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Pontryagin’s Minimum Principle for simple mechanical systems on

Riemannian manifolds and Lie Groups

R. V. Iyer∗

Abstract

Pontryagin’s Minimum principle for optimal control had earlier been extended to non-linear

systems defined on manifolds by Sussmann [1], without any additional structure such as a

Riemannian metric. He pointed out that the adjoint equation can be described intrinsically

using a connection along the optimal trajectory. In this paper, we describe the computation

of the Hamiltonian vector field in a direct manner using the symplectic two-form defined on

local coordinates on T ∗TM adapted to the vertical and horizontal subspaces of TTM. This

symplectic two-form is non-canonical, and its meaning and computation is akin to the non-

canonical symplectic two-form on the Lie Algebra of a Lie Group. The equations turn out to

be the same as those obtained in our earlier work using a calculus of variations approach [2].

1 Introduction

In this paper, we consider optimal control problems for simple mechanical systems. Such systems

can be described as a vector field on the tangent bundle TM of a manifold M. There exists a

natural Riemannian metric on M that is compatible with the Kinetic Energy function. Using

parallel translation, one can define a frame (non-uniquely) on a co-ordinate chart of TM. The

problem then is to express Pontryagin’s Minimum Principle (PMP) in such frame co-ordinates.

The resulting equations prove to be very useful for numerical computation. In earlier work, we

obtained the first order necessary conditions using a calculus of variations approach [2]. There, we

also obtained an invariant for the problem, and in this paper, we demonstrate this invariant to be

the Hamiltonian function.
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For affine control systems on manifolds with additional structure such as affine connection

control systems with affine control, Lewis [3] described the geometry of the adjoint equation using

the horizontal and vertical lifts of the horizontal and vertical subspaces on T ∗TM that arise from

the geodesic spray or a second-order vector field on TM. Lewis then describes the Hamiltonian

vector field for such systems and a particular class of cost functions, using the cotangent lift of

the geodesic spray, and obtains what he terms the adjoint equation. In this work, the set in which

the input variables take values at an instant of time is considered to be state-dependent. Due to

this, the adjoint equation is not entirely complete as the state dependence of the input set should

introduce additional terms in the equations for the co-states [4]. We do not consider the input

bounds to be related to the states in this paper. As the controlled systems and cost functions in

this paper are more general than those in [3], we show how our equations for the co-states can

be specialized to obtain the adjoint Jacobi equation in Section 3.4. In other work, Jurdejevic [5]

and Krishnaprasad [6] have considered optimal control problems for left-invariant systems on Lie

Groups, with the input variables affecting the velocity vector field on the configuration space. Koon

and Marsden [7] study the problem of optimal control for nonholonomic systems with symmetry

while considering the derivative of the shape space variables to be the input.

We consider simple mechanical systems with forces and moments as inputs. Sussmann [1]

tackled the problem of generalizing the Pontryagin’s Minimum Principle to manifolds (without

any affine-connection structure), by developing the co-ordinate free Minimum principle. For com-

putational purposes, when this principle is applied to an air-vehicle problem, one employs local

co-ordinates and the equations reduce to the necessary conditions for an optimal control problem

in co-ordinates. Local co-ordinates might not be the best choice possible for the real-time compu-

tation of the optimal trajectory when one has an additional Lie Group structure. This is because

a suitable choice of co-ordinates depends on the initial and final conditions on the optimal con-

trol problem, which makes it unsuitable for real-time computation of optimal trajectories. If the

configuration space is a connected Lie Group G with Lie Algebra G, then one can represent any

point as a product of exponentials using the exponential map, exp : G → G. In general, this map is

not globally one-to-one or onto, but in the case of groups that semi-direct products of a connected

and compact group and a connected Abelian group, it is globally one-to-one and onto (except on a

set of measure zero). Such groups arise naturally in robotics and simple mechanical systems. The

first order necessary conditions yielded by the PMP can be numerically solved using the Modified

Simple Shooting method as demonstrated in [2] for an optimal control problem for the rigid body.



2 Mathematical Preliminaries

In this section, we discuss the notation employed and derive some basic formulae that will be used

in the next section. The mathematical notions are presented in a very concise manner, and only

those notions necessary for this paper are presented. A fuller picture can be seen in references such

as [8, 9, 10]. One result of this section that is the utility of choosing to parameterize the horizontal

and vertical bundles of T ∗TM, from the point of view of transformation of co-ordinates on the

intersection of charts. This transformation property is simpler than what one would have if one

chose to parameterize T ∗TM directly on coordinate charts. In this case, one is said to be using

coordinate frames. Another important purpose of this section is to express the natural symplectic

two-form on T ∗TM using coordinates on the horizontal and vertical bundles of T ∗TM.

A a manifold {M, {Uα; α ∈ I}} is separable Hausdorff space together with a collection of open

sets that cover it with the condition that ∅, M ∈ {Uα}, and that is locally homeomorphic to IRn.

