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Abstract

In this paper, we present a low-dimensional, energy-based model for ferromagnetic hysteresis. Itis
based on the postulates of Jiles and Atherton for modeling hysteresis losses. As a state space model,
the system is a set of two state equations, with the time-derivative of the average applied magnetic
field H as the input, and the average magnetic fielérd the average magnetizatidhas state
variables. We show analytically that for a class of time-periodic inputs and initial condition at the
origin, the solution trajectory converges to a periodic orbit. This models an observed experimental
phenomenon.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

In recent years, there has been a great deal of interest in the area of smart structures
largely due to the availability of materials that show giant magnetostrictive, piezoelectric
and thermo-elastic responses. This opens up the possibility of building aircraft wings, ro-
torcraft blades, air inlets and engine nozzles with embedded smart actuators and sensors, so
that they can sense environmental or flow-regime changes and respond by changing their
structure to optimize performance. The above applications are based on novel materials that
show electro—magneto—-thermo-visco—elasto—plastic constitutive relationships resulting in
complex, rate-dependent hysteretic responses. Thus, modeling and control of their behavior
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is a challenge. We are interested in obtaining low dimensional models for magnetostrictive
actuators that show a constitutive coupling in their elastic and magnetic behaviors.

There is a large literature on the modeling of rate-independent hysteresis using the
Preisach formalisrfiL7,5,25], with applications to the modeling of magnetic recording me-
dia[9]. There are also extensions of the basic Preisach formalism to include rate-dependent
hysteresis in some of this literature. In contrast to such non-local memory based models,
here we are interested in local-memory models of hysteretic behavior that would permit
representation in the form of low dimensional dynamical systems.

In this paper, we study a low-dimensional model for thin ferromagnetic rods that is based
in thermodynamics. This model is based on the work of Jiles and Atherton [04AHere
we systematically derive the model equations starting from energy balance considerations
and the postulates of Jiles and Atherton. We also prove analytically that for a class of
periodic inputs that are continuous in time, the unique solution to this strongly non-linear
model converges to a periodic orbit. Such orbits represent hysteresis loops. The period of
the asymptotic oscillation is the same as that of the input.

After the original J-A model was introduced in 1983], its features including the
use of few physically related material parameters and computational efficiency attracted
the attention of many researchers. Extensions to model magnetostrictive hysteresis were
made by Sablik and Jilg20], and to a vector ferromagnetic hysteresis model was made by
Bergqvist[3]. Jiles himself generalized the model to include minor loop excurdib?ls
Chiampi, Chiarabaglio and Repef& used the model along with a fixed point technique to
compute the magnetic field and magnetic flux density in a hollow cylinder and validated the
results with the analytical solution. A comparison of the J-A and the Preisach models was
made by Philips et a[19]. A more recent comparison of the Preisach and J-A models was
undertaken by Benabou et §]. Deang[8] used the J-A model to study the dynamics of
an inductor circuit with a ferromagnetic core and validated the results with experiment. The
idea of the J-A model that hysteresis is caused by hindrances to domain-wall motion was
used to obtain models for ferroelectric, piezoelectric and ferroelastic materials by Smith
and Hom[22], Smith and Ounaie@3], and Massad and Smifh6].

2. Bulk ferromagnetic hysteresis theory

In this section, we develop the equations that constitute a model for bulk ferromagnetism
i.e. we consider the magnetization to be volume averaged. We first start by discussing
Langevin's model of paramagnetism. Next, we discuss the modification of this model by
Weiss to explain lossless ferromagnetism. Finally we discuss Jiles and Atherton’s postu-
lates regarding hysteresis losses in a lossy ferromagnetic material and show how these
postulates together with energy-balance principles yield equations for a model for bulk
ferromagnetism.

Consider a collection dfl atomic magnetic moments of magnituskeand suppose that
they do not interact with each other, and are free to point in any direction. Further suppose
that an external magnetic field of magnitudds applied to this group of free moments.

For such a sample, Langevin showed using Boltzmann'’s statistics that the average magnetic
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moment of the sample in the direction of the magnetic field is givefi8yr]
Mpara= M Z(z1), (1)

where (z1)=coth z1—1/z; is called the Langevin function, and;4 Nm is the maximum
value of the average magnetization when all the moments are aligned togétiuygren by
mH
= -, 2
a= (2
whereT is the absolute temperature akis Boltzmann'’s constant. The functiafi(-) has
the following properties:

1. Z(-) is a strictly increasing function with-1 < #(z) <0 for z <0; £ (0) = 0; and
0< Z%(z) <1forz>0;
2. A very important property regarding the derivative®f-) is

A 0¥ 1
max a—Z(Z) = 0) = 3 3
3. Forz <1, the Langevin function may be expanded as
3
Z Z
3(z)—§—4—5+~~

Thus for small values adfwe can neglect terms higher than the first one in the above equation
and we have

M N Nm?
para’\' 3kT

The above relation is the well-known Curie Law explaining the Igependence of the
susceptibility of a paramagnetic substance on the temperature. Though Langevin’s result fit
the experimental observations for paramagnetic materials well, it grossly overestimated the
magnetic field value required to saturate ferromagnetic materials. Weiss reasoned that the
atomic magnetic moments in a ferromagnetic substance interact strongly with one another
and tend to align themselves parallel to each other. The interaction is such as to correspond
to an applied field of the order of magnitude of°#)ym for iron [7]. The effect of an
externally applied field is merely to change the direction of the spontaneous magnetization.
The effect of the interaction of the neighbouring magnetic moments was modeled by Weiss
as an additional magnetic field experienced by each moment. Weiss called this additional
magnetic fieldhe molecular field. By Weiss's postulate, the atomic moments experience an
additional field of magnitudeMa,, in the direction of the magnetic field, wheb&,,, is the
average magnetic moment of the sample in the direction of the field. The suffix ‘an’ stands
for anhystereti@nd the reason for this will be seen in a moment.

Repeating the calculations as the paramagnetic case, W# get

Man(z) = Ms £ (2) = M (Cothz - %) (4)
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Fig. 1. Geometry of ferromagnetic rods considered.

zin the above equation is given by

_ m(H + aMarD
= T’ (5)

whereo is the molecular-field parameter. The magnetic fieldt-FH:Ma, is the effective
magnetic fieldn the body. Rewriting the above equation, we get

Man:'i—f- (6)

Then the magnetizatioM,, is given by the simultaneous solution of Egs. (4) and (6) for

a given value oH. The ferromagnetic solid considered was lossless, and hence the same
curve in the(H, M)-plane is traced during both the increasing and decreasing branches for
a periodicH (Fig. 3). This curve is called the “anhysteretic” curve.

In 1983, Jiles and Athertofl3] proposed a model for bulk ferromagnetic hysteresis.
Their aim was to try and reproduce the b&kH curves observed in ferromagnetic rods or
toroids. The theory was based on a modification of the Weiss molecular field model in which
the changes in magnetization due to the motion of domain walls under an applied field were
accounted for. In effect, they postulate an expression for the dissipation of energy during
domain wall motion. This quantity is a troublesome quantity to calculate from first principles
because of the diversity of phenomena that contribute to it and from practical considerations
having to do with estimating the number of defects in a particular ferromagnet, etc. The
contribution of Jiles and Atherton is to postulate a simple expression to account for the losses.
This expression is very similar to the energy losses due to kinetic friction in that it says that
the losses associated with magnetization changes for a magnetic body is proportional to the
rate of change of magnetization.

Consider a ferromagnetic material that is in the shape of a thin toroid or rod (see
Fig. 1). An external source is assumed to produce a uniform magnetidfialdng the
axis of the body as ifrig. 1. This fieldH is purely due to the external source (for example,

a field generated by a current through a coil connected to a battery) and is not the effective
magnetic field in the body. Suppose that the magnetization per unit volume, along the axis
of the rod is denoted by/. H andM are scalar quantities denoting the magnitude of the

magnetic field and magnetization per unit volume, along the axis of the specimen. A change
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in the fieldH brings about a corresponding change in the magnetization of the body in ac-
cordance with Maxwell's laws of electromagnetism. The work done by the external source
0What, is equal to the change in the internal energy of the matéWalagand losses in the
magnetization procesd. mag

Brown [26] derives the work done by the battery in changing the magnetization per unit
volume fromM1 to M>. In our case, working with the average quantititandM we get
the work done per unit volume to be

M

OWhpat= / UoH dM,
M

where 1 is the magnetic permeability of free space. This is the same as Chikazumi’s

expressiorf7]. We consider one “cycle” of the magnetization process as the change in the

external magnetic field during atime intery@l 7] so thatH (0)=H (T) andM (0)=M (T).

This is clearly possible for adealferromagnetic material (as the one considered by Weiss)

where the magnetization and magnetic field quantities are related through Eqs. (4)—(5). For

other ferromagnetic materials, we will show later that it is indeed possible for this to happen.

The work done by the battery during oogcleof the magnetization process is:

Woat = § ot At ®)

The relationship between the above energy expression and the usual expression of the work
done can be derived easily.

