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VARIABLE STEP-SIZE SELECTION METHODS FOR
IMPLICIT INTEGRATION SCHEMES FOR ODES

RAYMOND HOLSAPPLE, RAM IYER, AND DAVID DOMAN

Abstract. Implicit integration schemes for ODEs, such as Runge-Kutta and

Runge-Kutta-Nyström methods, are widely used in mathematics and engi-

neering to numerically solve ordinary differential equations. Every integration

method requires one to choose a step-size, h, for the integration. If h is too

large or too small the efficiency of an implicit scheme is relatively low. As

every implicit integration scheme has a global error inherent to the scheme, we

choose the total number of computations in order to achieve a prescribed global

error as a measure of efficiency of the integration scheme. In this paper, we

propose the idea of choosing h by minimizing an efficiency function for general

Runge-Kutta and Runge-Kutta-Nyström integration routines. This efficiency

function is the critical component in making these methods variable step-size

methods. We also investigate solving the intermediate stage values of these

routines using both Newton’s method and Picard iteration. We then show the

efficacy of this approach on some standard problems found in the literature,

including a well-known stiff system.

Key Words. Runge-Kutta, implicit integration methods, variable step-size

methods, solving stiff systems

1. Introduction

Recently, there has been interest in the literature concerning the use of geometric
integration methods, which are numerical methods that preserve some geometric
quantities. For example, the symplectic area of a Hamiltonian system is one such
concern in recent literature [1, 2, 3, 4]. Tan [5] explores this concept using implicit
Runge-Kutta integrators. Hamiltonian systems are of particular interest in applied
mathematics, and in fact we test our variable step-size selection method on a well-
known Hamiltonian system in Section 4.2. Furthermore, Hairer and Wanner [6, 7]
showed that although implicit Runge-Kutta methods can be difficult to implement,
they possess the strongest stability properties. These properties include A-stability
and A-contractivity (algebraic stability). These are the main reasons we choose to
investigate variable integration step-size selection using Runge-Kutta methods.

First order ordinary differential equations are solved numerically using many
different integration routines. Among the most popular methods are Runge-Kutta
methods, multistep methods and extrapolation methods. Hull, Enright, Fellen
and Sedgwick [8] have written an excellent comparison of these types of methods.
They test a number of Runge-Kutta methods against multistep methods based
on Adams formulas and an extrapolation method due to Bulirsch and Stoer [9].
A goal of that paper was to compare these different types of methods as to how
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Figure 1.0.1. Illustration of variable step-sizes and error propa-
gation in numerical integration

they handle routine integration steps under a variety of accuracy requirements.
Implicit or explicit integration methods require one to choose a step-size, h, for the
integration. One of the questions Bulirsch and Stoer investigate is a strategy for
deciding what step-size h to use as the methods progress from one step to another.
Others have investigated this very same problem in the past [8, 10, 11, 12].

In this paper, we propose the idea of choosing variable step-sizes by minimizing
an efficiency function for general Runge-Kutta and Runge-Kutta-Nyström integra-
tion routines. As every implicit integration scheme has a global error inherent to
the scheme, we choose the total number of computations in order to achieve a
prescribed global error as a measure of efficiency of the integration scheme. For il-
lustration purposes, consider Figure 1.0.1, referring to the solution of (2). Let x̃(tk)
be our approximation to x(tk). We determine the variable step-sizes h1, h2, . . . , h8,
where hk = tk − tk−1, so that we minimize an efficiency function that minimizes
the sum of the total number of computations to compute x̃(tk) for k = 1, 2, . . . , 8
and the global error that propagates from the local truncation errors at each step
of integration. To the best of our knowledge, our proposed method is novel.

The paper that most closely parallels the spirit of our optimization is that of
Gustafsson and Söderlind [13]. They arrive at a function very similar to (31) using
approximations while optimizing convergence rates, α, for a fixed-point iteration.
They conclude that αopt = e−1 = hoptL‖A‖. They do not carry the argument
further and include the global error in calculating the step-size, h, as we have done
here.

One of the most important benefits of using a variable step-size numerical method
is it’s effectiveness at solving stiff initial value problems when combined with an im-
plicit integration routine. Stiff systems are found in the description of atmospheric
phenomena, chemical reactions occurring in living species, chemical kinetics (e.g.
explosions), engineering control systems, electronic circuits, lasers, mechanics, and



214 HOLSAPPLE, IYER, AND DOMAN

molecular dynamics (Aiken [14]). A prototypical stiff system is the Van der Pol
oscillator with the appropriate choice of parameters. We study this system using
our method in Section 4.4.

In the rest of this section, we briefly describe variable step-size approaches found
in the literature. Hull, Enright, Fellen and Sedgwick [8] approach this topic as
follows. First, they determine hmax, which is a measure of the “scale” of a problem.
This helps to allow them from not stepping past any interesting fluctuations in the
solution. Then, for their Runge-Kutta methods they compute τ , an estimate on
the local truncation error, which must be bounded by the tolerance, ε. They then
compute

(1) hnew = min
{

hmax, 0.9hold (ε/τ)1/p
}

.

where p is the order of the Runge-Kutta routine being used.
Stoer and Bulirsch [10] arrive at a very similar solution to this problem. To

describe what they do, we first note that throughout this paper, we will consider
solving the following first order ordinary differential equation:

(2)
dx

dt
= f(t, x), x(0) = x0 ∈ IRn,

where f : IR × IRn → IRn is Lipschitz continuous in the second argument, i.e. for
any t ∈ IR and any vectors x ∈ IRn, y ∈ IRn, we have

(3) ‖f(t, x)− f(t, y)‖ ≤ L(t)‖x− y‖,
where L(·) ∈ L∞[0, T ]. Here we mention that the the norms in (3) can be any
p−norm (1 ≤ p ≤ ∞). The same should be assumed for all norms in the remainder
of the paper. When implementing the examples, the authors use the familiar 2-
norm, ‖ · ‖2. Stoer and Bulirsch consider two discretization methods, Φ1 and Φ2, of
Runge-Kutta type to solve (2). The first method, Φ1, is of order p and the second
method, Φ2, is of order p + 1. In other words, they first compute

x̄k+1 = x̄k + holdΦ1(tk, x̄k; hold)(4)
x̂k+1 = x̄k + holdΦ2(tk, x̄k; hold).(5)

For a more detailed description of Φ1 and Φ2, please consult [10]. Then, denoting
the tolerance by ε, and given a current step-size, hold, they obtain:

(6) hnew = hold

∣∣∣∣
ε

x̄k+1 − x̂k+1

∣∣∣∣
1/(p+1)

.

Stoer and Bulirsch go on to recommend after extensive numerical experimentation,
that equation (6) be altered to

(7) hnew = 0.9hold

∣∣∣∣
εhold

x̄k+1 − x̂k+1

∣∣∣∣
1/p

.

In Section 4.2, we compare the proposed variable step-size selection method with
this method described by Stoer and Bulirsch.

Gustafsson [15, 16] uses an equation similar to (7) as a basis for designing a
variable step-size method that uses control theoretical techniques to choose the
step-sizes. Gustafsson even applies his methods to both explicit [15] and implicit
[16] Runge-Kutta integration methods. Although Gustafsson explores step-size
control for implicit integration routines, his methods are in no way similar to the
method proposed in this paper.
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As one can see, formulas (1),(6) and (7) depend on some measure of the local
error at the (k + 1)-st step of integration. Stoer and Bulirsch [10] also point out
that there is another way to determine hnew, but it requires one to estimate higher
order derivatives of f . For example, a fourth order Runge-Kutta method would
require one to estimate derivatives of f of the fourth order. Not only is this very
costly, but this other method uses the local truncation error at the k-th step of
integration.

Houwen [11] took a similar approach to adjusting step-sizes. Again let ε be the
tolerance. Houwen then forms a discrepance function d(tk, xk; hold) at the point
(tk, xk). Then the new step-size is determined to be the solution of the equation

(8) ‖d(tk, xk; hold)‖ = ε.

Houwen considers three types of discrepance functions:
(1) an approximation to the local discretization error
(2) the residual term left when the local difference solution is submitted into

the differential equation
(3) the discrepance of linearity of the differential equation

The first two clearly are functions that are some measure of local error of the
difference scheme being used. The discrepance of linearity method is merely a way
to choose hnew such that the Jacobian matrix for non-linear systems does not change
very much,(i.e. within some tolerance ε), over the interval [tk, tk + hnew]. This
method also deals with some measure of local stability of the differential equation.