Here, I is an index set. So given any q ∈ M with q ∈ U where U is an open neighborhood of M,

there is some homeomorphism ϕ : U → IRn. We will assume that n is a constant that does not

depend on q. The collection {Uα, ϕα} is called a set of coordinate charts for M, and they satisfy

the condition that ϕα ◦ ϕ−1
β : Uα ∩ Uβ → Uα ∩ Uβ is a homeomorphism. We will consider a C∞

manifold, where the map ϕα ◦ ϕ−1
β is a C∞ diffeomorphism.

Figure 1: Local Trivialization for a Vector Bundle.

A vector bundle {E, M, p, IRm, ψ, {gαβ; α, β ∈ I}} is collection of sets E, M ; a map p : E → M ;

a trivializing map ψ : p−1(U) → U × IRm that is fiber respecting in the sense that ψ(p−1(x)) =

{x} × IRm. Two vector bundle charts (Uα, ψα) and (Uβ, ψβ) satisfy the compatibility condition

(ψα ◦ ψ−1
β )(q, v) = (q, gαβ(x) v). The trivializing maps {ψα;α ∈ I} also have to satisfy a co-cycle

condition [9, 8]. By the proof of the vector bundle construction theorem [8], we can say that a

point on the vector bundle E is an equivalence class [q, α, v] where q ∈ Uα and v ∈ IRm - here,

two points (q, α, v) and (r, β, w) are considered equivalent if and only if q = r and w = gβα(q)v.



The fiber of the point q ∈ M given by Ep = p−1(q) is a vector space isomorphic to IRm with

a [q, α, v] + b[q, β, w] = [q, α, a v + b gαβ(q)w]. In the case of the tangent bundle E = TM, the map

gαβ is obtained from the coordinate maps ϕα, ϕβ according to: gαβ(q) = D(ϕα◦ϕ−1
β )(ϕβ(q)), where

D denotes the Frechét derivative. Coordinate chart maps for the vector bundle are obtained simply

as: Φα = (ϕα, Id) ◦ψ as shown in Figure 1. This describes the differential manifold structure of E.

For the tangent bundle, the map p is usually denoted by πM .

Figure 2: Tangent Bundle to a Vector Bundle has two compatible vector bundle structures.

The tangle bundle to a vector bundle described above is itself a vector bundle over TM as

well as over E as shown in Figure 2. A point in TE is an equivalence class {[q, α, v, ξ, w]}, where

q ∈ Uα, ξ ∈ IRn and v, w ∈ IRm, with two points (q, α, vα, ξα, wα) and (r, β, vβ, ξβ, wβ) considered

equivalent if and only if

q = r; vβ = gβα(q)vα; ξβ = hβα(q)ξα; and wβ = (D(gβα(q))ξα)vα + gβα(q)wα, (1)

where hβα(q) = D(ϕβ ◦ϕ−1
α )(ϕα(q)). The two vector bundle structures are compatible in the sense

that p ◦ πE = πM ◦ Tp, where πE and πM are both projection maps described earlier. This implies

that the fiber at a point q ∈ M in the vector bundle (TE,M, p ◦ πE , IRm × IRn × IRm) is identical

to the fiber in (TE, M, πM ◦ Tp, IRm × IRn × IRm) which leads to the same trivializing map and

chart compatibility condition.

Given a vector bundle (E, M, p, IRm) one can define the vertical bundle V E ⊂ TE to be null

space Null(Tp). As the map Tp : TE → TM is described in a local trivialization by Tp(q, v, ξ, w) =

(q, ξ), a point on the vertical bundle (in the same local trivialization) is given by (q, v, 0, w). After

checking the compatibility condition, it can be easily confirmed that (V E,E, πE , IRm) is a vector

bundle. A linear Ehresmann connection on the vector bundle (E, M, p, IRm) is a fiber-linear, vector

valued one form Φ that acts on vector-fields on M and yields sections in the vertical bundle

V E, such that Φ restricted to V E is the identity map and Image(Φ) = V E. Hence, in a local

trivialization, the linear connection is described by: Φ(q, v, ξ, w) = (q, v, 0, w + Γi
jk(q) ξj vk ei),



where {ei} is the basis for Tϕ(q)IRm and repeated indices are summed according to the Einstein

convention. Due to the fact that HE = Null(Φ) has a constant rank n, we have a decomposition

TE =Image(Φ) ⊕ Null(Φ) = V E⊕HE. Thus, in a local trivialization a point (q, v, ξ, w) ∈ TE can

be written as the sum of (q, v, 0, w +Γi
jk(x) ξj vk ei) ∈ V E and (q, v, ξ,−Γi

jk(x) ξj vk ei) ∈ HE. The

freeing map F : V E → E ×M E) given locally by (q, v, 0, w̄) 7→ ((q, v), (q, w̄)) and the projection

G = Tp
∣∣∣
HE

: HE → E ×M TM given locally by (q, v, ξ,−Γi
jk(q) ξj vk ei) 7→ ((q, v), (q, ξ)) are

natural. The vertical lift map vlft : E ×M E → V E given locally by ((q, v), (q, w̄)) 7→ (q, v, 0, w̄) is

the inverse of the map F and a right-inverse of the map Tp. Similarly, one can define the horizontal

lift hlft : E ×M TM → HE given locally by ((q, v), (q, ξ)) 7→ (q, v, ξ,−Γi
jk(q) ξj vk ei), that is the

inverse of G and another right inverse of Tp.