5Wbat=?€,u0HdM=f,u0HdM+?§,u0HdH=¢HdB,

whereB is themagnetic flux densiglong the axis in the ferromagnetic body, and is related to
HandM by B=po(H +M). The above expression is not very useful for our purposes. Below,
we obtain another equivalent expression for the work done by the battefy & dH

and¢ oM dM are loop integrals of exact differentials and hence equal to zero, we have

%,uOHsz—%,uOMdH=—¢u0MdH—ocy§,qudM=—7€Mng, 9)

where the constantcan take any value amB, = ugH, = po(H + oM).
Eq. (9) is of interest because, in Weiss’s molecular field theory for ideal ferromagnetic
rods (no losses) = M,y is a function ofB, with o > 0 the molecular field parameter. For
an ideal ferromagnetic rod{an is given by Eq. (4), so tha¥lan= M, ¥ (B./a). Using Eq.
(9), we obtain the expression foiWmag from the ideal case:

5Wmag = — % Man dBe (10)

Thus for an ideal ferromagneiWyat is equal to zero as we would expect it to be. Hence
if H is a periodic function of time, then the same curve is traced for both the increasing
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Fig. 2. Phenomenological modeling of hysteresis in ferromagnets.

and decreasing branches in {t#, M)-plane (Fig.3). This curve is called the anhysteretic
curve. One can think of this curve as the characteristic of an ideal ferromagnetic sample
with no losses. In the following, we will call the value &f on the anhysteretic curve
corresponding to a given value dfas theanhysteretic magnetizatiaorresponding td.

A typical ferromagnetic rod however, has losses. Tragnetization curver theM vs
H characteristic for a typical ferromagnetic toroidal/thin rod sample is as shotwig.ir2.
Depending on whether the energy dissipated due to hysteresis is large or small, Bozorth
[4] and Chikazum({7] classify different parts of the magnetization curve as irreversible
or reversible. For example iRig. 2, the hysteresis loops in regions | and Ill tend to be
smaller in area enclosed than the loops in region Il. Bozorth classifies the three regions by
identifying them with the following processes:

1. Reversible rotation of atomic magnetic moments(Region I);
2. Irreversible boundary displacement of domain walls in the rod (Region II);
3. Reversible boundary displacement of domain walls in the rod (Region Ill).

For adiscussion of domain formation in the micromagnetic theory of magnetism please refer
to Aharoni[1]. A quantitative model for hysteresis was proposed by Jiles and Atherton in
1983 along the lines of Chikazumi and Bozorth, with some significant differences however.
For instance, they consid® to be comprised of an irreversible compona#t, and a
reversible componeri#,q, so that:

M = Mrev + Mirr . (11)
This is in contrast to Chikazumi who consid§r

dm _ dMrev dMir
dH =~ dH dH
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Next, Jiles and Atherton assumvey is related to the anhysteretic or ideal magnetization
by

Myey = c(Man — Mir), (12)

where O< ¢ < 1 is a parameter that depends on the material 21, we haveM = M.

They hypothesize that the energy loss due to the magnetization is only giye.td/e now
consider one cycle of the magnetization process as the change in the external magnetic field
during atimeintervdl0, T'] so thatH (0)=H (T'), Myey(0) = M;ey(T) andMi, (0)= My (T).

At this point we will assume that this is possible and we will show later in Section 3 that
this is indeed possible. Then Jiles and Atherton postulate that in one cycle the loss due to
hysteresis is

5Lmag=¢k5(1—c) dMirr. (13)

In the above equatiolk,is a non-negative parameter, ahi defined as
d=sign(H). (14)

One can notice that far=0, or c=1 we have) Lmag=0. Jiles and Atherton further postulate
that: If the actual magnetization is less than the anhysteretic value and the magnetic field

strength H is loweredthen until the value of M becomes equal to the anhysteretic value
Map, the change in magnetization is reversible.

That is,

dMirr _ 0 if {H <0 and Man(H,) — M(H) >0, 15)

dH H>0 and Man(H.,) — M(H) <O0.

As will be seen later, Egs. (11)—(15) result in a model for magnetization that is numerically
well-conditioned for periodic inputs. Without Eq. (15), the incremental susceptibility at the
reversal points 8if /dH can become negative. This can be checked by numerical simulations.
Ferromagnetic materials are characterized by a positive incremental suscegdhility
fact, it is this feature that distinguishes paramagnetic and ferromagnetic materials from
diamagnetic materials (that have negative incremental susceptibility).

By Egs. (11) and (12) we get

M=(1—C)Mirr +CMan. (16)
Using the notation of Jiles and Atherton, let

0: H <0 andMan(H,) — M(H) >0,

Sy =1{0:H>0andMan(H,) — M(H) <0, (17)
1: otherwise.
Then by (15) and (16),
am dm; dam.
— =0y(l—c) L 20 (18)

dH dH dH
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From Egs. (7)—(10) and (13), we obtain the following energy balance equation for one cycle
of the magnetization process:

f <Man —M—ké(L—c) d(j‘g"

) dB, =0. (29)

e

The above equation is valid for a cycle of the magnetization process as described earlier.
We now make thénypothesighat the following equation is valid over any part of the
magnetization cycle:

f2 d1Wirr dBe
Man— M — 1-— = 2
/tl ( an ké( C) dBe ) dr dr 0, ( O)

wherery, t2 € [0, T] with 2 > 71. We can see that Eq. (20) implies Eq. (19), but not vice
versa. If we keep in mind that we are working with a full magnetization cycle, we can
continue to work with Eq. (20). As Eq. (20) is valid for any #; € [0, T'], the integrand
must be zero:

d]Wirr

Using Egs. (18) and (21) we get after some formal manipulations that
ko dMan .
dm M—OC aH + o (Man— M)
dH ~ ko (22)
— — o (Man— M)
Ho

Settingk =0 yieldsd y (Man— M) 4 = _W.As mentioned before, ferromagnetic
materials show positive incremental susceptibility, thatds/dH > 0. As o > 0, for the
above equation to make sense for all value§pfwe must have

Man — M = O or M == Man. (23)

Settinge=1in Eq. (22) and using Eqg. (18) we get (23) (one can also directly use Eq. (21) to
see this). Thug =0 orc =1 represent the lossless case. On the other hamtiif M =0,
then for (21) we must have= 0 orc¢ = 1. Hence for the ferromagnetic hysteresis model,

c=1 or k=0 < M= Man (24)

Rewriting Eg. (22) so that we havé/},/dH, in the numerator on the right-hand side we
get

d_M - o c dH, + om (Man — 5
dH = ko k6 dMan

—_— — 5M(Man— M)OC — —oc

Ho fo  dH.

This equation is different from the one obtained by Jiles and Athditdhdue to some
apparent discrepancies in their derivations. We henceforth refer to it astthéerromag-
netic hysteresis modsb as not to confuse it with the model[i¥] that is popularly known
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Fig. 3.M vs H relationship for an ideal and a lossy ferromagnet.

as J-A model. A main difference between the two is that for the J-A model, skt

does notyield M = My, For the sake of completeness we write down the other equations
satisfied by the system:

H
Man(H,) = M, (coth(—e) — i) , (26)
a H,
H,=H + oM, (27)
o = signH), (28)
0:H<O0 and Man(H,) — M(H) >0,
5M:{0:H>O and Man(H,) — M(H) <0, (29)
1: otherwise.

Egs. (25)—(29) constitute the bulk ferromagnetic hysteresis model of this paper. There are 5
non-negative parameters in this model namely, M;, c, k. Also O< ¢ < 1. Fig. 3shows

the values taken by the discrete variabde®,, at different sections of a representative
hysteresis curve in thgd, M)-plane.

Remarks. 1. Note that in Eqg. (26), the effective field is given by Eq. (27) and not by
H, = H + aMan, as for the ideal case.

2. The bulk ferromagnetic hysteresis modetdte-independenin the following sense.
Suppose thap : [0, T] — [0, T] is an monotone-increasing function wigh0) = 0 and
¢(T) = T. Then¢ can be considered to be a time reparametrization. Hé&r8 can be
considered to be the parameter that is changed by external means (an input) so that the
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system takes the form:

H=u, (30a)
. dm
M = d—HM, (30b)

with dM /dH given by Eq. (25). Suppose tha¢-) is a continuous function during a time
interval[0, T], T > 0, andH () andM (-) are the solutions of Egs. (30a)—(30b). If the time
axis is transformed according ththen it is easy to see that the new solutions are simply
H o ¢(-) andM o ¢(-). Thus the graph on thgd, M)-plane remains the same even if there

is a time reparametrization. This property of the bulk ferromagnetic hysteresis model we
call rate-independence.

3. Qualitative analysis of the model

The model (25)-(29) was derived by extracting a local law from the balance equation
associatedto loopsintti&/, M) plane. Forthe model to be of value to an engineer interested
in capturing the behavior of a rod of ferromagnetic material in computer simulations (as for
instance practised {i6,19] with power applications in mind), it is necessary to demonstrate
that it admits well-defined solutions. This is addressed in the existence and uniqueness
theory below. Additionally we show that for a range of parameter values and a large class
of periodic input signals, the model predicts convergence from the zero state( i the)
plane to a periodic solution of the type observed in experiments. These are among the main
contributions of this paper.