Cano and Duran [12] investigate variable step-size selection using linear multistep
methods. Again consider equation (2). Given a tolerance ε, they let

(9) hn = εs(x(tn), ε) +O(εp),

where p is the order of the method and s is function satisfying the following:
(1) smin ≤ s(x, ε) ≤ smax, with smin, smax > 0,
(2) s is C∞ in both arguments and all the derivatives of s are bounded.

Iserles [17] uses a Milne device as a variable step-size controller for embedded
Runge-Kutta methods and for multi-step methods. We will explore this idea more
thoroughly when we present a similar approach at controlling another parameter
that arises in our analysis. We will investigate this idea in Section 3.5.

2. Implicit Integration Methods

Numerical methods for solving initial value problems such as (2) may be ei-
ther explicit or implicit. The focus of this paper is concentrated on using implicit
methods. In this section, we describe two classes of implicit numerical integration
schemes and how one might use the methods to solve (2). We assume the solution
exists for t ∈ [0, T ], with T > 0.

2.1. Runge-Kutta Methods. A detailed description of a general s-stage Runge-
Kutta method for the solution of (2) can be found in many publications [1, 3, 18].
The general method for a fixed step-size, h, is described below:

yik
= xk + h

s∑

j=1

aijf(tk + cjh, yjk
), i = 1, ..., s,(10)

xk+1 = xk + h
s∑

i=1

bif(tk + cih, yik
), x0 = x(0).(11)
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In the above equations, the yik
are stage-values that must be computed at every

step of the integration, and xk approximates the exact solution x(tk) at the point
tk = kh, where h is the fixed step-size of integration. The aij and bi are unique to
any particular Runge-Kutta scheme and the ci satisfy

(12) ci =
s∑

j=1

aij , i = 1, . . . , s

For notational purposes, define the following:
(13)

A =




a11 a12 · · · a1s

a21 a22 · · · a2s

...
...

. . .
...

as1 as2 · · · ass


 , Yk =




y1k

y2k

...
ysk


 , c =




c1

c2

...
cs


 , Xk =




xk

xk

...
xk


 , Ā = A⊗I

where I is the n × n identity matrix and ⊗ is the Kronecker product. In other
words, Ā is the ns × ns matrix direct product of A and I. Furthermore, consider
the function f̃ : IR× IRns → IRns defined by

(14) f̃(tk, Yk) =




f(tk + c1h, y1k
)

f(tk + c2h, y2k
)

...
f(tk + csh, ysk

)


 .

Now we can write the system of ns equations given in equation (10) as

(15) Yk = Xk + hĀf̃(tk, Yk).

For each k this is an implicit equation involving the vectors {yik
}s

i=1. Equation (15)
can be solved using Newton’s method or fixed point iteration (Picard iteration).
Let’s consider Picard iteration. We solve (15) for each k using the following iterative
scheme:

(16) Y j+1
k = Xk + hĀf̃

(
tk, Y j

k

)
= F

(
tk, Y j

k

)
.

For any fixed k, the iterative scheme given in (16) will converge to the solution
of (15) provided that F satisfies a favorable condition. The following theorem
addresses this convergence.

Theorem 2.1. Consider the iterative scheme given by (16). Let L(t) be the func-
tion from (3), and let A be the s×s matrix from (13). If hL(tk)‖A‖ < 1 then there
exists a unique vector Y ∈ IRns such that F (tk, Y ) = Y for any point tk ∈ [0, T ]
that is fixed. Furthermore, the sequence Y j+1

k = F (tk, Y j
k ) converges linearly to Y .

Proof. The proof of this theorem involves showing that the Lipschitz constant of F
is hL(tk)‖A‖. This process is not difficult and is actually a well-known result; see
Hairer, Nørsett, and Wanner [19]. ¤

Theorem 2.1 suggests how one might implement equations (11) and (16) to solve
(2) on [0, T ]. The starting vector x0 ∈ IRn is known. In general, assume xk is
known. Use the following procedure to compute xk+1.

(1) Choose a tolerance ε > 0 as small as you wish.
(2) Choose a starting guess for the s stage-values, and denote this guess as Y 0

k .
(3) For j = 0, 1, 2, ..., compute the following:

(a) Y j+1
k = F

(
tk, Y j

k

)
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(b) δ =
∥∥∥Y j+1

k − Y j
k

∥∥∥.

(4) If δ ≤ ε, let Yk = Y j+1
k .

(5) Use the s n × 1 stage-value vectors determined in step four to explicitly
compute xk+1.

The method described above is known as Picard iteration; Newton’s method
might also be used to solve for the stage-values. A theorem on the convergence
of Newton’s method is more complicated than Theorem 2.1; it is not sufficient to
assume hL(tk)‖A‖ < 1 in order to guarantee that Newton’s method converges.
The Newton-Kantorovich Theorem [10, 20, 21] provides sufficient conditions for
existence of a solution to the iteration and the uniqueness of that solution. To
solve for the stage-values using Newton’s method, step three should be replaced by
the following:

(3) Define G(tk, Yk) = F (tk, Yk) − Yk, and for j = 0, 1, 2, ..., compute the
following:

(a) Y j+1
k = Y j

k −
(

DG
(
tk, Y j

k

)−1
)

G
(
tk, Y j

k

)

(b) δ =
∥∥∥G

(
tk, Y j+1

k

)∥∥∥
where DG represents the Jacobian matrix of G.

2.2. Runge-Kutta-Nyström Methods. Runge-Kutta-Nyström (RKN) meth-
ods are similar to Runge-Kutta methods, but are designed to solve second-order
systems. Consider the following system:

(17)
d2x

dt2
= f(t, x), x(0) = x0 ∈ IRn, ẋ(0) = v0 ∈ IRn,

which can be written as

(18)
dv

dt
= f(t, x);

dx

dt
= v, x(0) = x0, v(0) = v0.

We assume a solution exists on [0, T ] for T > 0. A general s-stage RKN method
may be used to solve (18) on [0, T ], and is described by J.M. Sanz-Serna and M.P.
Calvo [3] as follows:

yik
= xk + hγivk + h2

s∑

j=1

aijf(tk + γjh, yjk
), i = 1, ..., s(19)

vk+1 = vk + h
s∑

i=1

bif(tk + γih, yik
)(20)

xk+1 = xk + hvk + h2
s∑

i=1

βif(tk + γih, yik
).(21)

Exactly as with the Runge-Kutta methods, the yik
are the stage-values and must

be solved for implicitly. In addition to the definitions in (13), define

(22) Γ =




γ1 0 · · · 0

0 γ2
. . .

...
...

. . . . . . 0
0 · · · 0 γs




, Vk =




vk

vk

...
vk


 ,Γ = Γ⊗ I,
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where I is the n×n identity matrix. Now, the ns equations in (19) may be written
as

(23) Yk = Xk + hΓVk + h2Āf̃(tk, Yk).

Again, we have an implicit equation for the s stage-value vectors {yik
}s

i=1 ⊂ IRn.
Just as in Section 2.1, we may solve (23) using Newton’s method or by using

Picard iteration. If we use Picard iteration, we have the following iterative scheme:

(24) Y j+1
k = Xk + hΓVk + h2Āf̃(tk, Y j

k ) = H(tk, Y j
k ).

Using a similar approach as in the proof of Theorem 2.1, one can easily prove the
following theorem.

Theorem 2.2. Consider the iterative scheme given by (24). Let L(t) be the func-
tion from (3), and let A be the s×s matrix from (13). If h2L(tk)‖A‖ < 1 then there
exists a unique vector Y ∈ IRns such that H(tk, Y ) = Y for any point tk ∈ [0, T ]
that is fixed. Furthermore, the sequence Y j+1

k = H(tk, Y j
k ) converges linearly to Y .

If we choose to use Newton’s method to solve (23) for the stage-values, it is
not sufficient to assume h2L(tk)‖A‖ < 1. Once again, we may refer to Stoer and
Bulirsch [10] for conditions that guarantee convergence of Newton’s method.

3. Step-Size Selection

When implementing a Runge-Kutta (or Runge-Kutta-Nyström) numerical inte-
gration routine, we have shown it is sufficient to assume that hL(tk)‖A‖ < 1 (or
h2L(tk)‖A‖ < 1) to guarantee convergence of the implicit scheme when using a
Picard iteration. A very similar result is also found in the literature. Shampine
[14] determines that a sufficient condition for convergence of the function iteration
used to determine the stage-values is hγL < 1, where h is the step-size, L is the
Lipschitz constant of f , and γ is a constant depending only on the Runge-Kutta
formula. Shampine does not go on to describe γ in any grater detail, but for our
derivation this γ is replaced by ‖A‖. The same result (as Shampine) is also found
in Gustafsson and Söderlind [13]. One might wonder though, is there an optimal
choice, in the sense of computational efficiency, for h? If so, how might it be found?