Next, we describe the Koszul connection on a fiber bundle (E,M, p). Let ℵ(M ; E) denote

the space of sections from the base manifold M to the total manifold E. If ζ ∈ ℵ(M ; E) and

X ∈ ℵ(M ; TM), then the Koszul connection is a map ∇ : ℵ(M ; E) ×M ℵ(M ; TM) → ℵ(M ; E)

given by ∇X(ζ) := π2F ◦ Φ ◦ Tζ(X). In words, it is directional derivative of ζ in the direction

X projected to V E using the Ehresmann connection; then onto E using the freeing map, and

finally onto the fiber. In a local trivialization we have: ∇(x,ξ)(q, v) = (q, (ξ(vi) + Γi
jk(q) ξj vk) ei).

It is easy to check that Koszul connection satisfies the properties: (i) ∇f Xζ = f ∇Xζ where f ∈
C∞(M ; IR); (ii) ∇X1+X2ζ = ∇X1ζ +∇X2ζ; (iii) ∇X(h ζ) = X(h) ζ + h∇Xζ where h ∈ C∞(E; IR);

(iv) ∇X(ζ1 + ζ2) = ∇Xζ1 +∇Xζ2, and it is thus a derivation.

For a vector bundle (E, M, p, IRm) the dual vector bundle (E∗,M, pdual, IRm∗) can be constructed

in a straight forward way so that E∗
x = p−1

dual(q) is the dual of Eq = p−1(q), where q ∈ M [8]. As in

the case of E, a point on E∗ is an equivalence class [q, α, µ] where q ∈ Uα and µ ∈ IRm∗. Denote the

inner-product between a vector and co-vector by in the chart (Uα, ϕα) by 〈·, ·〉. As the inner-product

should be the same in any chart, we need 〈µα, vα〉 = 〈µβ, vβ〉 = 〈µβ, gβαvα〉 = 〈gβαµβ, vα〉 implying

µα = gβαµβ. This yields the compatibility condition for the dual bundle. The above discussion works

for the tangent vector bundle, the vertical bundle, and the horizontal bundle (HE,E, πE , IRn),

and we get the dual bundles (T ∗E, E, πE,dual, IRn × IRm) and (V ∗E, E, πE,dual, IRm) and the dual

horizontal bundle (H∗E, E, πE,dual, IRn). By the isomorphism V E ≡ E×M E and HE ≡ E×M TM

discussed earlier, we have V ∗E ≡ E ×M E∗ and H∗E ≡ E ×M T ∗M.

Finally, we discuss vertical one-forms or sections of the vector bundle (V ∗E, E, π) [10]. Due

to the isomorphism V ∗E ≡ E ×M E∗, a vertical one-form (q, v, 0, p2) can be written in a local

trivialization simply as ((q, v), (q, p2). The isomorphism mentioned above can be seen as the result



of the adjoint F∗ : E ×M E∗ → V ∗E of the freeing map F : V E → E ×M E (see Figure 3 for the

special case E = TM that is discussed next).

Figure 3: The Ehresmann connection map Φ, the Freeing map F and their adjoints.

2.1 Pull-back of the Liouville one-form to T ∗TM

We now turn our attention to the special case E = TM that is presented in Figure 3. A section

σ of the bundle pTM,dual : TM ×M T ∗M → TM is a map σ : TM → TM × T ∗M. Suppose that

in local coordinates σ(q, v) = (q, p2) = p2i e
i where {ei(q), i = 1, · · · , n} is the dual of the frame

{ei(q), i = 1, · · · , n} defined at TqM. Then the pull-back σ̄ ∈ ℵ(TM,V ∗TM) is then given in local

coordinates by:

σ̄(q, v) = (0, p2) = p2i dvi. (2)

We can pull-back σ using the adjoint map Φ∗ : V ∗TM → T ∗TM to yield a section ˆ̄σ ∈ ℵ(TM, T ∗TM)

that is given in coordinates by:

ˆ̄σ(q, v) = (Γi
kv

kp2i, p2) = Γi
jkv

kp2ie
j + p2i dvi. (3)

It is easy to check that the range of Φ∗(V ∗TM) (denoted by R(Φ∗) in Figure 4) is the annihilator

of HTM.



Figure 4: Pullback of the Liouville one-form to R(Φ∗).