First we prove an important property. Define state variabhles; H, xo = M. Define

A X1+ 0x2
{=—.
a

(31)

Denote? (z)=coth(z) —1/zandd.# /dz(z) =—cosecR(z)+1/z%. Then the state equations
are:

1=u, (32a)

X2 = g(x1, X2, X3, Xa), (32b)
where

x3 = sign(u), (33a)

1
0:x3<0 and cotmz)————2>0,
z

1
0:x3>0 and cotliz) — - — ~2 <0, (33b)
z M

N

X4 =

1: otherwise,
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and

kxg cM, .Y
TR (@) xaM (fl’(z) - ﬁ)

_ Ho 4@ M
g(x1, x2, x3, X4) = ia > Tt M. 07 (34)
— —xqM; | L) — — |a— —u — (@)
Ho M; Ho a0z

The system (32a)—(34) has two continuous statesind xy. u(-) is the input.xz andx4

are discrete variables that are functionsc@f x2, u and timer. Thereforexz andx, are

not discrete states. As the functignon the right-hand side of Eq. (32b) dependsxan
andx, it is not continuous as a function of time. Therefore, the notion of solution to the
system (32a)—(34) is in the sense of Carathéodory (see Appendix). A Carathéodory solution
(x1, x2) (1) to (32a)—(34) fott defined on a real intervéd| satisfies (32a)—(34) for alle 1

except on a set of Lebesgue measure zero, consisting of points where the right-hand side
of (32b) is discontinuous. Note thatifs) = 0 at those timeswhereg(-) is discontinuous,

then one might consider applying the standard existence and uniqueness theorem for ODE’s
[15]. However we encounter a serious difficulty in the application of this theorem as we
have to show that a Lipschitz inequality holds for the vector-field in a compact region that
includes the origin in time and th@f, M) plane. Hence we use the notion of Carathéodory
solution to Eqs. (32a)—(34), as it allows to show existence and extension of solutions first
before considering uniqueness.

Theorem 3.1. Consider the system of equatio(®2a)—(34).Let the initial condition
(x1, x2)(t = 0) = (x14, x2,) be on the anhysteretic curve:

X1y + X2,
ZO = —1
a
1
X2y = M (coth(zO) — —) . (35)
20
Let the parameters satisfy
M;
s, (36a)
3a
O<c<1, (36b)
k> 0. (36¢)

Letu(-) be a continuous function ofwith u(0) =0andu(z) > Ofor ¢ € (0, b), whereb > 0
and let(x1(¢), x2(¢)) denote the solution ¢82a)—(34)Then(M; ¥ (z(t)) —x2(t)) > 0 Vt €
(0, b). If u(r) <0Oforr € [0, b) whereb > 0,then(M,; % (z(t)) — x2(t)) <0Vt € (0, b).

Proof. We make a change of co-ordinaigzdrom (x1, x2) to (z, y), where

X1+ ox2
Zz—l
a

y=M;ZL(z) — x2.
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Denotew = (z, y) andx = (x1, x2). The domain of definition of the transformatign:
x > w is R?. The Jacobian of the transform is given by

1 o

Yl ude ool
o | B X -

a 0z 0z

The determinant oy /0x is
det<%> - vew
Ox a

The results on existence, extension and uniqueness of solutions to the state equations in the
transformed space carry over to the equations in the original state space. Denpte w).
The initial conditions in the transformed co-ordinates are

X1y + 0X2
wo = (20, yo) = (%, 0> .

The state equations in termswfare:

14 93
= f(t, w)é< +ag(z’y’x3’x4)>u, (37a)
a
1k
_ a Ho
" kxs kx3cM; 0% u, (37b)
— —alxgy + — —(2)
Ho Mo a 0z
. M; 0% oM, 0L _
y=ftw)E | ———@) + | ——() — 1) &y, x3 xa) ) u, (38a)
a 0z a 0Oz
M; kx3(1—c¢) 0%
e ,u—oa_z(z) — X4y
- kx3 kxz3cMg 0% i (38b)
— —alxgy+ — —(2)
Ko a 0z
where
x3 = Sign(u), (39a)
0:x3<0 and y=>0,
x4:{01x3>0 and y <0, (39b)
1: otherwise,
where
kxzcM; 0%
,u_3 p : E(Z) + x4y
8z, y, X3, xa) = kx3 ° kx3 ¢cM;0% (40)
— — xayo— ——a———(2)

Ho Ho a 0z
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Let (r,z,y) € D = (—01,b) x (—00,00) x (—é1, A]foM + ¢1), wheredq, ¢1 are
sufficiently small positive numbers.

As u(t) is only defined for >0, we need to extend the domainugf) to (—d1, 0). This
can be easily accomplished by definin@) = 0 forr € (—91, 0). Then f1(z, w), f2(z, w)
exist onD which can be seen as follows.

1. In the time interval—d1, 0], u(r) = 0 by definition. Thereforaz = 0 by (39a) and
x4 =1Dby (39b). This implies thai(z, y, 0, 1) = —1/a is well-defined orD. Therefore
f1(t, w) and f>(z, w) are also well defined.

2. Inthe time interval0, b), u(r) > 0. Thereforexs = 1. Hence

k cMg 63’
_ o ,Llo a
8y, Lxa)=— k M, 0L
— — X4y — —0 — @)
0 0 0z

We have to ensure théis well definedv(z, y) € (—o0, 00) x (— 8175 MC=0 4 &y).

(@) x4 =0implies

8y, 1,00 =7——7 M, 07

By (36a) and (36b), the denominator®fs always positive/(z, y) € (—oo, 00) x
(—e1, - M99 + ¢1). Hencef1(, w) and f2(:, w) are well-defined.

(b) x4= 1 |mpI|es

k cM;0%
,U_ a—(z)+y
- _ 0
gy, L= kK M, 0%
— —yo— —u —(2)
Ho Ho a0z

By (36a), the denominator @f is always positivé/(z, y) € (—o0, 00) x (—é1, #LO
M9 1 gy) if we chooses; small enough. Hencgy (¢, w) and fo(r, w) are well-
defined. O

Existence of a solution. We first show existence of a solutiarn=a0. To prove existence,
we show thatf (-, -) satisfies Carathéodory’s conditions.

1. We have already seen thét:, -) is well defined onD. We now check whethefy (¢, w)
and f>(¢, w) are continuous functions af for all € (—01, b).

(@) Fort € (—01,0], f1(r, w), f2(¢t, w) are both zero and hence trivially continuous
inw.
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(b) Atz > 0, x3 = 1. To check whethelf1(r, w), f2(z, w) are continuous with respect
to w, we only need to check whethgy(-) is continuous as a function af.

k ¢cM;0%
— —(2) + xay
Uo a Oz

In the above expression, the only term that could possibly be discontinuous as a
function ofw is

h(u))éx4y.
By (39b), if y>0,x4 =1 and ify <0, x4 = 0 (becausas = 1). Therefore

lim h(w)= lim h(w)=0.
y—>0+ y—0—
Hence,f (-, -) satisfies Carathéodory’s first condition foe (—d1, b).
2. Next, we need to check whether the functiof, w) is measurable ihfor eachw.

(@) Fort € (—d1, 0], u(r) = 0. Therefore for eachw, f (-, w) is a continuous function
of timet trivially.

(b) Forz > 0,u(t) > 0. This implies by (39a) that; = 1. Hence for eachw, x4 is also
fixed. Therefore for eactn

fit, w) = Ky(w)u(t),
fa(t, w) = Ko(w)u(t),

whereK1(-), K2(-) are functions ofv, implying thatf (¢, w) is a continuous function
of tasu(-) is a continuous function af
Hence,f (-, -) satisfies Carathéodory’s second conditiontfer (—d1, b).
3. For eachr € (—01, b), g(-) is continuous as a function of. The denominator of(-)
is bounded both above and below. The lower bound on the denominaton @i D is

k M,
A:-(l—OC )—ael (41)
Mo 3a

as0.%/0z(z) S% (see (3)). Thus for allz, y) € (—o0, 00) x (—é1, %% +&1) we
have,

|g(t >|<1 M
, W — —— .
g A ,UO 3(1 L

Thusg(-, -) is uniformly bounded inD. By (37a) and (38a)f (-, -) is also uniformly
bounded inD. Hencef (-, -) satisfies Carathéodory’s third condition for w) € D.

Hence by the Existence Theorem 6.1, faf, wo) = (0, (0, 0)), there exists a solution
through(zg, wo).
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Extension of the solutioWe now extend the solution throudhy, wo), so that it is

defined for alls € [0, b).). According to the Extension Theorem 6.2, the solution can be
extended until it reaches the boundaryinfAs f (z, (z, y)) is definedvz, we only need to
ensure thap (r) does not reach the boundary of the Get, %&;” + &1]. We show this

by proving that regardless of y(-) satisfies & y(¢) < %&;Q vVt € [0, b). This implies
that the solution can be extended to the boundary of thettinterval.