3.1. Optimization Using Picard Iteration. Consider solving (2) numerically
on the interval [0, T ] which is partitioned by the following sequence of points:
{kh}K

k=0. In the k-th sub-interval the convergence of the Picard iteration is lin-
ear, so the number of computations required for convergence, to within ε, to the
fixed point of (16) can be written as a function of the Lipschitz constant of the
function F : Nk = φ (hL(tk)‖A‖) . Then the total number of computations over
the interval [0, T ] can be written as N(h) =

∑K
k=1 Nk. In the following, we find an

explicit expression for φ(·) for Runge-Kutta methods.
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Consider the following inequalities:
∥∥∥Y j+1

k − Y j
k

∥∥∥ =
∥∥∥F (tk, Y j

k )− F (tk, Y j−1
k )

∥∥∥(25)

≤ hL(tk)‖A‖
∥∥∥Y j

k − Y j−1
k

∥∥∥(26)

≤ (hL(tk)‖A‖)2
∥∥∥Y j−1

k − Y j−2
k

∥∥∥(27)

...
≤ (hL(tk)‖A‖)j ∥∥Y 1

k − Y 0
k

∥∥(28)

= Ck (hL(tk)‖A‖)j
,(29)

where Ck =
∥∥Y 1

k − Y 0
k

∥∥ is fixed for each k and depends on the guess Y 0
k . Since

hL(tk)‖A‖ < 1, we must have
∥∥∥Y j+1

k − Y j
k

∥∥∥ → 0 as j → ∞. Suppose we want

δ =
∥∥∥Y j+1

k − Y j
k

∥∥∥ ≤ ε; then, it is sufficient to have Ck (hL(tk)‖A‖)j ≤ ε. As a
stopping criterion in the k-th step of integration, we choose to stop the fixed point
iteration at the smallest natural number Nk greater than or equal to M where M

satisfies Ck (hL(tk)‖A‖)M = ε. Then we have

(30) M =
ln (ε/Ck)

ln (hL(tk)‖A‖) and Nk = dM e.

Now let C = max
k

Ck and L = sup
t∈[0,T ]

L(t). In (30), ε and Ck depend on the user.

Once these are chosen, the choice of h depends on the differential equation being
solved, through the Lipschitz constant L(tk), and on the integration method being
implemented, through ‖A‖. We will try to minimize M by adjusting the choice of
h to the problem parameters L(tk) and ‖A‖. Notice that C(hL‖A‖)M = ε implies
that Ck(hL(tk)‖A‖)M ≤ ε for each k. Thus, we minimize the cost function

(31) J1(h) = K
ln (ε/C)

ln
(
hL‖A‖) =

T ln (ε/C)
h ln

(
hL‖A‖) ,

which is equivalent to maximizing

(32) J2(h) =
h ln

(
hL‖A‖)

T ln (ε/C)
.

By computing arg min J2(h), one finds the step-size h that minimizes the number
of computations for the iterative scheme to converge. If this were the only measure
of optimality of concern, it is easily shown, through a calculus argument, that the
cost function J2(h) is maximized when h =

(
eL‖A‖)−1

.
However, one might also want the global error of the numerical solution to be

as small as possible. Global error in any numerical integration scheme depends
on the scheme being used. In this paper, we are concentrating on Runge-Kutta
schemes. The global error for Runge-Kutta schemes also varies depending on the
scheme one chooses to implement. For the purpose of explanation, let us consider
the implicit midpoint rule. We will also use the implicit midpoint rule on most
of the examples. At the conclusion of this subsection, we describe how one would
implement this optimization technique for an arbitrary Runge-Kutta method. The
implicit midpoint rule is a one-stage Runge-Kutta method where a11 = 1

2 and
b1 = 1 in (10) and (11). The implicit midpoint method has global error O(Th2).
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Then to find h, we alter the cost function J2 and maximize the following:

(33) J3(h) =
h ln(hL‖A‖)
T ln(ε/C)

− κTh2,

where κ is a number to be chosen. The solution is determined by solving

(34) ln(hL‖A‖) + 1 + λ2hL‖A‖ = 0

for h given an arbitrary value for λ. For details see Appendix 6.2.
In practice, we actually make the substitution x = hL‖A‖ and solve

(35) ln x + 1 + λ2x = 0

for x and then compute h =
x

L‖A‖ . The solution to this equation exists and is

unique. This is because the h that solves (34) is the unique global maximum of the
function J3, which exists because of the concavity of J3. Furthermore, (34) must
be solved numerically for λ 6= 0; for example, Newton’s method or Picard iteration
may be used. For λ = 0, notice that the solution is h =

(
eL‖A‖)−1

which was
discussed earlier.

If one is interested in finding an equation similar to (34) for a Runge-Kutta
method other than the implicit midpoint method, two things change in (33). First,
‖A‖ will certainly change when the method changes. It will be necessary to change
the second term as well. Suppose the method chosen has global error O(Thr).
Then, (33) becomes

(36) J̃3(h) =
h ln(hL‖A‖)
T ln(ε/C)

− κThr.

If we define

(37) κ = −λ2 (L‖A‖)r−1

2T 2 ln(ε/C)
,

we discover that we must now solve

(38) ln x + 1 + λ2xr−1 = 0

for x after again making the substitution x = hL‖A‖. This is the only difference in
implementation of the proposed method when one is not using the implicit midpoint
rule.

3.2. Local Optimization Using Picard Iteration. If one considers the analysis
presented in the previous section, an obvious question might arise. Is it possible to
repeat the process while minimizing local error and local computations instead of
global error and total computations? It turns out that the answer is no.

Instead of minimizing (31), i.e. maximizing (32), if we want to minimize the
total number of computations locally we minimize the cost function

(39) Ĵ1(h) =
ln(ε/C)

ln
(
hL‖A‖) .

Equivalently, we can maximize

(40) Ĵ2(h) =
ln

(
hL‖A‖)

ln(ε/C)
.



Variable Step-Size Selection Methods for ODEs 221

We also want to consider the local truncation error. Just as in the previous section,
we choose the implicit midpoint method for explanation purposes. The local trun-
cation error for this method is O(h3). Thus, similar to (33), we want to maximize
the cost function

(41) Ĵ3(h) =
ln

(
hL‖A‖)

ln(ε/C)
− κh3 .

First, we compute

(42)
dĴ3

dh
=

1
h ln(ε/C)

− 3κh2

and set it equal to zero. After doing so and rearranging, we get

(43) h3 =
1

3κ ln(ε/C)
.

Since ε ¿ C in general, (e.g. in our implementations we choose ε = 10−10), it will
certainly be the case that ln(ε/C) < 0. Thus, (43) would imply that it is necessary
to have κ < 0, since it must be that h > 0.

Next, we compute

(44)
d2Ĵ3

dh2
=

−1
h2 ln(ε/C)

− 6κh.

Since we are trying to maximize (41), we need
d2Ĵ3

dh2
< 0. However, if we consider

each term in (44), we can easily see that this is impossible. Since ln(ε/C) < 0, it

must be that
−1

h2 ln(ε/C)
> 0. Since we have determined that we must have κ < 0,

it must also be that −6κh > 0. Hence, the second derivative would imply that the
function we are optimizing is actually concave up and has no local (or absolute)
maximum for h > 0.

The analysis above shows that this method of choosing variable step-sizes (min-
imization of a particular efficiency function) fails if one considers local truncation
error and local computations for the efficiency function. Although, there certainly
are ways of choosing h based on local truncation errors as we described in the
Introduction, we simply cannot use local error and computations when using the
methods presented in this paper.

3.3. Non-linear IVPs - Lipschitz Constant Unknown. For most initial value
problems the Lipschitz constant of f is not easily accessible. In this case, an
approach that is slightly different than that of Section 3.1 is taken to solve the
problem using this optimization technique. The idea in this case is to linearize
the function f at each step of integration by computing the Jacobian of f . We
essentially find an optimal h at each step of the integration using the analysis from
Section 3.1. The method is described in detail below:

(1) Choose a value for the parameter λ. (A method for choosing λ will be given
in Section 3.5.)

(2) Solve equation (35) for x once.
(3) At t = 0, let L = ‖Dxf‖, where Dxf is the Jacobian matrix of f in x, and

compute h =
x

L‖A‖ .



