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Abstract— The object of this paper is to introduce a new
method for computing the linear velocity and angular velocity
of an unmanned air vehicle (UAV) using only the information
obtained from image sequences. In UAV applications, com-
putational resources are limited due to payload constraints
and the real-time computation requirement. Therefore, com-
putationally intensive techniques employing feature extraction
cannot be used. The alternative, in existing literature, is the
computation of optical flow and the subsequent computation
of motion. Both of these problems are ill-posed due to the
correspondence and aperture problems.

In this paper, we consider a different approach for motion
estimation that is based on the spatial differentiation of an
image function. We show that the solution is a well-posed
problem that involves a least squares problem and nonlinear
filtering. We also discuss the implementation of such a scheme
on a UAV, and discuss the existence of such schemes in insects
and crustaceans.

I. INTRODUCTION

Compact and Low cost Inertial Navigation Systems (INS)
employing MEMS acceleration sensors and piezoelectric
gyroscopes have become available in recent years for use
in UAV applications. For micro-UAV’s operating in urban
environments, such INS systems have to be used in conjunc-
tion with cameras or other sensors for collision avoidance
and navigation. For such applications, it is highly desirable
to reduce the payload by using the cameras for inertial
measurement as well. The measurement of self-motion from
images is a well studied problem in Robotics and Computer
Vision [11], [23]. The techniques employed differ primarily
on whether features in the image are identified or not.
Methods based on former rather than the latter need more
computational power. Micro-UAV’s with limited payload
and the need for real-time computation have a constraint on
computational resources. Hence, motion estimation without
feature extraction is to be considered for such applications.
In particular, our objective is to study the feasibility of
replacing linear acceleration and angular velocity signals
from an INS with linear velocity and angular velocity
signals from an Optical Navigation System (ONS).

Though different techniques are available in existing
literature for self-motion estimation, they are all inherently
based on a single camera/imaging device model - the
pinhole camera. On the other hand, nature employs vari-
ous imaging methods (hardware) and neural computational
pathways (software) for relative motion determination, from
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narrow-band photosensitive pigments and filtering in deep-
sea creatures [6], [8], [9], to several types of compound
eyes in insects and crustaceans [20], [27] to binocular
vision in mammals. In this paper, we propose a solution
to the self-motion estimation problem based on the spatial
differentiation of the image formed by an imaging device.
For a practical implementation of this method, it will be
apparent that the imaging device must correspond to any of
the (apposition or superposition) compound eyes [27].

There are some theoretical advantages to the use of an
ONS over an INS, once the implementation details are
ironed out. An INS yields noisy estimates of the angular
velocity and the linear acceleration of a UAV. The integra-
tion of the linear acceleration to obtain the linear velocity
results in a random walk and the variance of the noise
associated with the problem increases with time, unless it
can be corrected by some external means. The ONS on
the other hand yields noisy estimates of both the angular
velocity and linear velocity of a UAV. Thus it is much more
suitable for navigation provided the implementation details
are sorted out.

In Section II, we discuss existing techniques for motion
estimation that are based on a pin-hole camera. In Section
III, we discuss how we have approached motion detection
by describing what we call an optical navigation system
(ONS). The mathematical arguments we present naturally
require the use of a filtering scheme. In a related paper, we
will study the use of the intrinsic observer for Lagrangian
systems [3] for this purpose.

II. EXISTING MOTION DETECTION METHODS USING A
PINHOLE CAMERA

When a pinhole camera is used to form an image on a
retinal/image plane with local co-ordinates (x, y), the inten-
sity of the image formed I(x,y) depends on the reflectivity
of the surfaces being imaged, and the direction of the light
source. In a purely descriptive sense, optical flow is the
apparent motion of brightness patterns observed when a
camera is moving relative to the objects being imaged [11].
The computation of optical flow without extracting features
depends on correlating areas of pixels once the motion has
taken place. As one can easily foresee, this task is ill-
posed because objects get larger when the camera moves
towards them. This is known as the correspondence problem
in active vision. There are other problems that make the
computation of the optical flow ill-posed. These are studied
rather well by Faugeras [11].