The Liouville (or canonical) one-form θ0 on T ∗M is the unique one-form that satisfies T ∗β ◦
θ0 = β for any one-form β on M [11, 10]. In local coordinates on T ∗M , it is given by θ0 =

(q, p2, p2, 0) or θ0 = p2i e
i. The map Φ∗ is also an isomorphism of its domain onto its range by its

very definition. Hence: Φ∗−1 : R(Φ∗) → V ∗TM is well-defined and we have a well-defined chain of

maps: π2 ◦ F∗−1 ◦ Φ∗−1 : R(Φ∗) → T ∗M that we can use to pull back the Liouville one-form from

ℵ(T ∗M,T ∗T ∗M) to ℵ(T ∗TM, T ∗V ∗TM where it is described in local coordinates as p2idvi. This

one-form can be pulled back to ℵ(T ∗TM, T ∗R(Φ∗)) via T ∗Φ∗−1 where it is given locally by:

Θv = Γi
jkv

kp2ie
j + p2i dvi. (4)

Next, we discuss a similar construction for the horizontal bundle HTM that is shown in Figures

5 and 6. Denote χ = Id − Φ so that ξ : TTM → HTM is the complementary projection to the

horizontal bundle. Suppose that a section γ of the bundle pTM,dual : TM ×M T ∗M → TM is

described in local coordinates by γ(q, v) = (q, p1) = p1i e
i. Then the pull-back γ̄ ∈ ℵ(TM, H∗TM)

is then given in local coordinates by:

γ̄(q, v) = (p1, 0) = p1i e
i. (5)

We can pull-back γ using the adjoint map χ∗ : V ∗TM → T ∗TM to yield a section ˆ̄γ ∈ ℵ(TM,T ∗TM)

that is given in coordinates by:

ˆ̄γ(q, v) = (p1, 0) = p1ie
i. (6)

One can check that the range of χ∗(H∗TM) (denoted by R(χ∗) in Figure 6) is the annihilator of

V TM.



Figure 5: The projection map χ, the Freeing map G and their adjoints.

Again, in local coordinates on T ∗M , the Liouville one-form is given by θ0 = (q, p1, p1, 0) or

θ0 = p1i e
i. Similar to Φ∗, the map χ∗ is an isomorphism of its domain onto its range by its very

definition. Hence: χ∗−1 : R(χ∗) → H∗TM is well-defined and we have a well-defined chain of

maps: π2 ◦ G∗−1 ◦ χ∗−1 : R(χ∗) → T ∗M that we can use to pull back the Liouville one-form from

ℵ(T ∗M,T ∗T ∗M) to ℵ(T ∗TM, T ∗H∗TM) where it is described in local coordinates as p1ie
i. This

one-form can be further pulled back to ℵ(T ∗TM,T ∗R(χ∗)) via T ∗χ∗−1 where it is given locally by:

Θh = p1i e
i. (7)

In some coordinate chart, let p̄ = (p̄1, p̄2) ∈ T ∗(q,v)TM. We can express p̄ as:

p̄ = (p1, 0) + (Γi
kv

kp2i, p2) where p1 = p̄1 − Γi
kv

kp̄2i, and p2 = p̄2. (8)

Clearly the transform (p̄1, p̄2) 7→ (p1, p2) is one-one and onto, with inverse p̄1 = p1 + Γi
kv

kp2i,

p̄2 = p2. The coordinates (p1, p2) have much nicer transformation properties at the intersection of

two charts. This can be seen as follows. Consider a point x ∈ Uα ∩ Uβ and two equivalent points

(q, α, vα, ξα, wα), (x, β, vβ, ξβ, wβ) ∈ TTM. These points are related according to (1). Now, consider

the “vertical” vectors Φ(q, α, vα, ξα, wα) = (q, α, vα, 0, wα + Γα,jkξ
j
αvk

α) and Φ(q, β, vβ, ξβ, wβ) =

(q, β, vβ, 0, wβ + Γβ,jkξ
j
βvk

β) that must also be equivalent. By (1) we have:

wβ + Γβjk
ξj
βvk

β = gβα(wα + Γαjk
ξj
αvk

α). (9)

Now consider any one coordinate chart. The inner product between the co-vector (p̄1, p̄2) ∈



Figure 6: Pullback of the Liouville one-form to R(ξ∗).

T ∗(q,v)TM and the vector (ξ, w) ∈ T(q,v)TM can be seen to be:

〈(p̄1, p̄2), (ξ, w)〉 = 〈p̄1 − Γi
kp̄2iv

k, ξ〉+ 〈p̄2, w + Γjkξ
jvk〉 = 〈p1, ξ〉+ 〈p2, w + Γjkξ

jvk〉 (10)

by direct computation. Equations (1) and (9) together with (10) imply that in the intersection

Uα ∩ Uβ, we have:

pβ1 = hαβpα1 and pβ2 = gαβpα2 , (11)

where we explicitly mentioned the coordinate chart where the points belong.