222 HOLSAPPLE, IYER, AND DOMAN

(4) Perform one step of integration using the implicit midpoint rule. (Here you
may be using another method for integration. If this is the case, you must
solve the appropriate equation in step (2) above, as described in Section
3.1.)

(5) Recompute L using the new values of the state variables, and use this L to
find a new optimal h.

(6) Repeat steps four and five until the integration reaches t = T.

At this point we must make note of an important point. If the initial value
problem being solved happens to be a linear system (stiff or non-stiff), then this ar-
bitrary choice of λ is no different then choosing h arbitrarily. For example, consider
the following stiff system (Sewell [22]):

(45) u̇ = −1000u + sin(t) , u(0) =
−1

1000001
,

which has the smooth solution

(46) u(t) =
1000 sin(t)− cos(t)

1000001
.

For this system, choosing λ and then solving (35) to get an optimal value of h is
no different than just choosing h to begin with, because ‖Dxf‖ = 1000 is constant.
Hence, one is effectively choosing a fixed step-size by choosing λ. For this reason,
the proposed variable step-size method is of greatest benefit when solving non-
linear systems. In particular, it is useful in solving stiff non-linear IVPs, as shown
in Section 4.4.

3.4. Optimization Using Newton’s Method. We mentioned in Section 2.1
that one might also use Newton’s method to solve for the stage values Yk. Because
of this, the analysis for finding an optimal value of h can be repeated for New-
ton’s method. Convergence properties, and hence convergence theorems, are more
complicated for Newton’s method than for fixed point iteration. Because of this,
one might expect the analysis to be a bit more involved than that of equations
(25)-(90).

Before we begin looking at the optimization process for Newton’s method, let us
first consider the following Lemma.

Lemma 3.1. If R is an invertible n× n matrix, then

(47)
∥∥R−1

∥∥ ≤ ‖R‖n−1

|det R| .

Proof. For proof see Appendix 6.1. ¤

Again, we consider solving (2) numerically on the interval [0, T ] which is parti-
tioned by the following sequence of points: {kh}K

k=0. Stoer and Bulirsch [10] prove
a theorem showing that Newton’s method is quadratically convergent. We will find
an optimal choice of h using the results of that theorem. We begin by defining

(48) ρk =
αkβkγ

2
,

where αk, βk and γ are described below. First we let C be a convex subset of IRns

and mention that the theorem from [10] and the analysis below is valid only in a
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neighborhood, Sr

(
Y 0

k

)
, of the initial guess Y 0

k such that Sr

(
Y 0

k

) ⊂ C. We then let

αk =
∥∥Y 1

k − Y 0
k

∥∥ , k = 1, . . . , K(49)

βk = sup
Y ∈C

‖DG (tk−1, Y )‖ns−1

|det DG (tk−1, Y )| , k = 1, . . . , K(50)

γ = hL‖A‖,(51)

where L is a constant that satisfies

(52)
∥∥∥Df̃(t, u)−Df̃(t, v)

∥∥∥ ≤ L‖u− v‖,
for any vectors u and v in IRns. Note that this analysis holds whether the Lipschitz
constant of Df̃ , L, is given from the beginning or if it is approximated similarly
to what was done in the previous section; we shall only require that L be a known
constant at the k-th step of integration.

It should also be noted that in practice, i.e. in the example we show later, αk

and βk will not depend on k. For implementation purposes, we elect to choose Y 0
k

to be the same vector for all k. Hence, αk will be the same for each k. In general,
this is not necessary; that is why we define α below for convenience of analysis.
Actually, βk must satisfy

∥∥∥DG (tk−1, Y )−1
∥∥∥ ≤ βk for all Y ∈ C. We then apply

Lemma 3.1 to arrive at the definition given by equation (50). Now, βk depends on
the step-size through the Jacobian matrix of G, i.e. through DG. Since this is a
variable step-size method, this implies that βk should be computed at each step of
the integration using the current step-size. We quickly found that computing βk at
each step of the integration makes the process computationally inefficient. Instead,
we approximate β = max

k
βk before solving a particular example by first solving the

system on a much smaller time interval. As we solve the problem, we keep track
of the current values of βk and keep the largest value to use as a global constant
to solve the entire example. Putting all this together and using the theorem from
Stoer and Bulirsch, we know that for k fixed, the iterations of Newton’s method
must satisfy

(53)
∥∥∥Y j+1

k − Y j
k

∥∥∥ ≤ αkρ2j−1
k ≤ αρ2j−1

k ,

where α = max
k

αk.

Furthermore, we must assume (as do Stoer and Bulirsch) that ρk < 1. Then for
each k, it is sufficient to stop iterating Newton’s method at the smallest natural
number Nk greater than or equal to M, where M satisfies αρ2M−1

k = ε. Solving for
M , we get

(54) M = log2

(
ln(ρkεα−1)

ln ρ

)
.

Again, we choose Nk = dMe. Also, we are showing the analysis for the implicit
midpoint method which has global error O(Th2). Thus, we minimize the following
cost function:

(55) J4(ρ) =
TαβL‖A‖

2ρk
log2

(
ln(ρkεα−1)

ln ρ

)
+

4κTρ2
k

(αβL‖A‖)2 .

We now define

(56) κ = λ2 (αβL‖A‖)3
16 ln 2

.
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Then, after using a little calculus similar to equations (33)-(88), we find the optimal
h by first finding the ρk that solves

(57)
(
ln(ρkεα−1)

)−1 − (ln ρk)−1 − (ln 2) log2

(
ln(ρkεα−1)

ln ρk

)
+ λ2ρ3

k = 0,

and then computing

(58) hk+1 =
2ρk

αβL‖A‖ .

Because of the complexity of (57), we must solve for ρk numerically.

3.5. Milne Device for Choosing λ. Inherent with this variable step-size selec-
tion method is the choice of the parameter λ. We offer two approaches for choosing
this λ. First, we consider a naive approach. Suppose we are interested in inte-
grating a non-linear system over the time interval [0, T ], where T is large, e.g.
T = 1000. First, we choose a much smaller value for the final time of integration;
in this example, let that value be T ∗ = 50. We then integrate the system over the
interval [0, T ∗] with a fixed step-size and at the same time with various values of λ.
Essentially, we analyze how λ affects the solution of this system. We compare this
with the solution obtained by the fixed step-size method and choose the smallest λ
such that the variable and fixed step-size solutions are similar. This process should
be done for any system where the length of the interval over which the integration
must be performed is quite large when compared to the evolution of the dynamics
of the system.

We could also use what is called a Milne device. Iserles [17] describes the device
in detail and uses it to implement a variable step-size method, where the device is
used to either double or halve the step-sizes. We suggest a similar technique where
the goal is to either double or halve the value of λ.

The idea behind the device is to control the local error per unit step. We use
the concept of embedded Runge-Kutta methods. One chooses two Runge-Kutta
routines. The first is of order p and is used as the integrator. The second is an
explicit Runge-Kutta method also of order p and is used to control the local error
of the integrator. We assume that the numerical solution is ‘exact’ at time tk. The
goal is to control the error as the integrator goes to step tk+1. Let xk+1 be the
result of the integrator, and let x̄k+1 be the result of the local error controller. We
have

xk+1 = x(tk+1) + mhp+1
k +O(hp+2

k ),(59)

x̄k+1 = x(tk+1) + nhp+1
k +O(hp+2

k ),(60)

where x(tk+1) is the exact solution at time tk+1, and m and n are vectors that
depend on the differential equation, but not on h. Subtracting (60) from (59) and
ignoring the O(hp+2

k ) terms, we get

(61) xk+1 − x̄k+1 ≈ (m− n)hp+1
k .

We then define the error term κ using (61) as follows:

(62) κ = ‖xk+1 − x̄k+1‖ .

The user will determine a tolerance δ prior to beginning. Then to control the
error per unit step, our goal is to enforce the constraint

(63) κ ≤ hkδ.
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One begins by choosing a value for λ. Associated with this value of λ will be the
step-size hk, which is used in the integration. One then computes κ using (62) and
determines if (63) is satisfied. If it is not, then one must double λ and reintegrate
without advancing the time of integration. If (63) is satisfied then we may advance
the integration and repeat the process. Before we advance the integration, we may
want to do one further thing. Suppose that it was actually the case that κ ≤ 1

10hkδ.
In this case, we choose to first halve the value of λ, as λ was too conservative, and
then we advance the the integration and repeat the process. The entire process is
illustrated in Figure 3.5.2.