1.

We know thaty (0) = 0. We will show thaty(¢) >0 Vz € (0, ). Asy(0,)>0,3b1>0
> y(t) >0Vr € (0, by). If this were not true then we could form a sequence of time
instants;, — 0, with 7, > 0 3 y(#) <0 for k sufficiently large. Then

y ()

t — J—
) =y _ 0,
=0 t—0 7—0 tk

which contradictsy(04) > 0.

Let b1 denote the maximal time instant such thét) > 0Vr € (O, b1). Supposeé1 < b.
Theny(b1) = 0 by continuity ofy(-). At t = b1, x3 = 1 by (39a) andc4 = 1 by (39b).
Therefore,

1_ocM56$
N P e 029 emyow
by = 7_(Z) cM; 0% a 0z
l-ua — ()
a 0Oz

=@ | u(by).

By (36a)—(36b) and (3),

- M aa;f(m
1 oM aj <L (42)
By (42)
M, 0
$(b1) > (——(z) < iﬂ(z))u(bn,
M, 0

= 7_(z)(l —u(b1) >0 by (36b).

Therefore for some > 0 sufficiently small (withe < b1),

y(b1 — &) = y(b1) — &9(b1) + 0(c?)
=0—&y(b1) +0(?) <0,

which is a contradiction of the fact thatr) > 0 V¢ € (0, b1).
Hencey(t) >0Vt € (0, b).

. We now verify thaty (1) <k/poM;(1 — c)/3a.

Asu(t) >0 fort € (0, D), x3(t) = 1 by (39a). We proved that(z) > 0 forr € (0, b)
implying thatx4(z) = 1. By expanding the right-hand sides of (37a) and (38a) wgth 1
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andxg = 1, we get

1k

N a o
‘=7 koM, o (43)

— —ay— —a——(2)

Ho o a 0z

k (1—c)M; 0%

o o 07
Y= v Moz "0 (44)

— -y — —o (2)

Ho Mo a 0z

All possible relative maximum values of-) (£ yr’;ax) occur fort =t € (0, b) such
thaty(z) = 0. Denote the corresponding valueszdfy z’;max. By (44) and (3), we have
for these values af,,

¢ _kl-o M ¥, _kd-o) M,

= ’ < . 45
Ymax 1o a 07 ymax 1o 34 ( )

Therefore the solution can be extended in time to the boundd, 6§. In the course of
continuing the solutions, we also proved thak, £ (z(r)) — x2(t)) > 0Vr € (0, b).
Uniqueness. Asi(t) >0 for 1 >0, x3=1. As y>0 fort>0, x4 =1 for t > 0. We
concentrate on this case below.zAt 0, x4 = 0 and the Lipschitz constants obtained in the
following analysis can again be used to show uniqueness.
UsingA defined by (41), we can obtain a lower bound for the denominatgi @f w).
With wy = (z1, y1) andwz = (z2, y2), we have

1k

apg ( k acMg |0Z 0.
[f1(7, w1)— f1(7, w2)| < % <— ——(z1)———(z2) +O<|y1—y2|> u(r).
Uy @ 0z 0z
(46)
As 0.7 /0z(z) is a smooth function aof, 3 a non-negative constaft > [15]
0¥ 0¥
E(Zl) - E(ZZ) <Klz1—z2| Vz1, 22 € (—00, 00).
Hence
1k
k ocM;
[f1(r, w1) — f1(t, w2)| < aA_l;o <— —— Klz1 —z2| + ofy1 — yzl) u(t)
Ho @
1k
k coM
<2 /;0 (_C ~K +°<> lwi — walu(). (47)
A%\ o



R.V. lyer, P.S. Krishnaprasad / Nonlinear Analysis 61 (2005) 1447 -1482 1463

Now

k\?>(1— )M, |02 0.
| fo(t, w1) — fal(t, wz)lé% ((—) a-oM a—z(m) - a—z(zz)

Ho a

0¥

k oM, 0¥
y1—=—(22) — y2 —(z21)
0z 0z

k
+—y1—y2l +—
Ho Ho

)

(48)

a

We can rewrite the last term with
0 0 0¥ 0 0y
i—=(z2) —y2 —(@1) =y1| =— (@2) — — (1) | + (1 — y2) —(21).
0z 0z 0z 0z 0z
Then Inequality (48) becomes

k(1 - )M, k
| f2(t, w1) — falt, wz)l<&2) (<—> % K|z1 — z2| + ,u_|)’1 — a2l
0

A Ho
ly1 — yzl)) .

As |y1| <kl —¢)/pg Mg /3a + e1 andd.Z /0z(z1) g% forall (¢, z1, y1) € D,
[ f2(t, w1) — fa(t, w2)|

2. _
<%[<(£) 1 c)MXK+£ocMSK<k(l C)%-H?l)) o

k oM, 0¥
+— [v1lKlz1 — z2| + | =—(z1)
Uy a 0z

Ho a Mo a fo 3a

k oM
+— |1+ —— ) Iy1—y2l
Ho 3a

MO K[k A=OM, a0 My oMy
A% o Lpo  a a po 3a a
oM,
+1+ 3 lwy — wal|. (49)
a

By (47) and (49)
I1f(r, w) — f(r, w2)l| < Bllwy — wallu(r), (50)

whereB is some positive constant. Hence there exists atmost one solutibhyimheorem
6.3.

For inputsu(-) with u(z) <0 forr € (0, b), the same proof can be repeated to arrive at
the conclusion thatM, £ (z(t)) — x2(t)) <0Vt € (0, b).

This completes the proof of Theorem 3.11]

The following corollary continues the ideas contained in Theorem 3.1.
Corollary 3.1. Considerthe system of equatiqBga)—(34)Letthe initial condition(x1, x2)

(t =0) = (x1, x2,) be on the anhysteretic cur¢gee(35)). Suppose the parameters satisfy
(36a)—(360)If u(t) >¢>0forr € (0, b) then asb — oo, x2(t) — M.
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Proof. We again perform a change of co-ordinateg x2) — (z, y). By (37a)

_ 1+ 2@y, x3.x0)
y :

z(1)

As in the proof of Theorem 3.3 = 1 andx4 = 1 for all r € (O, b).With D defined as in
the proof of Theorem 3.1, one can again repeat the arguments made earlier, to show that
g(z,v,1,1)>0forall(z, y) € D. One can then make the conclusion that:

20> Tuy > £, (51)
a a

whereg(z, v, x3, x4) is given by (40) ands, x4 are defined by (39a) and (39b), respectively.
Inequality (51) shows that-) — oo asb — oo. Hence itis sufficient to study the behavior
of y as a function ot. Using Egs. (43) and (44), we can obtain a differential equation for
the evolution ofy as a function of:

1kdy k(1-c)M;03%

S B _ET O T ). 52
y+a Up dz Uod 0z @ (52)

The initial condition for the above differential equationyi = zg) = 0. Define
Ak(l—c)M; 0%

U(Z):TE(Z).

Clearlyv(z) > 0 Vz. Employing Laplace transforms, we have

V(s)
k 1
—s+1
ally
where the Laplace transform ofz), y(z) are denoted ag (s) andY (s), respectively¥ (s)
exists for alls € C because by definition of the Laplace transform

Y(s)=

V(s):f v(z) exp(—zs) dz,
0

andv(z) is an integrable function of. By the Final-value theorem for Laplace transforms
[21], liM;— 00 ¥(2) =liMms_0sY (5).

Therefore
. . %
lim y(z) =lim &
7—>00 s— k
—s+1
ally

Now (by another application of the Final-value theorem for Laplace transforms)
lim sV(s) = lim v(z)
s—0 7—>00

_ im -0 dZ (53)
700 Ho dz

Hence, lim_« y(z) =0.
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We conclude thato(r) — My ast — oco. [

There are some additional remarks that one can make from the proof of the corollary.
Firstly, convergence of(-) to zero is faster for smaller values of the rdtja ;. Secondly,
critical points ofy(-) are obtained by setting(zer) = 0. Thus critical values of(-) must
satisfy:

k(1= )M, 0.
Uoa 0z

y(ter) = (2)-

At r =0, y >0 and soy(-) is increasing function initially. A8 — oo, by Corollary 3.1 we
have,y — 0. In order to understand the behaviorygf) at its critical points, we need to
computey at the critical points. However, ddnvolves the input signal and its derivatives,
it is more instructive to study4d /dz2 at the critical pointgcs = z(tcr). Note that at = r¢;,
dy/dz = 0 by Eq. (52). Using Eqg. (52) we get

2 2
TRAy =M OM BT 0 i ze>0. and >0 if g <0,
a o dZ Hoa dZZ
Therefore the critical pointsannotbe maxima ifze; < 0. We also have the condition that
z > 0. So if the initial condition satisfieg(0) = 0 andzg > O (that is, the initial condition
is on the anhysteretic curve in the first quadrant of the x2) plane), then there can be
atmost one maximum for(-). If the initial condition satisfies(0) = 0 andzg < O (that is,
the initial condition is on the anhysteretic curve in the third quadrant ofithexs) plane),
then there cannot be any maxima far) until the solution trajectory stays in the third
quadrant. The above statements have to be appropriately changed if the input satisfies
instead ofu > 0.