Definition 2.1 The map Θ0 ∈ ℵ(T ∗TM,T ∗T ∗TM) defined by:

Θ0 , Θh + Θv (12)

is the Liouville one-form on T ∗TM, where T ∗β is the cotangent lift of β.

The reason for calling Θ0 as the Liouville one-form is the lemma below.

Lemma 2.1 Θ0 is the unique one-form on T ∗TM such that T ∗β ◦Θ0 = β for any local one-form

β ∈ ℵ(TM, T ∗TM).

Proof: The lemma could be proved by using Proposition 6.3.2 on page 152 of [12] by noting that

Θh and Θv are obtained through cotangent lifts. But, we give a different proof that yields some



more insight. In some coordinate chart, let (p̄1, p̄2) ∈ T ∗(q,v)TM. Then:

Θ(q, v, p̄1, p̄2) = Θh(q, v, p1, 0) + Θv(q, v,Γi
kv

kp2i, p2) (by definition)

= p1je
j + Γi

kv
kp2i + p2idvi (by (4) and (7))

= p̄1ie
i + p̄2idvi (by (8)).

The last equality shows that the action of Θ(q, v, p̄1, p̄2) on a vector v ∈ T(q,v,p̄1,p̄2)T
∗TM can be

described as:

〈Θ(q, v, p̄1, p̄2), v〉 = 〈(p̄1, p̄2), TpTM · v〉, (13)

where pTM : T ∗TM → TM is the projection, and TpTM : TT ∗TM → TTM is the tangent map of

pTM . The lemma then follows by Proposition 6.2.2 of [12].

2

Henceforth, we will use the coordinates (p1, p2) instead of (p̄1, p̄2) (see (8)) due to their nicer

transformation properties in coordinate charts. As Θ is the Liouville one-form, the symplectic two-

form Σ ∈ ℵ(T ∗TM ; Λ2(T ∗T ∗TM)) is given intrinsically by: Σ = −dΘ and in local coordinates:

Σ(q, v, p1, p2) = ei ∧ dp1i − p1i dei + dvi ∧ dp2i − p2i v
k dΓi

k + vk Γi
k ∧ dp2i + p2i Γi

k ∧ dvk. (14)

Now using the fact that dei = −Γi
k∧ek for an orthonormal co-frame {ei; i = 1, · · · , n} (due to the

connection being torsion-free) and dΓi
k = Ωi

k − Γi
j ∧ Γj

k where Ωi
k is the curvature tensor [15],

we have:

Σ(q, v, p1, p2) = ei ∧ (dp1i − p1jΓ
j
i)− vkp2iΩi

k + (dvi + Γi
kv

k) ∧ (dp2i − p2jΓ
j
i). (15)

3 Pontryagin’s Minimum Principle on Riemannian Manifolds

In this section, we obtain expressions for the first order necessary conditions yielded by the PMP

for a simple mechanical system on a Riemannian manifold. The general form of the PMP in a

coordinate free setting was described by that is given in an abstract form in [1]. Here we specialize

those results to simple mechanical systems that are time-varying or Carathéodory second order

systems. We emphasize that the time-variation of the systems is not due a time-varying connection,

but rather due to the control input which is a function of time. In applications such as trajectory

design for a space shuttle or hypersonic air vehicle during ascent, where there is a change in the

mass and moment of inertia of the air vehicle, one should consider the vector field with the time



variation as part of the vector field with the control input. In the following subsection, we will

specialize the notation and the definitions employed in Sussmann [1] to time-varying second order

systems.

3.1 Notation and Definitions for the Optimal Control Problem

If S is a set (for example, S = M, TM, T ∗TM etc where M is a smooth manifold), a time-varying

map on S is a map whose domain is S × I where I is some interval on IR. If f is a time-varying

map on S with domain S × I, then I is called the time-domain of f denoted by T D(f).

3.1.1 Carathéodory Functions, Vector fields, Integral Curves and Controlled Curves

A Carathéodory function (CF) on S is a time-varying function f such that (i) f(·, t) is continuous

for every t ∈ T D(f), and (ii) f(x, ·) is Lebesgue measurable for every x ∈ S. The notation CF(S)

denotes the set of all Carathéodory functions, while CF(I, S) denotes those functions in CF(S) with

time-domain I. If f ∈ CF (S), then f is called locally integrably bounded (LIB) if for every compact

subset K of S there exists a g ∈ L1
loc(T D(f)) such that |f(x, t)| ≤ g(t) for all (x, t) ∈ K × T D(f).

In our case, S will be either TM × U or T ∗TM × U where U ⊂ IRm and M is a Riemannian

manifold. Hence S has the structure of a metric space with some distance function, say, d. A

function f ∈ CF(S) is called locally Lipschitz (LL) if every f(·, t) is locally Lipschitz, and locally

integrably Lipschitz (LIL) if it is LIB and LL, and for every compact subset K of S the Lipschitz

constant for f can be chosen to be in L1
loc(T D(f)). Sussmann [1] observes that definitions of a LL

and LIL CF on S only depends on the class of locally equivalent metrics on S, and so they are well

defined when S = TM or T ∗TM where M is a Riemannian manifold.