Figure 3.5.2. Flowchart for implementing the Milne device for
choosing λ

4. Examples

In this section we explore the proposed variable step-size selection method for
three problems: the Lotka-Volterra model, the Kepler problem, and the Van der
Pol oscillator. It is pivotal to make a note here concerning the Lipschitz continuity
of the examples in this section. We explore the proposed method on the nonlinear
examples previously mentioned, which do not possess a globally Lipschitz function
f . Although Lipschitz continuity was a major assumption in the derivation of the
method itself, we have also described how we choose to implement the method on
non-linear systems where global Lipschitz continuity is not present.



226 HOLSAPPLE, IYER, AND DOMAN

4.1. The Lotka-Volterra Model. Consider the Lotka-Volterra model of a simple
predator-prey system from mathematical biology. This particular example is taken
from Hairer, Lubich, and Wanner [1]. Consider the following system:

(64)
[

u̇
v̇

]
=

[
u(v − 2)
v(1− u)

]
= f(u, v); t ∈ [0, 50].

In (64), u(t) denotes the number of predators present at time t, v(t) represents the
number of prey present at time t, and the constants one and two have been chosen
arbitrarily. This system was integrated numerically using the implicit midpoint
rule. Since the system is non-linear, f has no global Lipschitz constant; however,
the method described in Section 3.3 does not require one. Only local Lipschitz
constants are needed for its implementation.

This procedure was compared to a fixed step-size integration method with ran-
dom step-sizes chosen. Two measures were chosen for comparison. The first mea-
sure, T , was total cpu time (in seconds) for 1000 runs with random initial data
uniformly distributed on [0.1, 10]. The second measure, E, was the maximum ab-
solute variation of the numerical method from

(65) I(u, v) = ln u− u + 2 ln v − v,

an invariant quantity for this system. The initial data for the system in this case
was chosen to be [u(0) v(0)]T = [2 6]T .

We found that for simple systems such as (64), the numerical computational
overhead in computing the step-size in the optimal h method renders the method
less useful than a simple fixed step-size method. After trying various fixed step-
sizes, it was determined that for 1000 runs with random initial data, h = 0.125 was
the largest fixed step-size attempted that permitted convergence. For h = 0.125,
T = 118.3 and E = 0.064. For the optimal h method, various values for λ were
tried until a comparable value for E was found. For instance, for λ = 2 we get
E = 0.143; for λ = 3 we get E = 0.068; and for λ = 4 we get E = 0.037. Since
λ = 3 yielded a comparable value of E, λ = 3 was chosen for 1000 runs with random
initial data and it was found that T = 195.6.

Different results arise when we try more challenging problems. Consider this
variation to the Lotka-Volterra problem:

(66)
[

u̇
v̇

]
=

[
u2v(v − 2)
v2u(1− u)

]
= f(u, v); t ∈ [0, 50].

This system has has the same invariant as (64), but is very sensitive to random
initial data. For this reason the initial data is fixed at [u(0) v(0)]T = [2 3]T for
the computation of both T and E.

Two methods were chosen to solve for the stage value y1 which is defined implic-
itly by (10). The first method is the algorithm of Section 2, which is simply a Picard
iteration. Secondly, we used Newton’s method to compute the stage value y1. The
results from this example are given in Tables 4.1.1 through 4.1.4 and Figures 4.1.3
and 4.1.4.

To compare the fixed step-size method to the variable step-size method, we must
locate times that are comparable from the tables and then compare the equivalent
error. For example, we first notice that for the fixed step-size h = 0.1 in Table
4.1.1, the method took 160.7 seconds to solve the problem using a Picard iteration
to solve for y1. The error involved for this step-size was 0.094. Now we look in
Table 4.1.2 and find that when λ = 2, the problem was solved in 168.4 seconds,
which is about eight seconds longer than for h = 0.1. However, we notice that the
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error has been reduced to 0.004, which is about 4% of the error from when h = 0.1.
We can locate other instances similar to this from the two tables. For the fixed
step-size h = 0.08, the problem is solved in 234.4 seconds using Newton’s method
to find y1, yielding an error of 0.069. We compare this to λ = 2 which was solved in
229.9 seconds with an error of 0.004. In addition, for the fixed step-size h = 0.125
using Newton’s method to solve for y1, the problem is solved in 155.6 seconds with
an error of 0.084. We compare this to λ = 1 in which the problem is solved in 151.6
seconds with an error of 0.025.

In Table 4.1.2, when we computed the stage value y1 using Newton’s method,
we actually used the variable step-sizes determined by the solution of (35) not (57).
For comparison, we recreated these table on another machine; this time we use (57)
to compute the variable step-sizes when we are solving for the stage value y1 using
Newton’s method. The results are given in Table 4.1.3 and Table 4.1.4. There are
a couple of interesting things to point out. First, we notice that for fixed step-sizes,
Newton’s method works faster than the fixed-point iteration. We must note that
the MATLABr code that generated the data for Tables 4.1.1 through 4.1.4 was
exactly the same; the only difference is that Tables 4.1.3 and 4.1.4 contain data
from a different version of MATLABr and ran on a different machine. The main
goal of this paper is not to compare Newton’s method versus Picard iteration as
much as it is to compare fixed step-sizes to variable step-sizes. In this regard, the
results shown in Tables 4.1.3 and 4.1.4 agree with those given in Tables 4.1.1 and
4.1.2. For example, when we use the fixed step-size h = 0.05, the problem is solved
in 67.7 seconds with an error of 0.031 when solving for the stage value using a
Picard iteration. Using the variable step-size method with λP = 3.6, we see that
the problem is solved in 67.4 seconds with an error of 0.003, which is about 90%
smaller than the fixed-step size error of 0.031. A similar comparison can be made
with h = 0.125 and λP = 2.

The second interesting thing we notice is evidenced by Table 4.1.4 when we
use (57) to compute the variable step-sizes and solve for the stage value y1 using
Newton’s method. We notice that the problem takes longer to solve, but at the
same time the error is much smaller. We cannot compare the fixed step-size data
with the variable step-size data as above because of the large difference in times.
However we can note that when the problem is solved with λP = 0.4 the problem
is solved in 27.1 seconds with an error of 0.087; when the problem is solved with
λN = 10, it takes 115.7 seconds to get the error down to 0.00113. We can quickly
compute that the problem is solved 77% faster using λP , but the error is 98% lower
using λN .

The reason it takes so long to solve the problem using this method is because
of the variable step-sizes determined by solving (57). Consider the plot shown
in Figure 4.1.5. This graph shows how far the integration of the problem has
progressed at each iteration for various values of λP and λN . Essentially, the graph
also shows how large (or how small) of a step-size each method chooses as the
integration proceeds from one step to the next. In addition, we can see from the
plot that when we use (57) to find the step-size update, the step-sizes determined are
much smaller then when (35) is used; hence, many more iterations are required to
integrate the system from t = 0 to t = 50. We would also like to mention something
about the existence of a solution to (57). Although, we have not proven that a
solution does exist, we can plot the function for reasonable values of the parameters.
For example, consider Figure 4.1.6. Here we plot the function g(ρ) where g is the
function given by the left hand side of (57). This plot uses the following values
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for the parameters given in (57): λ = 10, ε = 10−10 and α =
∥∥[2 3]T

∥∥ . The
function appears to be quite smooth in this region and clearly we see that for these
parameters, a solution to (57) exists.

All computations, except those that generated Tables 4.1.3 and 4.1.4, were done
in MATLABr version 6.1.0.450 Release 12.1 running in Microsoft Windows XP
Professional version 5.1.2600 with an AuthenticAMD processor running at 1544
Mhz.

