic field. Figure 4 shows a plot of the singular values of the A matrix for each discretization level. The
discretization level of 20 Oe leads to a matrix A of full rank, while for the other two discretization levels, the
matrix A is rank-deficient. Figure 5 compares the density functions obtained for the discretization level of 10
Oe, using two different truncation levels for the singular values: σ ≤ 10−3 and σ ≤ 2. Unfortunately, using a
truncation level of σ ≤ 4 (corresponding to 207 singular values) did not yield a good result, which implies that
the problem is only mildly ill-posed.

3. ITERATIVE COMPUTATION OF THE PREISACH DENSITY FUNCTION

In this paper, we consider a iterative version of the procedure in Section 2. The problem now is to minimize the
function (at time tp)

fp(X) =
1
2
‖Ap X − Yp‖2 (12)

where
Ap : IRn → IRmp , X ∈ IRn, Yp ∈ IRmp ,

with the inequality constraint g(X) = X ≥ 0. In the problem (12), the row dimension of Ap and Yp increases by
one after sampling of the input and output signals is performed. We assume that rank(Ap) ≤ min {mp, n}.

The solution procedure outlined in Section 2 is composed of two parts: (a) singular value decomposition
of the matrix AT A and truncation of singular directions corresponding to small singular values; (b) solution
of the constrained minimization problem (11). To construct an iterative scheme, we need iterative methods to
accomplish both parts.

An iterative method for SVD is the double-bracket flow due to Brockett.13 This method leads to the
computation of all the singular values of the matrix Ap, which is not necessary due to truncation. In light of
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(a) Discretization = 20 Oe
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(b) Discretization = 10 Oe
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(c) Discretization = 6.25 Oe

Figure 3. Identification experiments for a commercial magnetostrictive actuator with different magnetic field discretiza-
tions

the rapid decay in the singular values (both for the full-rank and rank-deficient cases) as seen in Figure 4, we
only need to carry out a partial SVD by computing the significant singular values. This can be accomplished
in several ways - one of them being the Lanczos iteration method, which seems to require fewer computations
for the same level of accuracy than the subspace-iteration method.14 Other possibilities for sequential SVD can
be found in Strobach.15 Note that ideally, one would like to compute only one iteration of the partial SVD
algorithm per time-step.

Once the significant singular values and directions have been computed (resulting in the matrices Ŝp and V̂p),
the next task is to minimize the cost function f(Z) in (11). One way to accomplish this is to use a line-search
Newton-Raphson algorithm due to Krishnaprasad and Barakat.16 Another method is to use a Primal-Dual
Interior point method.17, 18 Ideally, one would like to apply only one iteration of (either) solution method at
time tp. At time tp, the Kuhn-Tucker theorem yields the existence of a λ ∈ IRn, such that the pair (Z∗p , λp)
satisfy the necessary conditions (see Luenberger10):

ŜpZ
∗
p + V̂ T

p λ− V̂ T
p AT

p Yp = 0 (13)

λT
p V̂p Z∗p = 0 (14)

λp ≥ 0 (15)

The solution to this set is found using Newton’s method. Let (Z(i)
p , λ

(i)
p ) be the values at the i-th iteration of
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Figure 4. Plot of singular values of the A matrix

the Newton’s method. Then, the values at the i + 1-th step are found using the update direction (δ Z, δ λ)(i)p )
given by the solution to the equation:

[
Ŝp V̂ T

p

(λ(i)
p )T V̂p (Z(i)

p )T V̂ T
p

]
= −

[
ŜpZ

(i)
p + V̂ T

p λ
(i)
p − V̂ T

p AT
p Yp

(λ(i)
p )T V̂p Z

(i)
p

]
. (16)

The update is:
(Z, λ)(i+1)

p = (Z, λ)(i)p + α(i)
p ) (δ Z, δ λ)(i)p , (17)

where α
(i)
p is chosen to ensure that λ

(i+1)
p ≥ 0. Obviously, it has to be chosen to be:

α(i)
p = arg min

ν
λ(i)

p (k) + ν δ λ(i)
p (k) ≥ 0 k = 1 · · ·n.

In the above equation, λ
(i)
p (k) denotes the k-th component of λ

(i)
p .

Convergence analysis:

We outline the convergence analysis for our method. Note that the SVD computation is independent of
the interior point method, which simplifies the convergence analysis. Furthermore, the rank of the Ap matrix
can only increase with p, and that too only in finite steps. As rank(Ap) is monotone increasing and bounded
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(a) Density function using 515 singular values
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(b) Density function using 330 singular values

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

2

3

4

5

6

7

8
x 10

5

Result of Identification
Result of Experiment

Truncation level = 10−3 

Number of singular values used = 515 

(c) H versus M , using 515 singular values

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

2

3

4

5

6

7

8
x 10

5

Result of identification
Result of Experiment

Truncation level = 2 

Number of singular values used = 330 

(d) H versus M , using 330 singular values

Figure 5. Comparison of different SVD truncation schemes for input discretization of 10 Oe.

above by n, the partial SVD computation is convergent by Theorem 4.1 of Vogel and Wade14 assuming that
AT

p Ap converges to a matrix Σ as p →∞. That the interior-point method is convergent, is a standard result.18

Numerical results will be addressed in a future publication.

4. CONCLUSION

In this paper, we examined the problem of recursively determining the Preisach density function given input-
output data, in a parameter-free manner. This problem has two features:(a) ill-posedness and (b) a non-negativity
constraint on the solution. We address both issues in our recursive implementation. Ill-posedness of the operator
equation is addressed by a partial SVD iteration, and the non-negativity constraint is addressed by a Primal-
Dual interior point method. As the SVD iteration is independent of the Interior point method computation,
convergence of our proposed method follows from standard results for each of these methods.
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