Below, we make a brief survey of the rather vast literature
on optical flow to illustrate the difficulty involved in real-
time implementation. In existing methods, one has to solve
a constrained least squares optimization problem at every
instant of time to obtain the optical flow [2], [5], [17],
[18], [19], though not all authors agree that the Horn
constraint equation that is used to constrain the solutions
is correct [11]. Many authors begin with this constraint
and attempt to solve the problem from there. One class of
methods is gradient-based, and according to Beauchemin
and Barron [5], many researchers have used this optical
flow constraint with other constraints to compute optical
flow using gradients [4], [7], [10], [14], [13], [18], [24],
[25], [26], [29], [30]. One popular method is due to Horn
and Schunck [18]. The optical flow constraint equation by
itself is certainly not sufficient to solve for optical flow, so
they introduce a smoothness constraint. Another area of op-
tical flow computation is frequency-based. These techniques
use velocity-tuned filters in the Fourier domain of time
varying images. Beauchemin and Barron [5] summarize the
advantages of these methods, describing different types of
filtering and some hierarchical approaches, citing several
researchers who have explored these techniques [1], [12],
[15], [16], [33]. Another technique due to Srinivasan [31]
is a non-feature-tracking technique in which parameters
of motion are computed using a single-stage, non-iterative
process. This process interpolates the position of images
that are moving with respect to a collection of reference
images. From this discussion, the reader can appreciate the
difficulties in doing the optical flow computation in real-
time. Liu, Hong, Herman, Camus and Chellappa [21] did
a computational comparison of the available methods and
studied the feasibility for real-time implementation, and
their results were not promising.

Assuming that the optical flow has been computed, the
second problem is the computation of the linear and angular
velocities of the camera. If the pinhole camera undergoes a
motion tangential to the image plane, then objects closer
to the camera will have a greater displacement in the
image plane than objects farther away. Due to this, one
cannot make a connection between the optical flow on the
retinal plane and the actual motion of points in the three
dimensional world without precisely knowing the distances
of some points from the camera. In a real-time application
on a UAV, this involves either limited feature extraction,
or one has to use additional means of distance estimation.
Otherwise, one can only estimate the velocities up to an
unknown scaling constant.

III. OPTICAL NAVIGATION SYSTEM

In this section, we introduce a new approach to comput-
ing motion using a sequence of images. Unlike optical flow
theory, that is based on post-processing of the image data to
find correlations or correspondences in the image intensities,
our theory is based on the spatial derivative of the image.
For implementation of this method, an imaging device

rather like a compound eye (apposition or superposition
type) has to be used. This is so that one can relate the spatial
derivative to the change in the intensities actually produced
by motion. Then the solution of the motion parameters
(linear and angular velocities of the camera) can be cast as
the solution of an linear well-posed inverse problem, under
some mild technical conditions on the image.

A. Mathematical Background

Let H be an infinite dimensional Hilbert space. Given
y ∈ H, suppose that we wish to determine β ∈ IRm that
satisfies

y = Wβ + ε, (1)

where W is a linear operator, and ‖y−Wβ‖ is a minimum.
The solution is the well-known pseudo-inverse [22].

Theorem 3.1: Let W ∗ be the adjoint of W . The vec-
tor β̂ ∈ IRm minimizes ‖y −Wβ‖ if and only if
W ∗Wβ̂ = W ∗y. If W has full rank, the solution is
β̂ = (W ∗W )−1

W ∗y.
Now consider the linear operator W : IRm → L2(U),

where U ⊂ IR2 defined by the map β 7→ φ(x, y) with

φ(x, y) = A(x, y)β ; (x, y) ∈ U (2)

where A(x, y) is a 1×m row vector. The adjoint of W is
the operator W ∗ : L2(U) → IRm and is defined by:

〈W ∗φ, β〉IRm = 〈φ, Wβ〉L2(U) , β ∈ IRm, φ ∈ L2(U) (3)

where

〈u, v〉IRm = uT v; u, v ∈ IRm, (4)

and

〈f, g〉L2(U) =
∫∫

U

f(x, y)g(x, y) dxdy; f, g ∈ L2(U). (5)

Using the definitions in Equations (4) and (5), we obtain
from equation (3):

W ∗φ =
∫∫

U

AT (x, y)φ(x, y) dxdy (6)

Then according to Theorem 3.1, the normal equation is



∫∫

U

AT (x, y)A(x, y) dxdy


 β =

∫∫

U

AT (x, y)φ(x, y) dxdy,

(7)
and the solution to equation (7) is (when Range(W ) = IRn):

β̂ =




∫∫

U

AT (x, y)A(x, y) dxdy



−1∫∫

U

AT (x, y)φ(x, y) dxdy.

(8)



B. ONS Theory

As we have already mentioned, previous approaches to
this problem involved the solution of two ill-posed prob-
lems:

1) computation of optical flow
2) linear velocity and angular velocity computation.