If f ∈ CF (S) where S is a manifold, then f is said to be of class Ck if f(·, t) ∈ Ck(S) for every

t ∈ T D(f). f is said to be locally integrably of class Ck (denoted LICk) if f is of class Ck and the

function X1X2 · · ·Xkf is LIB for every k-tuple (X1, · · · , Xk) of smooth vector fields on S.

A Carathéodory vector field (denoted CVF) on S is a time-varying map F on S such that (i)

F (x, t) ∈ TxS fo every (x, t) in the domain of F , and (ii) F (f) ∈ CF (S) for every f ∈ C∞(S).

Denote CV F (I, S) to be the set of CVF’s with time domain I and set CV F (S) = ∪
I
CV F (I, S). If

p : TM → M denotes the projection operator, then a second-order Carathéodory vector field on M

(denoted by SOCV F (M)) is a CV F (TM) that satisfies Tp ◦ F = Id. A curve on S is a continuous

map c : I → S, where I is an interval. A curve c on S is locally absolutely continuous (denoted

by LAC), locally Lipschitz (denoted by LL), of class Ck, if f ◦ c is LAC, LL, or of class Ck for



every f ∈ C∞(S). An arc is a LAC curve such that the domain is compact. The sets CRV (I, S),

CRCLAV (I, S), CRV (S), CRVLAC(S), ARC(S) stand for the sets just described.

An integral curve (IC) of an F ∈ CV F (S) is a LAC curve c such that the Domain(c) ⊂ T D(F )

and ċ = F (c(t), t) for almost all t ∈ Domain(c). If F ∈ SOCV F (M), then it is clear from the

above discussion that c ∈ IC(F ) if and only if in any coordinate chart for TM, c is given in local

coordinates by c(t) = (q(t), V (t)) where V (t) ∈ Tq(t)M and q is the integral curve of V ∈ CV F (M).

By the Carathéodory existence and uniqueness theorems, given a LIL CVF F on S (respectively, a

SOCVF F on M); and a point (x̄, t̄) ∈ S × T D(F ) (respectively, a point (q̄, V̄ , t̄) ∈ TM ×T D(F ))

there exists an integral curve c in S (respectively, an integral curve c = (q, V ) in TM) such that

(i) c(t̄) = x̄ (respectively, q(t̄) = q̄, V (t̄) = V̄ ); (ii) Domain(c) is a neighborhood of t̄ relative

to T D(F ); (iii) for any two IC’s c1 and c2 with (i) and (ii) satisfied, we have c1(t) = c2(t) for

t ∈ Domain(c1) ∩Domain(c2) [1].

A controlled curve in S is a pair γ = (c, F ) such that F ∈ CV F (S) and c ∈ IC(F ). A LIL-

controlled curve is one where F is LIL.

3.1.2 Hamiltonian Systems

The symplectic manifold T ∗S is endowed with a canonical symplectic form Σ , −dθ0 where θ0 is

the Liouville one-form on T ∗S. For every CVF F and CF L on S we can associate the pair (F,L)

the Hamiltonian HF,L ∈ CF (T ∗S) with time domain T D(H) = T D(F ) ∩ T D(L) defined by:

HF,L(x, z, t) , 〈z, F (x, t)〉+ L(x, t), (16)

where x ∈ S, z ∈ T ∗xS, t ∈ T D(H). The Hamiltonian H is LIB, LICk, or LIL if and only if both L

and F are LIB, LICk, or LIL. If H ∈ CFCk(T ∗S); k ≥ 1, we can associate with H a Hamiltonian

vector field XH ∈ ℵk−1(T ∗S, TT ∗S) with time domain T D(H) defined by:

〈dH(x, t), w〉 = Σx(XH(x, t), w) for all x ∈ T ∗S, t ∈ T D(H), and w ∈ TxT ∗S. (17)

If F ∈ CV FLICk(T ∗S) and L ∈ CFLICk(T ∗S), we have XH ∈ CV FLICk−1(T ∗S) and we have

existence and uniqueness of IC’s for XH even for k = 1 [1].

3.1.3 Controlled Simple Mechanical Systems

We consider more general control systems that those considered by Lewis [3]. A controlled second

order system is a triple CS = (S,U , F ) such that (i) S = TM where M is a smooth manifold; (ii)



U is a set of open-loop controls; and (iii) F = {Fu; u ∈ U} is a family of second-order Carathéodory

vector fields on M. Let U be a Lebesgue-Borel measurable subset of I× IRm, where I is an interval,

such that U(t) = {ū : (t, ū) ∈ U} is nonempty for every t ∈ I. Denote the time domain of U by

T D(U). Then each element of U is a function u : I → U where I is an interval and T D(U) = I.