Next, we show a simple consequence of Theorem 3.1, that if the initial condition is on
the positivex; axis withu(z) > 0 then we still have existence and uniqueness of solutions,
and the conclusions of Corollary 3.1 also hold. This result is used in part two of this paper
while analyzing the well-posedness of the magnetostriction model.

Corollary 3.2. Consider the system of equatiq88a)—(34) Suppose that the initial condi-
tionis (x1, x2) (r =0) = (x14, 0) wherexy,, > 0, and that the parameters satig86a)—(36c).
Then the following hold:

e letthe inputu(-) be a continuous function of t with(z) > Ofor ¢t € (—¢, b), whereb > 0
ande > 0 be a sufficiently small positive number. (et (), x2(r)) denote the solution
of (32a)—(34).Theny () = (M, ZL(z(t)) — x2(t)) >0Vt € [0, b). Else ifu(t) <0 for
t € (—e, b) whereb > 0, theny(t) = (M % (z(t)) — x2(t)) <0Vt € [0, b).

o ifu(t)>¢e>0forr € (0,b) thenash — oo, x2(t) = M.

Proof. We can choose the domaih as in Theorem 3.1 in order to show the existence
and uniqueness of the solution. Proceeding exactly as in Theorem 3.1, we obtain the
first assertion. Similarly, proceeding exactly as in Corollary 3.1 we obtain the second
assertion. [
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A (D)

0,0) >

tu®=-ub-1
(0.0 i -

Fig. 4. Sample signals(-) andu1(-).

Next, suppose that an inpugr) > 0 fort € [0, b) has been applied to system (32a)—(34)
with initial condition as in Theorem 3.1. Let

x0 = (x14, X25) = t|l_f;f}7 (x1, x2)(1). (54)

xg is well-defined because of the Extension Theorem 6.2. Define the set

0E | xo, (55)

1€(0,b)

wherex (+) is the solution of (32a)—(34). We now ask the following question: if the input to
the system is reversed, then do we reach the origin (that was our starting point). The answer
is no, as we shall show below. For this purpose, definek&get)

u(b) = |imbu(t), (56)
r—
ur(t) = —u(b—1) forr e [0,b]. (57)

Let the initial condition bexg as defined in (54). In the next theorem, we show that there
exists atime O< by < b such thatro (by) = M, & (L2200 |y other words, the solution
trajectory intersects with the anhysteretic curve in thg x2)-plane at timeb1 <b. The

proof also shows that the solution obtained after reversing the input does not belong to the
original solution set/;.

Theorem 3.2. Consider the system of equati¢B2a)—(34)Let theinitial condition(x1, x2)
(t=0)=(x14, x2,) Where(x1,, x2,) is defined by54).Let the parameters satisfg6a)—(36c).
Letu(r) anduy(r) be defined bys6)—(57).If u1(¢) is the input to the syste(B2a)—(34for
t € [0, b], then3 by > O such thaiby < b andxp(by) = M, ¥ (A1btee(by,)
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Proof. This proof of existence of a solution mimics that of Theorem 3.1, but we include it
for completeness. However, extension of solutions and uniqueness have to be re-done.
As before, we make a change of co-ordinates fiam x2) to (z, y) where
X1+ ox2

Z:—,
a

y=M;ZL(z) — x2.

The Jacobian of this transform is non-singwdl, x2) € R? and hence the results on
existence, extension and uniqueness of solutions to the state equations in the transformed
space are applicable to the equations in the original state space. The state equations
f(t,w) interms ofw = (z, y) are given by (37a)—(39b), withy (-) as the input function
instead ofu(-) in Egs. (43) and (44). The initial conditions in the transformed co-ordinates
are

X1, + 0x
wo = (20, Yo) = (10720’ M Z(z0) — xzo> .
Let
k Mg(1
D = (=01, b+ 61) x (=00, OO)><< ¥+81>,
—— — h\/—/ a

fo 3
y

t Z

whered, ¢1 are sufficiently small positive numbers.

We have to re-defing1(-) so that it is well-defined over its domair-o1, b + 91). This
can be easily accomplished by defining(r) = 0 forr € (—01,0) U (b, b + 61). Then
f1(t, w), fa(z, w) exist onD which can be seen as follows.

1. Inthetimeinterval—o1, 0)U(b, b+01),u1(t)=0 by definition. Therefores=0 by (39a)
andx4 =1 by (39b). This implies thai(z, y, 0, 1)=—y/y. Definingg(z, 0,0, 1)=—1
makesz(z, y, 0, 1) continuous as a function of This also makegi (s, w) and f2(z, w)
well defined.

2. Inthe time intervalO, b], u1(t) < 0. Thereforexs = —1. Hence

k cM; 0¥
— X4y
g(z,y, =1, x4) = ,uo a_ O
gle yy a4 k k cM;0%
— +xgyo— —o — ()
0 0 0z

We have to ensure thats well defined¥(z, y) € (oo, 00) x (0, 4 " M9 y).

(@) x4 =0implies

k cMg 0%
— — @)
Ho a Oz

8y, -1L0=7——"1— 357

Mo Mo a 0z

(2)
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By (3), (36a) and (36b), the denominatogad$ always positivé/(z, y) € (—oo, 00) x
(O, %%) Hencefi(t, w) and fa(z, w) are well-defined.
(b) x4 =1 implies

k ¢cMg 0%
t a a_z(Z) -y
@y ~Lb=7 o n KM 3T
w0 Ho a 0u(2)
Again, by (3), (36a) and (36b), the denominatorgof always positivey(z, y) €
(—00, 00) x (O, %W + ¢1). Hencefi(z, w) and fa(z, w) are well-defined.

Existence of a solution. We first show existence of a solution=a0. As in Theorem 3.1,
to prove existence, we show thAt-, -) satisfies Carathéodory’s conditions.

1. We have already seen thét:, -) is well defined onD. We now check whethefy (¢, w)
and f>(z, w) are continuous functions af for all r € (=01, b + 01).

(@) Fort € (—01,0) U (b, b + 01), f1(t, w), f2(t, w) are both zero and hence trivially
continuous inw.

(b) Atr € [0, b], x3 = —1. To check whetherf1(z, w), f2(¢, w) are continuous with
respect tav, we only need to check whethgs(-) is continuous as a function af,
where the subscrigtdenotes the fact that thievariable is being held fixed.

k cM;0%

o a2 (z) — xay
- _ _ 0
gt(wv 1a-x4)— k k CMS ag .
— + x4y0 — —o —(2)
0 a az

In the above expression, the only term that could possibly be discontinuous as a
function ofw is

h(w)=xay.
By (39b), if y<0,x4 =1 and ify > 0, x4 = 0 (becausas = —1). Therefore

lim & = |lim h =0.
y—0+ (w) y—>0— (w)

Hence,f (-, -) satisfies Carathéodory’s first condition foe (—d1, b + 01).
2. Next, we need to check whether the functio@, w) is measurable ibfor eachw.

(@) Fort € (—01,0) U (b, b + 01), u1(¢r) = 0. Therefore for eachw, f(-, w) is a
continuous function of timeétrivially.

(b) Forz € [0, b], u1(t) < 0. This implies by (39a) that; = —1. Hence for eachw, x4
is also fixed. Therefore for eaah

S1t, w) = Li(w)uq(1),
Sfa(t, w) = La(w)uy (1),
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whereL1(-), L2(-) are only functions ofv. This implies thatf (z, w) is a continuous
function oft.
Hence,f (-, -) satisfies Carathéodory’s second conditiontfar (—d1, b + d1).
3. For each € (—01, b + 01), g(-) is continuous as a function af. The denominator of
g(+) is bounded both above and below. The lower boung@nin D is

A=k (1— C“M‘> :
Ho 3a

Forall(z, y) € (—o0, 00) x (0, %W +1); 0.2/0(z) < 3 implying

_ 1/ k M
g, W< — | — 5= ) sup [|ui(®)l.
A\ 3a ) c—s.p)
Thusg(-, -) is uniformly bounded inD. By (37a) and (38a)f (-, -) is also uniformly
bounded inD. Hencef (-, -) satisfies Carathéodory’s third condition for w) € D.

Hence by the Existence Theorem 6.1, {ay, wo) = (0, (zo0, yo), there exists a solution
through(zo, wo)).

Extension of the solutiofMe now extend the solution throudly, wo), so that it is
defined for allr € [0, b + 01)). According to the Extension Theorem 6.2, the solution can
be extended until it reaches the boundaryofit obviously cannot reach the boundary of
D in thez variable. We show that the solution reaches the boundabyinfthey variable.