Table 4.1.1. Fixed step-size (Lotka-Volterra model)

h → 0.05 0.08 0.1 0.125
T (Picard) 240.0 181.1 160.7 159.6

E × 10−2 (Picard) 3.1 6.9 9.4 8.4
T (Newton) 354.4 234.4 187.7 155.6

E × 10−2 (Newton) 3.1 6.9 9.4 8.4

Table 4.1.2. Variable step-size (Lotka-Volterra model)

λ → 0.25 0.4 0.5 0.75 1 2
T (Picard) 113.8 119.7 118.5 124.8 127.3 168.4

E × 10−2 (Picard) 11.5 8.7 7.8 4.8 2.5 0.4
T (Newton) 117.6 124.3 127.4 140.7 151.6 229.9

E × 10−2 (Newton) 11.5 8.7 7.8 4.8 2.5 0.4

Table 4.1.3. Fixed step-size (Lotka-Volterra model)

h → 0.05 0.065 0.08 0.1 0.125
T (Picard) 67.7 57.0 50.7 46.2 45.6

E × 10−2 (Picard) 3.1 5.0 6.9 9.4 8.4
T (Newton) 67.8 53.3 44.0 35.6 29.6

E × 10−2 (Newton) 3.1 5.0 6.9 9.4 8.4

Table 4.1.4. Variable step-size (Lotka-Volterra model)

λP → 0.4 0.6 0.8 1 2 3.6
T (Picard) 27.1 28.4 28.8 33.9 43.6 67.4

E × 10−2 (Picard) 8.7 6.6 4.4 2.5 0.4 0.3

λN → 8 10 12 14 16 20
T (Newton) 192.3 115.7 138.1 134.1 140.5 149.9

E × 10−4 (Newton) 4.6 11.3 8.4 8.9 8.2 7.3
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Figure 4.1.3. Comparison of execution time for h and λ for the
Lotka-Volterra model
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Figure 4.1.4. Error comparison for h and λ for the Lotka-
Volterra model

4.2. The Kepler Problem. This example, taken from Hairer, Lubich, and Wan-
ner [1], is the well known two-body problem describing planetary motion. Consider
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the equations

q̈1 = − q1

(q2
1 + q2

2)3/2
(67)

q̈2 = − q2

(q2
1 + q2

2)3/2
,(68)



Variable Step-Size Selection Methods for ODEs 231

with the following initial conditions:

(69) q1(0) = 1− e, q2(0) = 0, q̇1(0) = 0, q̇2(0) =

√
1 + e

1− e
,

where 0 ≤ e < 1. To describe the motion of two bodies, one of the bodies is taken to
be the center of the coordinate system and the position of the second at any time t
is given by the two coordinates q1(t) and q2(t). Equations (67)-(68) are equivalent
to the following Hamiltonian system:

q̇i = pi i = 1, 2(70)

H(p1, p2, q1, q2) =

(
p2
1 + p2

2

)

2
− 1√

q2
1 + q2

2

(71)

where H(p1, p2, q1, q2) is the Hamiltonian of the system.
Before (67)-(68) can be integrated using the implicit midpoint rule, we convert

the equations to a system of four first-order ordinary differential equations. Let
z1 = q1, z2 = q̇1, z3 = q2 and z4 = q̇2. Define z = [z1 z2 z3 z4]T . Then (67)-(68)
are equivalent to the following system:

(72) ż =




ż1

ż2

ż3

ż4


 =




z2

− z1

(z2
1+z2

3)
3/2

z4

− z3

(z2
1+z2

3)
3/2




.

The above system of equations was solved using the implicit midpoint rule for
t ∈ [0, 50]. Just as in the previous example, both a Picard iteration and Newton’s
method were used to compute the stage value y1. The two measures we chose
for this example are very similar to the those of the previous example. The first
measure is T , the total cpu time required to solve the system 1000 times with
eccentricity, e, that is uniformly distributed in the interval [0.4,0.8]. The second
measure was E, the maximum absolute error that the integration deviates from
the exact solution with eccentricity e = 0.6. For this measure, we considered the
absolute error at every step of the integration.

The results from this numerical experiment are summarized in Tables 4.2.1 and
4.2.2 and also in Figures 4.2.1 and 4.2.2. We compare the performance of the
variable step-size method to the fixed-step size method exactly as we did in the
previous example. In Table 4.2.1 we begin with the fixed step-size h = 0.01. The
problem is solved in 84.8 seconds using Picard iteration to find y1, giving an error
of 0.113. We compare this to λ = 8 in Table 4.2.2 where the problem is solved in
81.4 seconds with an error of 0.067. Also, when the fixed step-size is h = 0.05, the
problem is solved in 21.2 seconds using Picard iteration to find y1 and is solved in
29.6 using Newton’s method to find y1. The error in both cases is 1.58. We compare
these to when λ = 2 in Table 4.2.2. Respectively, the times are 21.6 seconds and
29.9 seconds. The error for these two times is 0.64.

All of the computations, up until this point, in this section were performed on the
same machine as those from Section 4.1. The computations below were performed
in MATLABr version 5.3.0.10183 Release 11 running in Microsoft Windows XP
Professional version 5.1.2600 with an x86 Family 15 Model 4 Stepping 1 GenuineIn-
tel processor running at 3056 Mhz.

Now we would like to compare the performance of the proposed variable step-
size selection method versus the accepted variable step-size selection method of
Stoer and Bulirsch [10], given by equation (6). For the method from Stoer and
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Bulirsch, we chose Φ1 to be of order two and Φ2 to be of order three. The method
is described in great detail in [10], including coefficients for the function evaluations
in computing Φ1(tk, x̄k; h) and Φ2(tk, x̄k; h). The only control given to the user of
such a method is the initial choice of h. First, we decided to test the method to see
what kind of errors and time of execution we would get from various starting values
of h. Twelve different values of h, ranging from h = 5×10−5 to h = 2, were chosen.
The error function chosen, is exactly the same from the comparisons above in this
section. We found that regardless of the starting value of h, the error ranged only
from 2.88 × 10−3 to 2.90 × 10−3. Furthermore, there seemed to be no significant
difference in the times of execution either. The times ranged from 9.5 seconds to
13.0 seconds with no discernable order to them. Random computer processes could
be a possible cause for some variation, but the mean time of execution for the twelve
runs was 11.7 seconds. The results of this test are given in Table 4.2.3.

Next, we wanted to compare these results to the method proposed in this paper.
As the results above suggest, we could not control the variable step-size selection
method given by (6), so it was necessary to find a value of λ for the proposed
method that would yield a similar error. After a few attempts, it was determined
that λ = 26.75 was a good choice. For comparison purposes, we ran the code
twenty times because of one to two second fluctuations in time of executions. We
then determined the mean error for all twenty runs and the mean time of execution
for all twenty runs. The mean error was 2.90×10−3 and the mean time of execution
was 13.8 seconds.

Although, the mean time of execution was slightly higher for the proposed
method, the method from Stoer and Bulirsch has one major drawback. The er-
ror is essentially uncontrollable aside from the tolerance used. The user has no
ability to loosen an error requirement to gain speed of execution or vice versa.
For the proposed method, this is controlled by the user through the parameter λ,
much like a fixed step-size method can be controlled by choosing the step-size. The
difference between them is that our results also show that the proposed method
performs better than a fixed step-size method as well.

Table 4.2.1. Fixed step-size (Kepler problem)

h → 0.01 0.05 0.1 0.125
T (Picard) 84.8 21.2 13.3 11.9

E × 10−1 (Picard) 1.1 15.8 20.4 24.8
T (Newton) 137.5 29.6 16.5 14.4

E × 10−1 (Newton) 1.1 15.8 20.4 24.8

Table 4.2.2. Variable step-size (Kepler problem)

λ → 1 2 4 6 8 10
T (Picard) 20.2 21.6 37.2 58.5 81.4 111.4

E × 10−1 (Picard) 12.5 6.4 3.0 1.3 0.7 0.4
T (Newton) 22.1 29.9 50.6 79.3 114.7 157.2

E × 10−1 (Newton) 12.5 6.4 3.0 1.3 0.7 0.4
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Figure 4.2.1. Comparison of execution time for h and λ for the
Kepler problem
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Figure 4.2.2. Error comparison for h and λ for the Kepler prob-
lem

4.3. The Kepler Problem Using Runge-Kutta-Nyström. Once again, we
consider the Kepler problem described by equations (67)-(69). We now solve the
problem using a Runge-Kutta-Nyström (RKN) method. The method we use is the
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Table 4.2.3. Variable Step-Size Data using (6)

h E (Picard) Time (for one run)
5× 10−5 2.90× 10−3 11.4 seconds
1× 10−4 2.90× 10−3 13.0 seconds
5× 10−4 2.90× 10−3 12.2 seconds
1× 10−3 2.90× 10−3 9.5 seconds
5× 10−3 2.90× 10−3 11.3 seconds

0.01 2.90× 10−3 12.1 seconds
0.05 2.92× 10−3 10.9 seconds
0.1 2.91× 10−3 10.9 seconds
0.2 2.88× 10−3 11.4 seconds
0.5 2.91× 10−3 12.1 seconds
1 2.90× 10−3 12.3 seconds
2 2.91× 10−3 12.9 seconds

two-stage Gauss method from [3] which is the RKN method that is induced from
the fourth order Gauss method (a Runge-Kutta routine) found in [1]. For notation,
we will refer to this integration routine as Gauss4. The constants from equations
(19)-(21) are

(73) γ1 =
1
2
−
√

3
6

, γ2 =
1
2

+
√

3
6

, β1 =
1
4

+
√

3
12

, β2 =
1
4
−
√

3
12

, b1 =
1
2
,

(74) b2 =
1
2
, a11 =

1
24

, a12 =
1
8
−
√

3
12

, a21 =
1
8

+
√

3
12

, a22 =
1
24

.