The approach we choose to take involves setting up the
linear equation

δI(x, y, t) = W (x, y, t)β + εt, (9)

where δI(x, y, t) is the observed change in image intensity
at time t at the point (x, y) in the image plane with respect
to a coordinate system fixed to the image plane, εt is a white
noise process, W (x, y, t) is computed from the observed
image at time t, and β is the vector of unknown linear
and angular velocities at time t. We then solve for β using
Theorem 3.1 and use a non-linear observer to filter the
noise.

Suppose that we have N imaging devices fixed to a
UAV. We will call them “cameras” for brevity even though
it will be clear that we do not have pinhole cameras in
mind. Let the position of the center of mass of the UAV
with respect to an inertial frame be given by b(t) at time
t, and the orientation of the principal axes be given by
Q(t) ∈ SO(3). The pair (Q, b)(t) ∈ SE(3) denote the
configuration variables for the UAV. Let the angular velocity
and linear velocity of the UAV in the inertial frame be ω(t)
and v(t) respectively. The reason for using velocities in the
inertial frame rather than in the usual body frame will be
apparent in a moment. If (Ω, ξ) are the velocities in the
body frame, then the usual relations are: ω = Q Ω and
v = Qξ. The retinal planes of the cameras are assumed to
be surfaces, and there is a family of embeddings E i

(Q,b) :
Ui ⊂ IR2 → IR3, where i ∈ {1, · · · , N}, that map the local
co-ordinates of a point on a retinal plane to its inertial co-
ordinates.

We define the image functions Ii(x, y, t) below and state
the space in which they belong later. The x and y above are
local coordinates on the image plane. The image functions
are functions of the configuration variables (Q, b) of the
UAV:

Ii : SE(3) → H1 (Ui) , i = 1, · · · , N
(Q, b) 7→ Ii(Q, b, ·, ·, t) (10)

The tangent maps of these functions are then defined by:

TIi : TSE(3) → L2 (Ui) ,
(Q, b, ω, v) 7→ Wi(Q, b, ·, ·, t, ω, v) (11)

where Wi(Q, b, x, y, t, ω, v) = D(Q,b)Ii(Q, b, x, y, t)(ω, v).
The intensity of a pixel can change due to the motion of

the pixel in directions tangent and normal to itself. We split
the change in the intensity due to the motion of the pixel
into the tangential and normal components. The reason for
this is that we can theoretically estimate the intensity change
in the tangential direction but not in the normal direction.

Now consider the point (x, y) ∈ IR2 on a image plane that
has coordinates (X, Y, Z) in the inertial frame. The point
(X, Y, Z) has the velocity w ∈ IR3 due to the combined
rotational and linear motion of the UAV. In differential
geometric terms, this velocity is a section σ : IR3 → T IR3.
Due to the embeddings E i

(Q,b), we can pullback this section
to the set Ui to which (x, y) belongs. Thus to the point
(x, y) ∈ Ui we have the velocity vector w = σ◦E i

(Q,b)(x, y).
We also have the relation

(
D(Q,b)(X, Y, Z)

)
(ω, v) = w.

At the point (X, Y, Z) in the inertial frame, let E1 and
E2 be two vectors (in the inertial frame) that are tangent to
the image plane at the point, and let the vector M be normal
to the image plane. Let the vector w have the representation
(w1, w2, w3) in the frame (E1, E2,M). Now:

w1i = (ω × ri + v) · E1 (12)
w2i = (ω × ri + v) · E2, (13)

where ri ∈ IR3 is the vector from the center of mass of
the aircraft to the center of the ith image plane. Note that
(w1, w2)i is a linear deterministic function of (ω, v). We
then split the directional derivative;

dIi

dt
=

[
D(Q,b)Ii(x, y, t)

]
(ω, v) +

∂Ii

∂t
(14)

= (Wi(Q, b, x, y)) (ω, v) +
∂Ii

∂t
(15)

=
(
D(X,Y,Z)Ii

)
w +

∂Ii

∂t
(Chain Rule)

=
(
D(x,y)Ii

) · (w1, w2)i + ε(x, y, t),

where ε(x, y, t) is the component of the change in the image
intensity due to motion normal to the image plane and
changes in ambient light.