As y(0) > 0 (owing to the choice of (0) as explained before the statement of this theorem
and the conclusion of Theorem 3.1), there exists a tim@® such thay(r) > 0V ¢ € [0, 7).
Suppose such adoes not exist. Then we can choose a sequgnee 04 with y(#) <0
for k large enough, implying that(0) <0 (by continuity of(z, y)(-) atz = 0) which is a
contradiction. Define

b1 = supfr|y(r) >0 andt < b}. (58)

Now one of two cases is possible:
e b1 <b. Thisimplies that at = b1, y(b1) = 0. If this is not true and (1) > 0, then we
can choose > 0 sufficiently small such that(b1 + ¢) > 0 contradicting (58).
e by = b. We show that this is not possible.
If b1 = b then clearly the solution can be extende@). As the map) : (x1, x2) —

(z, y) is a diffeomorphism, we consider the behavior of the solution in terms of the
variablesx = (x1, x2) for simplicity of analysis. Define the séb as

Oy = U x(1).

te(0,b)

Then we can make the following observations.

1. Attimer =»b
x1(t=b) =0. (59)
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t=b —*

Fig. 5. Figure for the proof of Theorem 3.2.

This is because, the differential equation feris x1(¢) = u1(¢). Asu1(t) = —u(t — b)
we reach the starting condition for Theorem 3.1 at timeb (which wasx; = 0).

2. The slopes of the curve® and @5 in the (x1, x2)-plane are always positive (refer to
Fig. 5). The proof is as follows. By (32a)—(34)

k M, 0%
ki E(Z) + x4 M (g(z) - ﬁ)

dxo Ug @ M

—(x) = ‘ . (60)
k k M, 0%

dxy kxs o, (g(z)_xi)a_ﬂf_s_(z)
Ho Ms a aZ

where.# (z)=coth(z)—1/zandd.# /9z(z)=—cosecR(z)+1/z2. We have the following
cases to consider:

(a) Forx € (1, except the point0, 0), we havexz =1 andxg = 1.

By (36a) the denominator is positive (proved in Theorem 3.1 and by (58)). The first
part of the numerator of the right-hand side of (60), is non-negstvé&he second

part of the numerator is also positive as shown in Theorem 3.1. Thysld (x) > 0

forx e 01,

(b) Forx € O, we havexs=—1 andxs =0. In this case, we first cancel a factor-ef
between the numerator and the denominator. We showed the resulting denominator
to be positive while considering the existence of the solution. The resultant numerator
is always positive. With this, we conclude that@ddx1(x) > 0 for x € 05.

Hence

dxo
d—n(x) > O

for x belonging to the solution sets, and>.
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. Forallx € (4,

cMy 83() k cM; 6$()+M g()_xz
oz Lo 3z © g Y7 M,

M, 0% = M, '
1-a 0 By, (g(z)— —x2>oc— K oycMs 02
a 0z Ho M Uo 0z

s a

The first inequality is due to the assertion of the previous item. The second inequality
is because the denominator is smaller and the numerator is larger in magnitude for the
ratio on the right-hand side. Now the ratio in the middle is filx1(x) for x € O,

while the ratio on the right-hand side isg/dx1(x) for x € (1.

. The point(x1,, x2,) belongs to botl®; and 0.
. The projection of both the sef& and > on thex; axis is the sef0, x1,]. This is a

consequence of (32a) and the definition of the ingut

Items 2-5 imply that the curvé; lies above the curvé; in the (x1, x2)-plane except
at the point(xy,, x2,) (seeFig. 5). ltem 1 then implies that the cur¢e intersects with
the anhysteretic curve = 0 in the first quadrant of théx1, x2)-plane. This means that
there exists a timéo < b such thaty(r = b2) = 0 andy(¢) <0 for ¢ € (b2, b]. Hence
the hypothesis that; = b is not possible.

Thus we have shown that0 < b1 < b such thaty(b1) = 0.

Uniqueness. The state equations for the time intdfyai; ] are:

1k
o a Ko
e e (%)
Bo Mo a Oz
M, k(L—¢) 0%
7 Ho E(Z)
V0 == koo (61b)

We now show that the solution of (61a) and (61b) foe [0, b1]) is unique. Denote
z= f1(t,w) andy = fo(¢t, w) where f1(¢z, w) and fo(¢, w) are defined by the right-hand
sides of (61a) and (61b), respectively.Asr) < O0fort >0,x3=—1.Asy > Ofort € [0, b1],
xa = 0. With w1 = (z1, y1) andwy = (z2, y2), we have

k
1y ( k acMg |3% 07
| fat, wp) — fu(t, wo)l <= L9 (—“C @)~ (22) ) i)l (62)
a A \yy a 0z 0z

As 0% /0z(z) is a smooth function of, 3 a non-negative constaktsuch thaf{15]

oz <1 Oz 22

<Kl|z1 — 22|
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so that
k

k M
[ f1(t, w1) — fa(z, w2)|< 'uo 2 g <

; SK |lwy — walllug(0)]. (63)

Now

21 07
| falt wa) — Folt, wa)l <22 (E) A=, |0 5G|l (o)l

A2 a 6
Therefore
fatt, w0~ fott, wpl <) ( . ) Q=M s — walluao.
By the above inequality and (63)
If @ w1 — f(t, w2) || < Bllwy — wafl[ua(0)], (64)

whereB is some positive constant. Hence there exists atmost one solutibbyimTheorem
6.3. This concludes the proof of Theorem 3.2

We now study the system described by Equations (32a)—(34), together with the input
given by

u(r) = U cos@t). (65)

Next, we prove the existence of a periodic orbit to which the solution to the system of Eqs.
(32a)—(34) withu as in (65) converges. Using Theorems 3.1 and 3.2 we show that:

1. Starting from(x1, x2)=(0, 0), x2(¢) increases for € [0, n/2w] and satisfies,(r) < M,
Z(z(1)). This implies that when is considered as a function of during this time
interval, x» lies below the anhysteretic curve in the first quadrant of(ihexy) plane.

2. Fort € [n/2w, 3n/2w], the solution first intersects the anhysteretic curve in the first
quadrant of thex;, x2) plane at a time; such thatr/2m < ] < m/w. After this time,
x2(t) > My % (z(t)). An important fact to be shown is tha(37/2w) > — x2(7t/2w).

3. Fort € [3n/2w, 51/2w], the solution intersects the anhysteretic curve in the third
quadrant of th&x1, x2) plane provided the ratib/a g is small enough. Furthermore, if
the time is; when this intersection takes place, then we show thatf(r}) > — x2(1])
using existence and uniqueness of solutions and the factAt®t/2w) > — x2(m/2w).

4. Fort € [5n/2w, Tn/2w], we show that the solution intersects the anhysteretic curve in
the first quadrant of théxs, x2) plane at a time3. An important fact that we prove is
that O< — x2(15) < x2(13) < x2(1]).

5. By repeating the analysis in the previous steps, we show that the solution trajectory of
the system intersects with the anhysteretic curve in the first quadrant@fithe) plane
during the intervals

|:(2n +1Dn (2n+ 3)n:|

20 2w
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wheren € N. Furthermore these intersection points satisfy:
0< — xa(t3) < x2(13,,3) <x2(13,,1) <x2(t7); neN.

Thus we have a monotonically decreasing sequence of positive numbers that lies in the
compact sef—x2(13), x2(t;)]. Thus there exists a limit;_ to this sequence that lies in
the same compact set.

This shows that th& limit set is a periodic orbit in théx1, x2)-plane. Sincers and x4
depend orx1, x2, we conclude that the system of Eqgs. (32a)—(34) wi#ts in (65) and the
origin as initial condition, have asymptotically periodic solutions.

3.1. Analysis of the model fore [0, 57/2w]

Lemma 3.1. Consider the system described by E@2a)—(34)with the input given by
(65), and (x1(0), x2(0)) = (0, 0). Suppose the parameters satisfy conditi(@&a)—(36c).

In the time intervalO, /2], there exists a unique solution and it satisfies the condition
lx2()] < M.

Proof. Choosingh = n/2w, we apply Theorem 3.1 as the initial condition is on the anhys-
teretic curve andi(-) > 0 in the time interval0, 7/2w). The conclusion of Theorem 3.1
implies thatxa(¢) < M Vt € [0, /2w]. O

By the Extension Theorem 6.2, the solution trajectory reaches the boundary of the rect-
angleD (see Theorem 3.1 for the definition B) in the time variable. Hence

T Y
x (%) = (x1, x2) (5) (66)
£ Iir/T21 (x1, x2)(r) is well-defined. (67)
1—mn/2m—

Lemma 3.2. Consider the system described by E(gR2a)—(34)with the input given by
(65),and(x1(0), x2(0)) = (0, 0). Suppose the parameters satisfy conditi(B8&a)—(36¢)In
the time interva[r /2w, 31/2w], there exists a unique solution and it satisfies the condition
lx2()] < M.

Furthermore,x (3n/2w) lies in the third quadrant in théxy, x2) plane.