The analysis leading to equation (90) used the Lipschitz constant from the Runge-
Kutta methods, hL‖A‖. Since we are actually implementing a RKN method to
solve this system now, we have to repeat that analysis process with the Lipschitz
constant from the RKN methods, h2L‖A‖. Following exactly the same process given
in equations (25)-(35) and using the substitution

(75) x = h2L‖A‖,
we find that to find the optimal h we must solve

(76) 2 + lnx + λ2x3/2 = 0

for x and then solve for h using (75).
Tan [5] solves the Kepler problem using Gauss4 as a Runge-Kutta routine (not

in its induced RKN form) with a fixed step-size of π
64 for 500,000 iterations. Just

for comparison we did the following:
(1) We solve the problem using the fixed step-size π

64 on the interval [0,50] and
determine the maximum absolute variance from the exact solution.

(2) We compute the total cpu time taken to solve the system using this step-size
for 500,000 iterations as Tan does.

(3) We solve the system on the interval [0,50] using the optimal step-size selec-
tion method to determine the value of λ that gives us a comparable error
as determined in step one.

(4) We solve the system on the entire interval using this value of λ and our
variable step-size selection method.



Variable Step-Size Selection Methods for ODEs 235

When we used h = π
64 to solve the system on the interval [0,50], we found the

maximum absolute variance from the exact solution to be 0.0045. Then using this
fixed step-size, we found that it took 101.6 cpu seconds to solve the problem taking
500,000 iterations. We then determined that a comparable error on the interval
[0,50] was achieved for λ = 55; that error was 0.0046. When we solve the problem
using our variable step-size selection method and choose λ = 55 to a final time of
T = 500000π

64 , we find that the system is solved in 61.5 cpu seconds, which is 39.5%
faster than using the fixed step-size of π

64 .
In addition to the above comparison, we also compared the fixed step-size method

to the variable step-size method for various values of h and λ for this example. The
results of this comparison are given in Tables 4.3.1 and 4.3.2. We only used Picard
iteration to solve for the stage values. We used exactly the same two measures as we
did in the previous section, when we solved the Kepler problem using the implicit
midpoint rule. When we solve the system with the fixed step-size h = 0.05, the
solution is found in 198.2 seconds with an error of 0.0050. Comparatively, we found
that for λ = 100, the system is solved in 193.3 seconds with an error of 0.0036,
which is about 28% lower error. We also found that when the system is solved with
the fixed step-size of h = 0.06, it took 179.5 seconds with an error of 0.0071. We
compare this to the variable step-size with λ = 90, which took only 182.7 seconds
to once again get an error of 0.0036, which is about 49% lower error. In addition
to these positive results, we did not notice a large decrease in the error using the
variable step-size method as we increased λ. When we used the implicit midpoint
rule in the previous two examples, we noticed a steady decline in the error as λ
increased. In this case, we actually noticed that the error only goes from 0.0036
when λ = 90 to 0.0032 when λ = 1000. We point out that when λ = 1000, the
system is solved in 625.8 seconds which is about 33% faster than the 927.8 seconds
it took with the fixed step-size h = 0.01, where the error was only 0.0029.

All computations were done in MATLABr version 6.5.0.180913a Release 13
running in Microsoft Windows XP Professional version 5.1.2600 with an x86 Family
15 Model 2 Stepping 7 GenuineIntel processor running at 2392 Mhz.

Table 4.3.1. Fixed step-size (Kepler problem using RKN)

h → 0.01 0.025 0.05 0.06
T (Picard) 927.8 341.2 198.2 179.5

E × 10−3 (Picard) 2.9 3.0 5.0 7.1

Table 4.3.2. Variable step-size (Kepler problem using RKN)

λ → 90 100 250 500 1000
T (Picard) 182.7 193.3 248.6 352.4 625.8

E × 10−3 (Picard) 3.6 3.6 3.2 3.2 3.2

4.4. The Van der Pol Equation. In this example, we would like to demonstrate
the usefulness of this variable step-size selection method at solving a well-known
stiff differential equation. Let us consider the Van der Pol oscillator:

(77) ẍ− µ(1− x2)ẋ + ω2x = 0 ,



236 HOLSAPPLE, IYER, AND DOMAN

with ω = 1 and µ = 100. First, we write the equation as system of two first-order
equations:

(78) ż =
[

ż1

ż2

]
=

[
z2

µ(1− z2
1)z2 − ω2z1

]
,

where z1 = x and z2 = ẋ.
Many authors [10, 14, 22, 23] suggest that implicitness is pivotal to efficiently

solve stiff initial value problems. In addition to this, many agree that variable step-
size methods are more beneficial to solving these stiff differential equations than
fixed step-size routines. One reason for this in the case of the Van der Pol system is
that part of the solution evolves on a much faster time scale than other parts of the
solution as it progresses through the limit cycle. To illustrate this point using the
proposed variable step-size selection method, we solve (78) for t ∈ [0, 400] using the
fixed step-size implicit midpoint method versus using the variable step-size implicit
midpoint method.

Two sets of initial data were chosen for implementation. First, we chose z(0) =
[0 1]T = ẑ, a starting vector that lies inside the loop of the limit cycle. Secondly,
we chose z(0) = [−1 100]T = z̃, a starting vector that lies outside the loop of the
limit cycle. For ẑ, h = 0.004 was chosen for the fixed step-size method, and the
system is solved in 222.5 seconds. A plot of x versus ẋ for this method is shown in
Figure 4.4.3. Then, for the variable step-size method, a value of λ was chosen that
yields a comparable time of execution. That value was λ = 0.01, and the system
was solved in 218.8 seconds. A plot of x versus ẋ can be found in Figure 4.4.4.
When we choose z̃ as the initial data, we continue to use λ = 0.01 while solving
the system in 313.8 seconds. A plot of the limit cycle for this execution is found
in Figure 4.4.6. For comparison we then determine a fixed step-size that yields a
comparable execution. This occurred when we let h = 0.00345. The system was
solved in 316.3 seconds and a plot of the limit cycle is found in Figure 4.4.5. All of
the above data is summarized in Table 4.4.1.

Even with the naked eye, it is easily discernable that the variable step-size
method performs much better. The solution is smoother and stays closer to the
actual limit cycle. Because of the small fixed step-sizes chosen, the fixed step-size
routines perform rather well at approximating the solution along the more slowly
evolving stretches of the limit cycle. However, there are two places where the dy-
namics of (78) evolve on a much faster time scale. These two places are at the
peak and the valley of the limit cycle. To accurately approximate the solution at
these places, it is necessary to have even smaller step-sizes than those chosen in the
fixed step-size routine. This is exactly what the proposed variable step-size selec-
tion method does. As a result, it manages to approximate the exact solution much
more smoothly than is possible for any fixed step-size in a comparable amount of
time of execution.

Another goal of considering the stiff system (77) was to see how the variable
step-size selection method from Stoer and Bulirsch would perform on the system.
We integrated (78) with the initial data z(0) = [0 1]T . Although, we integrated
the system using an implicit integrator, the step-sizes chosen according to (6) were
specifically designed for one-step explicit integration schemes. Using (6), we encoun-
tered a problem getting the stage-value for the implicit integration to converge to a
real number, just before the integration gets to t = 0.19. This problem is unavoid-
able. No matter what we choose as an initial value for h, the integration stalls at
this point. This is exactly the point on Figure 4.4.4 where [x(t) ẋ(t)]T ≈ [1.75 0]T .
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This is the point in the solution where the dynamics of the system cause the solu-
tion to make a very sharp clockwise turn onto the limit cycle. The fixed step-size
method used h = 0.004 throughout, but using (6) to determine h yields h = 0.0117
at this point in the integration, which is too large for the stiff system. We used this
step size on the fixed-step size code, only to encounter the same problem at nearly
the same point in the integration.

The computations from this section were done in MATLABr version 5.3.0.10183
Release 11 running in Microsoft Windows XP Professional version 5.1.2600 with an
x86 Family 15 Model 4 Stepping 1 GenuineIntel processor running at 3056 Mhz.