The problem that we need to solve can be simply stated.
Given an observed change in image intensity δIi(x, y, t) in
time δt, we have:

δIi

δt
=

(
D(x,y)Ii

) · (w1, w2)i + ε(x, y, t) (16)

and compute the best approximation (ŵ1, ŵ2)i to (w1, w2)i

that minimizes∥∥∥∥
δIi

δt
− (

D(x,y)Ii

) · (w1, w2)i

∥∥∥∥
L2(U)

, where “best approx-

imation” means the minimization is performed in the least
squares sense. The normal equation for this problem is:

[ ∫∫
U

(
DT

(x,y)Ii

) (
D(x,y)Ii

)
dxdy

]
(w1, w2)i =

∫∫
U

(
DT

(x,y)Ii

)
δIi

δt (x, y, t) dxdy +
∫∫

U

(
DT

(x,y)Ii

)
ε(x, y, t) dxdy.

(17)

Note here that if N = 3 and the left hand side of equation
(17) has rank two for each i, then we have a well-posed
problem for (ω, v). In other words, if Ii(Q, b, t) is a plane



in IR3, then max rank Wi = 2. Then we would need three
planes pointing in mutually orthogonal directions. However,
it is not necessary to require this rank condition for all t,
but only for almost every t. It is also necessary to make a
few additional assumptions:
• Ii ∈ H1(U) for almost every t; i.e., Ii has a square-

integrable derivative.
• There does not exist G 6= e ∈ SE(2) 3 Ii(G(x, y)) =

Ii(x, y, t) for almost every t. This says that the aper-
ture problem is allowed to occur over a set of measure
zero in time.

• σt =
∫∫

U

WT (x, y)ε(x, y, t) dxdy is a white noise

process.
• The camera’s frame rate is strictly greater than its max-

imum angular velocity. Otherwise, it is not possible
to avoid the aperture problem for strictly rotational
motion of the UAV.

After (ω, v) is computed in this manner, they are then
used as an input to the non-linear observer described by
Aghannan and Rouchon [3].

C. Implementation

It is clear that for the success of the method in the
previous subsection, we need to be able to compute the
map Wi(x, y) = D(x,y)Ii and it must yield the change in
the intensity at the point (x, y) on the image plane, when an
actual motion (ω, v) happens. For this to happen, the images
at the neighboring pixels must be produced by independent
pinholes.

In Figure 1a, we have a pinhole camera. Clearly, both
the near and distant object will produce the same image
on the image plane. Figure 1b shows a similar situation
with a pinhole camera that has undergone a small motion
to the right. One should note here that even though the
shifted image plane is drawn slightly below the original
image plane, the pinhole camera has not moved down, only
to the right. We can easily see that the near object has
produced an image that moves much more than does the
image from the distant object in the image plane. Because
of this, one cannot determine how far the camera has moved
to the right, or how fast it did so, without knowing the depth
of the objects. A similar conclusion was arrived by Polat
and Pachter in their investigation of INS aiding using a
camera [28].

Now let’s consider a multiple pinhole camera as shown in
Figure 1c. Each pinhole is now responsible for producing
an image on a much smaller section of the image plane,
resulting in a narrower field of vision. Again, both the near
and distant object create the same image on the image plane.
We now consider Figure 1d. In this figure we show the
camera and object from Figure 1c with a small displacement
to the right. After the motion, both objects again produce the
same image on the image plane, but more importantly the
light producing these images is now passing through camera
holes 1 and 2, not 2 and 3. One can now see that having

a multiple pinhole camera allows each individual pinhole
to have a narrow field of vision, aiding in the computation
of motion without any knowledge of depth. The camera
shown in Figures 1c and 1d is similar to the compound
eye structure [20], [27] observed in insects and crustaceans.
Both apposition and superposition type compound eyes have
this property. For example, consider Figure 2 and Figure 3
taken from [32]. Figure 2 shows an illustration of a simple
apposition eye and how each simple eye accepts light from
a narrow field of vision. Light that does not come from a
nearly straight on angle will be absorbed. Figure 3 shows
the compound eyes of a common fly.

(a) Pinhole camera (b) Pinhole camera with
motion

(c) Multiple pinhole cam-
era

(d) Multiple pinhole cam-
era with motion

Fig. 1. Comparison of Pinhole and Multiple-Hole Cameras

IV. CONCLUSION

Existing methods for the computation of motion use the
pinhole camera model and result in the formulation of two
ill-posed problems. In this paper, we have described an Op-
tical Navigation Scheme ONS that reduces the computation
of the angular and linear velocities of a UAV to a linear least
squares problem for each instant of time. Our formulation
naturally uses a filtering idea for the computed velocities,
that allows us to relax some of the conditions on the image
functions. We plan to test this theory in the near future
experimentally and compare the results with those obtained
from an INS.
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