Notice that U is not dependent on points x ∈ S. Contrary to the claim made by Lewis [3], the

situation when U is dependent on x ∈ S is more complicated and is not covered by the following

theory [4]. We will make the following assumptions that will simplify matters: (a) F is a SOCVF on

M such that (q, v, t, u) → F (q, v, t, u) is a map from TM ×U to TTM with F (q, v, t, u) ∈ T(q,v)TM

for all (q, v, t, u) ∈ M ×U. (b) every map F (·, ·, t, u) is continuous for each (t, u) ∈ U, (c) every map

F (q, v, ·, ·) is a Lebesgue-Borel measurable, where q ∈ M and v ∈ TqM.

A controlled trajectory of a system CS is a pair γ = (c, u) where u ∈ U and (c, Fu) is a con-

trolled curve. If Domain(c) is compact, then γ is called a controlled arc. Ctraj(CS) (respectively,

Carc(CS)) denotes the set of all controlled trajectories (respectively, controlled arcs) of CS. A

trajectory (respectively, arc) of CS is a c such that (c, u) ∈ Ctraj(CS) (respectively, Carc(CS))

for some u ∈ U . Let CS be a controlled second order system and let a, b ∈ IR with a ≤ b. If

x1 = (q1, V1), x2 = (q2, V2) ∈ TM, we say that x2 is CS-reachable from x1 over [a, b] if there exists

a controlled arc γ of CS such that c(a) = x1 and c(b) = x2. x2 is said to be CS-reachable from x1

if it is CS-reachable from x1 over [a, b] for some a, b. Define RCS(x) (respectively, RCS
[a,b](x)) the

CS-reachable set from x (respectively, the CS-reachable set from x over [a, b]).

A Lagrangian L for CS is a family {Lu; u ∈ U} of Carathéodory functions on S such that

T D(Lu) = T D(Fu) for all u ∈ U . Given a Lagrangian L for CS, the cost functional JL,CS :

Carc(CS) → IR is defined by:

JL,CS(γ) =
∫

Domain(γ)
Lu(c(t), t) dt (18)

Following Sussmann [1], a controlled arc γ = (c, u) is called acceptable for L if |Lu(c(·), ·)| is

a locally integrable function. If γ is acceptable for L and has domain [a, b], then the function

ργ,L(t) =
∫ t
a Lu(c(s), s) ds is the running cost along γ.

The augmented system CSL associated with a second order system CS and a Lagrangian L is

the system:

ẋ = Fu(x, t); ẋ0 = Lu(x, t); u ∈ U . (19)

A trajectory ĉ of the augmented system for a control u ∈ U is a pair (c, c0) such that c is a trajectory

of CS for u, (c, u) is acceptable for L, and c0 is the running cost for (c, u). We refer to Sussmann



[1] for the definition of the substitution properties.

For each control system CS and Lagrangian L for CS, we can associate the Hamiltonian:

HCS,L , {HFu,Lu : u ∈ U} (20)

Due to our continuity assumptions on F, (leading to the so-called classical time-varying system

defined by Sussmann) the optimal control u∗ ∈ U will have the following strongly minimizing

property along a curve (c, z) in T ∗TM (by Prop. 6.1, Theorem 10.1 of [1]):

HCS,L(c(t), z(t), t, u∗) = min
ũ∈U

{HCS,L(c(t), z(t), t, ũ)} for a.e t ∈ T D(Fũ) ∩ Domain(c) (21)

An L-adjoint vector ζ along γ = (c, u) ∈ CtrajLIL(CS) is an absolutely continuous section

ℵ(c, T ∗TM) such that (c, ζ) is an integral curve of XHFu,Lu . Hence the L-adjoint vectors are de-

fined only along the trajectory c on TM. An L-adjoint vector field ζ along γ = (c, u) is strongly

minimizing for (CS,L), if u is strongly minimizing for (CS,L) along the curve (c, ζ) according to

(21).

3.2 Pontryagin’s Minimum Principle for a Simple Mechanical System

The PMP given in this section is a special case of Theorem 8.3 of [1] for Carathéodory second-

order systems. The interesting aspect of our version is the choice of coordinates that facilitates the

numerical solution of the optimal control.

Let M be a Riemannian manifold with coordinate charts {Uα, ϕα, α ∈ I}. On a coordinate chart

(Uα, Φα) of TM (see Section 2) let {e1, · · · , en} be a frame of vector fields compatible with the

metric. Similarly, on a coordinate chart (Uα,Ψα) of T ∗M let {e1, · · · , en} be a frame of co-vector

fields so that ei(ej) = δi
j ; 1 ≤ i, j ≤ n. Let (q, v) denote coordinates on the chart Φα(TUα). They

form the state variables for a simple mechanical system on M. There is a natural connection defined

on M called the Levi-Civita connection for which the metric is invariant [13]. Using the Levi-Civita

connection on M, we can describe a controlled arc γ = (c, u) (where c(·) = (q, v)(·)) for a controlled

second order system (see 3.1.3 for the definition) CS = (S,U , F ) as one on HTM ⊕ V TM :

q̇(t) = v(t) = viei, and
Dv

dt
= f(q(t), v(t), u(t), t) = f i(q(t), v(t), u(t), t)ei. (22)