Table 4.4.1. Fixed versus Variable step-size comparisons

z(0) = [0 1]T
h = 0.004 222.5 seconds
λ = 0.01 218.8 seconds

z(0) = [−1 100]T
h = 0.00345 316.3 seconds

λ = 0.01 313.8 seconds
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Figure 4.4.3. Van der Pol Oscillation: fixed step-size h = 0.004

5. Conclusion

The collection of implicit numerical integration routines is vast to say the least.
Often times one routine is chosen over another to improve either efficiency or ac-
curacy. In this paper, we have shown that it is possible to wisely choose a variable
step-size for these integration schemes.

For linear ordinary differential equations or equations in which the Lipschitz
constant for the function f is known, the task becomes quite simple as the optimal
value of the step-size will not change from one step of the integration to the next.
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Figure 4.4.4. Van der Pol Oscillation: variable step-size λ = 0.01
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Figure 4.4.5. Van der Pol Oscillation: fixed step-size h = 0.00345

But, if we are dealing with more complicated non-linear differential equations, we
can still choose an optimal time step at each step of integration of the system. As we
have shown, this process often involves solving a non-linear equation numerically.
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Figure 4.4.6. Van der Pol Oscillation: variable step-size λ = 0.01

Because of this, the computational overhead in using this optimal step-size routine
seems to be too much for solving differential equations in which the function f is
quite simple. However, our results have shown that this is consistently not the case
when f is a complicated function.

The analysis and the derivation of the variable step-size method is described
on an interval [0, T ] that is divided into uniform subintervals of fixed length h.
Furthermore, the initial assumption of global Lipschitz continuity on f is also made.
However, we have shown how the optimization may also be performed at each step
of the integration to yield a variable step-size method. In addition, the method is
applied to non-linear systems that have no global Lipschitz continuity. The results
are good, and we summarize them below.

Tables 4.1.1, 4.1.2, 4.1.3, 4.1.4, 4.2.1 and 4.2.2 clearly show that, for comparable
integration times, the variable step-size selection method presented in this paper
drastically reduces the global error in the solution of the problem. For the Kepler
problem, we found that for comparable execution times, the error was reduced 41%
to 59% when the variable step-size method is used. In the Lotka-Volterra example,
we found that for comparable execution times, the problem is solved with the error
reduced 70% to 96% when we use the variable step-size method. From studying
the tables we may choose λ so that execution times are comparable, in which case
the variable step-size method noticeably reduces error as evidenced from the above
discussion. However, λ may also be adjusted to find comparable errors between
the fixed step-size and variable step-size methods. When you do this, one notices
that the time required to achieve a comparable error for the fixed step-size is much
larger.

Furthermore, in Section 4.2 we showed that the proposed variable step-size se-
lection method is comparable to a widely accepted method described by Stoer and
Bulirsch. To yield the same error in this example, the two methods took nearly
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the same amount of time, with the well-known method having a slight advantage.
However, we also argued that the proposed method retains a quality that should be
very beneficial to a user. This quality is the ability of the user to control, through
a parameter, the emphasis of the numerical integration on global error versus the
emphasis on time of execution. This is a quality that was not exhibited by the
earlier variable step-size selection method. In addition to this, we also showed that
the accepted step-size selection method performs poorly on a very stiff Van der
Pol oscillator. This is probably due to the fact that (6) was designed to control
step-sizes for explicit integration schemes, which perform poorly on stiff systems.

We must point out that this optimal step-size selection process is dependent
upon the scheme being used and we have concentrated on Runge-Kutta and Runge-
Kutta-Nyström methods. It should not be too difficult of a task to adapt this
process to the ever growing collection of implicit integration routines.

6. Appendix

6.1. Proof of Lemma 3.1.

Proof. Let λi

(
RT R

)
denote the i-th eigenvalue of RT R. Since RT R > 0, we have

λi

(
RT R

)
> 0 for i = 1, . . . , n and

(
RT R

)−1
> 0. Now using a well-known property

of matrices and the Rayleigh-Ritz inequality, we get the following:
∥∥R−1

∥∥2
= λmax

((
RT R

)−1
)

(79)

=
1

λmin (RT R)
(80)

=
∏n

i=1 λi

(
RT R

)

λmin (RT R) · det (RT R)
(81)

≤
[
λmax

(
RT R

)]n−1

(detR)2
(82)

=
‖R‖2(n−1)

(detR)2
(83)

=

(
‖R‖n−1

det R

)2

.(84)

Taking square roots on both sides of the above inequality yields the desired result.
¤

6.2. Derivation of Equation (34). First we compute

(85)
dJ3

dh
=

ln(hL‖A‖) + 1
T ln(ε/C)

− 2κTh

and

(86)
d2J3

dh2
=

1
Th ln(ε/C)

− 2κT.

In order to find max
h

J3(h), we must find the h > 0 that solves

(87)
ln(hL‖A‖) + 1

T ln(ε/C)
− 2κTh = 0
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such that

(88)
1

Th ln(ε/C)
− 2κT < 0.

We must have T and h positive, and for a numerical solution to be meaningful,
certainly ε must be very small and in general much less than C. Thus, ln(ε/C) < 0.
We then require κ ≥ 0 to ensure that the second derivative of J3 is negative, which
guarantees that the solution to (87) is indeed a maximum.

Now let

(89) κ = −λ2 L‖A‖
2T 2 ln(ε/C)

,

where λ is a free parameter that weights the optimization toward efficiency in time
or toward global error. A better understanding of how λ affects the variable step-
size selection process can best be explained by studying Table 4.1.2 and Table 4.2.2.
By substituting this κ into (87), we find that we must solve

(90) ln(hL‖A‖) + 1 + λ2hL‖A‖ = 0

for h given an arbitrary value for λ.

Acknowledgments

R. Holsapple was supported by an AFRL Air Vehicles Directorate Graduate Stu-
dent Assistantship during Summer 2004. R. Iyer was supported by an NRC/AFOSR
Summer Faculty Fellowship during Summer 2004. The authors would also like to
extend their sincere gratitude to the reviewers. Their many comments and sugges-
tions helped the authors enhance the quality and effectiveness of this work.

References

[1] E. Hairer, C. Lubich, G. Wanner, Geometric Numerical Integration - Structure-Preserving Al-
gorithms for Ordinary Differential Equations, Springer Series in Computational Mathematics,
Springer-Verlag, Berlin, Germany, 2002.

[2] D. Lewis, J. Simo, Conserving algorithms for the N-dimensional rigid body, Fields Institute
Communications 10 (1996) 121–139.

[3] J. Sanz-Serna, M. Calvo, Numerical Hamiltonian Problems, Applied Mathematics and Math-
ematical Computation, Chapman & Hall, London, United Kingdom, 1994.

[4] L. W. Roeger, A class of nonstandard symplectic discretization methods for Lotka-Volterra
system, preprint - Texas Tech University Department of Mathematics and Statistics (2005).

[5] X. Tan, Almost symplectic Runge-Kutta schemes for Hamiltonian systems, Journal of Com-
putational Physics 203 (1) (2005) 250–273.

[6] E. Hairer, G. Wanner, Algebraically stable and implementable Runge-Kutta methods of high
order, SIAM Journal on Numerical Analysis 18, 1981.

[7] E. Hairer, G. Wanner, Characterization of non-linearly stable implicit Runge-Kutta methods,
in: J. Hinze (Ed.), Numerical Integration of Differential Equations and Large Linear Systems,
Vol. 968 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, Germany, 1982, pp. 207–
219, proceedings of Two Workshops Held at the Univeristy of Bielefeld, Spring 1980.

[8] T. Hull, W. Enright, B. Fellen, A. Sedgwick, Comparing numerical methods for ordinary
differential equations, SIAM Journal on Numerical Analysis 9 (4) (1972) 603–637.

[9] R. Bulirsch, J. Stoer, Numerical treatment of ordinary differential equations by extrapolation
methods, Numerische Mathematik 8 (1966) 1–13.

[10] J. Stoer, R. Bulirsch, Introduction to Numerical Analysis, Third Edition, Texts in Applied
Mathematics 12, Springer-Verlag, New York, New York, 2002.

[11] P. V. D. Houwen, Construction Of Integration Formulas For Initial Value Problems, Vol. 19
of North-Holland Series In Applied Mathematics And Mechanics, North-Holland Publishing
Company, Amsterdam, 1977.

[12] B. Cano, A. Duran, Analysis of variable-stepsize linear multistep methods with special em-
phasis on symmetric ones, Mathematics of Computation 72 (244) (2003) 1769–1801.



242 HOLSAPPLE, IYER, AND DOMAN
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