Proof. Lett2r — /2w ande2t. Defineuy(t) = U cosr + n/2) for t € [0, n/2w], and
u(e) = U cose) for ¢ € [0, m/2w]. If the inputu(7) is applied to the system (32a)—(33b)
with initial conditionx (t = 0) = x(t = n/2w) wherex (t = n/2w) is given by (67), then the
conditions of Theorem 3.2 are satisfied (wiita) taking the place af (¢)). This implies that
there exists < t* < /20 such thatea(t = t*) = M, ¥ ((LE=TT220=T0) i e define
ti"ér* + n/2w, then the intersection with the anhysteretic curve takes place-af (see
Fig. 6).

Let 2t — /2w —tf. Now defineu (1) = U cos@(u+15) +n/2), for u € [0, m/m —t5].
Then with initial condition ak (u=0) =x(t=t{), the conditions of Theorem 3.1 is satisfied.
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A
x(m) =7 20

w -
Upper bound o L7 PP
2f 7

7 Lower bound

Fig. 6. Figure for the proof of Lemma 3.2.

The conclusions of Theorem 3.1 imply thai(r) < M, Vt € [n/2w, 3n/2w]. Again by the
extension theorem,

3 3
X <[ = 22;) = (xl,xz) (22:)) (68)
£ lim (x1, x2)(p) is well-defined. (69)
U= (m/w—t)—

For the last part of the lemma, refer Fag. 6. In the figure, the dashed line denotes the
anhysteretic curve satisfying = M; % (z). The solution trajectory for the time interval
[0, £3] is shown by a solid curve. The solution curve fOr¢;] has been multiplied by-1
and shown with a dash—dot line. This curve can be obtained by applying the-inputto
the system with the same initial conditiong at 0.

Our analysis after Corollary 3.1 shows thdt) cannot have any minima during the time
interval [}, m/w] (remember that here sign(x(35 —1 and so our analysis after Corollary
3.1 has to be re-interpreted for this case). Next, noteih@at/w) < xo2(n/2w) because
X2(t) < 0 during the intervaln/2w, /). Further, we must have 0 x2(n/w), because
by the last statement of Theorem 3.1 we haye/w) < 0. As x1(n/w) = 0, we can have
x2(m/w) = 0 only if (x1, x2)(/w) lies on the anhysteretic curve which would then imply
y(n/w) =0.

Let us now compare the solution trajectar§) during the intervaln/w, 3n/2w] with
the solution trajector¥(-) with input —u(-) during the interval0, =/2w]. This comparison
will lead us to the proof of the lemma. For the first case, lets re-define timeste-be- /.
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Then in both cases, the system is described by:

x1(0) = —U cos@o),
k cMy 0%
Ug a Oz

@)=y

U cos@o),

wheres=t for the second case. Thus the two solutions satisfy the same differential equations
albeit with different initial conditions. The initial condition for the first casejiéc =0)=0
andx;(c=0)=x2(t=n/w) > 0; while the initial condition for the second cas&jgc=0)=0
andx,(o = 0) = 0. Therefore, we must have (¢) = X1(¢) andxz(c) > x2(0) forall o €

[0, m/2w]. Otherwise, there will be an intersection of the two trajectories which cannot
happen by the existence and uniqueness of solutions to the above differential equations
that we proved earlier in Theorem 3.1. This analysis showswhab > x2(c) for all ¢ €

[0, w/2w]. This implies that

x1(0) + ax2(0)

y(0) = My % (2) — x2(0) <y(0) =Ms$< p

) —x2(0) <0.

We need to show thab (t = 37/2w) < 0 in order to conclude the proof of this lemma. We
show this by comparingxg/dx; for the two cases discussed above. In both cases, we have

k cMyd&

d — ——(z(0)) — y(9)
X2 U a dz

d—(U) =
x1

N

k cM;d? ’
— +ay(o) — —o ——(z(0))
U U a dz

0 0

We have already shown thato) < (o) < 0. This implies that @, /dx1(¢) > dx2/dx1(0).

(2(=2)-(=3))- O0-7(= )

Now,X2(1=7/2w)=—x2(t=mn/2w) and by our earlier analysis;(t=7/®) < x2(t=7/2w).
Therefore, combining these inequalities, we must have= 3r/2w) <0. 0O

The last conclusion of Lemma 3.2 is needed for proving the next lemmg(3f/2w) is
not less than Othen the solution of the next time inter@r /2w, 57/2w] could intersect
the anhysteretic curve in the first quadrant instead of the third quadrant@mthe) plane
(seeFig. 6). Note that in the next lemma, we have an additional condition on the parameters
(namely,k/aug being small enough) that we have not seen earlier.

Lemma 3.3. Consider the system described by E@2a)—(34)with input given by(65),
and (x1(0), x2(0)) = (0, 0). Suppose the parameters satisfy E@&a)—(36¢)If the ratio
k/apg is small enoughthen in the time interval3r/2w, 5n/2w], there exists a unique
solution and it satisfies the conditig ()| < M;.
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Furthermore,if

5 5
X (t = %) = (x1, x2) (%) (70)
= t_)éin%w_(ﬂ, x2)(1), (71)

then,x1(57/2w) = x1(w/2w) while x2(57/2w) < x2(1/2w).

Proof. Lett2¢ — 3n/2mande=t —t5. Defineus(t) = U cost +3n/2) for T € [0, n/wl,
andu(e) = U cose) for ¢ € [0, 3n/2w — tf]. If the inputu1(7) is applied to the system
(32a)—(33b) with initial condition: (t = 0) = x(t = 3n/2w) wherex(t = 3n/2w) is given

by (69), then the conditions of Theorem 3.2 are satisfied (with taking the place of
u(1)). Theorem 3.2 then implies that there existg 8" < 3n/2w — ¢ such thatxo(t =

) = M, (AU=TT2(=10) Define ;2% + 31/20 (seeFig. 6). We would like this
intersection of the solution trajectory with the anhysteretic curve to take place in the third
quadrant of thgx1, x2) plane. For this, consider the quantity,ddxi(t) for 0 <7 < t*
(during this intervalxs(t) = 1 andx4(t) = 0):

LM O ooy
%(r)— Uy a dz o
=k k oM,
o m KK M AE o

By making the ratic /a g small enough, we can make#/dx1(t) as close to zero as we
please. This combined with the fact thai37/2®) < 0 from Lemma 3.2 implies that we
can make(xy, x2)(¢3) lie in the third quadrant of théxy, x2) plane. Next, we claim that:

0> x2(13) > — x2(17).

We can prove our claim by comparing the solution for the system with ibpes @?)
during the interval3r/2w, 5] with the solution for the system with inputU cosr)
during the intervalr/2w, t;]. In these two cases, the differential equation satisfied by
the systems is the same whilst the initial conditions are different. In the first case, the
initial condition isx(3n/2w) = (—U/w, x2(3n/2w)) while in the second case, the initial
condition isx(n/2mw) = (—U/w, —x2(n/2w)). By existence and uniqueness of solutions
proved earlier in Theorem 3.2 the two solutions cannot intersect. This and the fact that
x(3n/2w) > — x(7/2w) then imply our claim (se€ig. 6).

Let u2r — t5. Defineu(pu) = U cos@u), for u € [0, 5n/w — £5]. Then with initial
condition atx(u = 0) = x(t = t5), the conditions of Theorem 3.1 is satisfied. Then the
conclusions of Theorem 3.1 imply thiab(¢)| < M Vt € [3n/2w, 51/2w]. O

3.2. Proof of limiting periodic behavior of the model for sinusoidal inputs
Using the Lemmas 3.1-3.3 we can prove the main result of this paper.

Theorem 3.3. Consider the system given by E(&2a)—(34)with input given by Eq(65).
Suppose tha36a)—(36c)re satisfied and the ratib/a i is small enough.
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If (x1, x2)(0) = (0, 0), then there exists a unique solution to the systemd, furthermore
|x2(2)| < MVt >0.Thus the solution trajectory lies in the compact rediei/ / w, U /w] x
[—M,, M]inthe(x1, x2)-plane. Furthermorethe Q-limit set of this trajectory is a periodic
orbit of period2z/w.

Proof. By Lemmas 3.1-3.3, we have shown that ff: 1y is small enough, then

5
()| <M, Vi€ [o, —} .
2w

Let us consider the solution during the time interj¢dl 57/2w]. By using the same tech-
nigues used in the proofs of Lemmas 3.2 and 3.3, we can show the following:

e the variabley(r) does not have any critical points during the interivéll 2r/w];

e during the interval2r/w, 57/2w], the variablex,(r) is bounded above hy» () the
solution of the same differential equation for the time intef@lt/2w] with initial
condition at the origin. It is also bounded below the solution to the same differential
equation with input-U cost) for the interval[r/w, 37/2w], with initial condition
at the origin (se&ig. 6for an illustration);

e by the previous item, we have

3n 5n ( i )
— X2l — ) <x2| — ) <x2({—);
2\ 20 2\ 20 2\ 20
o if we now consider the solution to the differential equation during the time interval

[57/2w, T/2w] we see that the solution must intersect with the anhysteretic curve at a
time 3 such that O< r§ < 3n/w. Furthermore, the point of intersection must satisfy

0< — x2(15) < x2(13) < x2(17);

e continuing the solution further from the time-¢3 tor =7n/2w we see that by Theorem
3.1 we must havexo (1) < M.

Proceeding in this manner and considering time intem@g}lﬂ, (2”;0)3)“], and[(znzf’)”,

%], respectively fom =0, 1,2, ..., we can show existence and the uniqueness of
solution and the fact that»(r)| < M, (one can also use the principle of induction to prove
this formally). If we focus on the solutions during the time interjaf&;-oz | 2131 e

@ 20
obtain a sequendez(r5,  1); n € N} that satisfies:
0< — x2(t3) < x2(15,,3) <x2(15,,1) <x2(t7); n € N.

Thus we have a monotonically decreasing sequence of positive numbers that lies in the
compact sef—xz(t3), x2(¢7)]. Thus there exists a limit_ to this sequence that lies in the
same compact set.

Next consider the sequence in a slightly different manner.0Letwz, with 0 + 2n
identified with0. Then the non-autonomous system given by Egs. (32a)—(34) with input
given by (65), can be transformed into an autonomous one with the auxiliary equation,
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0 = w. Define the set:
{(xl, x)|x=< <w> andxy, xZ>0} .
a

Givenx = (x1,x2) € .4, solve Egs. (32a)—(34) with initial condition(0) = x and
mputu(r) = U cos@t + d)) with ¢ chosen so that;(¢) achieves its maximum values for
= @FLn. ;€ N. Let7, > 0 denotes the smallest time such that the solution trajectory
mtersects the anhysteretic curve in the first quadrant ofther,) plane (that this happens
if k/aug is small enough is shown just as in Lemmas 3.1-3.3).
Define the mapb : .# — ./ by defining®(x) = x(71). The map® is a Poincaré map.
Then, the sequende(z;,_,): k € N} obtained above is just,

X)) = Px(th_1)) = D*(x(1); ke N,
The limit point,

Xoo = (X1, x2,) = lim P (x ().
k— 00

We can show®(x) = xo0 by a contradiction argument. Létb1(x), ®2(x)) = P(x).
By our earlier analysis, we hav@s(x) <x2 . If P2(x0) <x2, ., then we must have
@’é(xoo) <D(xp,,) <x2,, Wherek € N. Thereforex,, cannot be a limit point and we have
proved our claim.

Thus a solution trajectory for system (32a)—(34) with initial conditi@f) = x., and
inputu(t) = U cost + ¢) with ¢ chosen so that; (1) achieves its maximum values for
=2 erl)”’ n € N, satisfiest(2nm) = xo forn e N.

Next, trivially we have

U
(< — V=0
w

so that the solution lies in the compact $etl//w, U/w] x [—M,, My] in the (x1, x2)-
plane.
This concludes the proof of Theorem 3.3.]

Theorems 3.1 and 3.2 are the two main theorems used in proving the above theorem. As
the bulk ferromagnetism model iate-independenfplease see the remarks at the end of
Section 2), itis not necessary for the input) to be co-sinusoidal for Theorems 3.1 and 3.2
to be valid. Therefore we can considerably strengthen the above theorem by enlarging the
class of inputs for which it is valid, without significant change in the proof. We now define
the class of inputs for which the theorem would be valid. Consider the seft functions
u(t) = U (t) cos((2t/w)t) whereU(t) > 0 is aT = 2n/w periodic function satisfying:

T

/u(r)dr:O

0

min / / u(t)drds = — max/ / u(t)drds.
te[0,T] te[0,T]

and
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The second condition above ensures that,Biryjx1(1) = —maxejo,r1x1(t) which was
used in Theorem 3.2. From the s&twe can obtain other periodic functions by means of
time re-parametrizations. For any continuous, piecewise monotone furicliefined on

[0, T], we can partitionO, 7] into sub-intervals by choosingf8 71 <---<1, =T, SO
thatf is strictly monotone on each sub-intervVal, #41]; k = 1---n — 1. Denote the set
of such partitions by? s; an element in the se?; by {14, ..., 7,}; and define a function
N : 2y — N by settingN (P) =n whereP = {11, ..., 7,}. The numbetV (P) is always
finite asf is a continuous, piecewise monotone function. One can define a partial ordering
relation < on this set as follows. FaPy, P, € 2.

P1< Py, ifandonlyif 1 € P1= 1 € Po.

One can construct a minimal partitia?s = {0 = 11,..., 17, = T} for any continuous,
piecewise monotone functidnsuch thatP, < P for every P € Z. It is that partition
for which f fails to be monotone on the intervdls, — ¢, 7441 + el;k=2,...,9 — 2 for
&> 0. For example, the minimal partition corresponding to the functiorosr) where
U > 0is{0, n/w, 2r/w}. For a continuous, piecewise monotone functfotet the minimal
partitionbeZ? r ={0=1yq, ..., vy =T} If Q={0=ys1,..., snpp =T} is any other
partition of [0, T'] then we can define monotone increasing functigng0, 7] — [0, T
with y(t;) =y(s;); i=1, ..., N(Pr). For example, one can defigigr) for 7 in the interval
[ti, ti41] to be

Si+1 — Si

v,b(r) =s5; + (T — 14). (72)

Ti+l — Ti
Denote the se¥ ; o of functions¥ : [0, T] — [0, T'] that satisfy (72). For each € Y,
one can define another functigg on [0, 7] by composing with i

go=/foy.

It is clear that the functiogo (-) is a continuous, piecewise monotone function defined on
[0, T] with minimal partitionQ. Finally, denote by% the set of all possible functions that
can be obtained from the sét by time re-parametrizations. We can strengthen Theorem
3.3 for input signals € % without any significant change in the proof.

Theorem 3.4. Consider the system given by E(@2a)—(34)Let the inputu(-) : R — R
belong to the se¥ defined above. Suppose that the parameters s&868)—(36chand the
ratio k/apyg is sufficiently small.

If (x1, x2)(0) = (0, 0), then theQ-limit set of this trajectory is a periodic orbit of period
T.

Proof. The proof is essentially same as that of Theorem 3[3.

Remarks.

1. If Theorem 3.1 is reproved for their set of equations, then by using the same method,
we can show that the limit set is a periodic orbit for the J-A model.
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2. The important difference between the bulk ferromagnetic hysteresis model of this paper
and the J-A moddlL4] is thatk = 0 does notepresent the lossless case for the latter.

3. It is very important to note that the model does not show the property of minor-loop
closure. This implies that for inputs that do not vary between the same maximum and
minimum values, the solution might not exist. The J-A model shows the same problem.
Jiles’s proposed fix to the J-A modgI2] can be used for the bulk ferromagnetic
hysteresis model also, but this approach is somewhat ad hoc and arbitrary.

4. Conclusion

In this paper, we derived a low-dimensional model for bulk ferromagnetic hysteresis
from energy-balance principles and the J-A postulates for hysteretic losses. We also showed
that for a large class of periodic inputs and initial condition at the origin (2Hienit set
of the solution is a periodic orbit in theH, M) plane provided the parameters satisfy
(36a)—(36¢) with the ratid/auy small enough. This shows that the model is numerically
well-conditioned for a large class of periodic inputs.
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Appendix

Below we collect basic results concerning existence and uniqueness of solutions to ODEs
with right-hand sides that are not continuous in time. The relevant theory can be found in
[11,10].

Carathéodory conditions: SuppoBeis an open set ilR" . Let f : D — R”, and let

1. the functionf (¢, x) be defined and continuous.ine R” for almost allz € R;
2. the functionf (¢, x) be measurable infor eachx;
3. on each compact setof D, | f (¢, x)| <my (1), where the functiom (¢) is integrable.

The equation: (1) = f (¢, x(¢)); x(to) = xo, Wherex(¢) is a scalar or a vecto(ip, xo) € D;
and the functiori satisfies the above conditions is calle@aathéodory equatiofL0]. We
say that — x(¢) is asolutionin the sense of Carathéodony(i) =x(to)+ft; f(s,x(s))ds
for (t,x(¢)) € D.
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Theorem 6.1 (Hale[11] Existence of solutions)lf D is an open set ifit"*! and f satisfies
the Carathéodory conditions on Ehen,for any (7, xo) in D, there is a solution of =
f (@, x), through(zo, xo).

Theorem 6.2(Hale [11] Extension of solutions to a maximal setf.D is an open set in
R"+1 f satisfies the Carathéodory conditions & and ¢ is a solution ofx = f(z, x)
on some intervalthen there is a continuation ap to a maximal interval of existence.
Furthermore|f (a, b) is a maximal interval of existence of= f (¢, x), thenx(¢) tends to
the boundary of D as — a andt — b.

Theorem 6.3(Hale [11] Uniqueness of solutions)f D is an open set ifi?"*2 f satisfies
the Carathéodory conditions ab, and for each compact set U D, there is an integrable
functionky (¢) such that

If@,x) = fa. DI<kvOllx —yll, (@, x)eU, @ y)eU.

Then for any(1p, xp) in U, there exists a unique solutiorz, 7o, xo) of the problem
x=f( x), x(to)=xo.

The domain E ifR"*2 of definition of the function (z, 1o, xo) is open andx (z, tg, xo) IS
continuous in E.
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