Consider the following assumptions that correspond to A1, A3, A4, and OPT1−OPT4 of [1]:

MP1 CS = (TM,U , F ) is a second-order control system as described in 3.1.3. The assumptions on

F described there will apply to the functions f i, i = 1, · · · , n in (22)



MP2 a, b ∈ IR, a ≤ b, x0, xf ∈ TM , c∗ : [t0, tf ] → TM is a trajectory of CS with c∗(t0) = x0 and

c(tf ) = xf .

MP3 u∗ ∈ U is such that γ∗ = (c∗, ζ∗) is a LIL-controlled arc of CS.

MP4 Suppose N is a given submanifold of TM and x0 /∈ N be a given point of TM. W is a

neighborhood of (x0, xf ) in TM × TM and ϕ : W → IR is a Lipschitz continuous function

with G = ∂ϕ(xf ) – the Clarke generalized gradiant of ϕ at xf .

MP5 L is a Lagrangian for CS and Lu∗ is LIL.

The set CarcL(CS) denotes the set of controlled arcs γ = (c, u) that are acceptable for L.

Remarks:

i. Notice that due to our assumption MP1, condition A2 of [1] for the augmented system (19)

is automatically satisfied due to the fact that our time-varying second order system is a time-

varying classical system according to [1]. Due to Theorem 10.1 of [1], weak minimization in

the Maximum Principle for optimal control given in Theorem 8.3 in the same reference can

be replaced by strong minimization.

ii. Unlike Sussmann [1] and Lewis [3] we will assume that x0 is given to be the generalized

position and velocity at time t0. This reflects a trajectory planning problem in engineering

applications.

iii. If ϕ : W → IR was a smooth function, then G = {dϕ(xf )}.

We consider the following f ixed and final-time optimal control problems.

Problem P1: Minimize the cost functional

JL,CS,ϕ(b, γ) = ϕ(c(b)) +
∫ b

a
Lu(c(t), t) dt (23)

in the set γ = (c, u) ∈ CarcL(CS), Domain(c) = [a, b], and c(b) ∈ N.

Problem P2: Minimize the cost functional

JL,CS,ϕ(b, γ) = ϕ(c(b)) +
∫ b

a
Lu(c(t), t) dt (24)

in the set (b, γ), such that γ = (c, u) ∈ CarcL(CS), Domain(c) = [a, b], and c(b) ∈ N.

The theorem below gives the first order necessary conditions for the existence of the solution

γ∗ = (c∗, u∗) to the optimal control problems. We need some notation before we can state the

theorem.



• (R[(v, p2)v, 0) a one-form field along the curve (c, ζ) in H∗TM that satisfies 〈R[(v, p2)v, ξ〉 =

〈p2, R(v, ξ)v〉 for every (ξ, 0) ∈ Hc(t)TM for every t ∈ T D(c).

• We denote by ((dqf)∗(p2), 0) a one-form field along the curve (c, ζ) in H∗TM that satis-

fies 〈(dqf)∗(p2), ξ〉 = 〈p2, dfq(ξ)〉, for every (ξ, 0) ∈ Hc(t)TM for every t ∈ T D(c). Simi-

larly, denote by (0, (dvf)∗(p2)) a one-form field along the curve (c, ζ) in V ∗TM that satisfies

〈(dvf)∗(p2), w̄〉 = 〈p2, dvf(w)〉, for every (0, w̄) ∈ Vc(t)TM for every t ∈ T D(c).

• Let Ci
jk = Γi

jk − Γi
kj be the structure constants for the Jacobi-Lie bracket of vector fields

on M. We rewrite the term f i Γj
kiξ

k p2j in terms of geometrically defined quantities. Denote

[Γ(f)]∗p2 = p2jΓ
j
ikf

iek and [C(f)]∗p2 = p2jC
j
ikf

iek, and then

f i Γj
kiξ

k p2j = f i (Γj
ik − Cj

ik)ξ
k p2j = 〈[Γ(f)]∗p2 − [C(f)]∗p2, ξ〉.

Theorem 3.1 Suppose that assumptions MP1 - MP5 hold and suppose that γ∗ is a solution of

Problem P1. Then there exists a constant ν ≥ 0 and a ν L adjoint vector ζ along γ∗ such that:

i. in local coordinates ζ(t) = ((p1(t), 0), (0, p2(t))) ∈ H∗
c(t)TM ⊕ V ∗

c(t)TM (see Section 2 and

Figures 3 -6 for the notation) satisfies:

−Dp1

dt
= dqf

∗(p2) + ν dqL− ([C(f)]∗ − [Γ(f)]∗)p2 + R[(v, p2)v (25)

−Dp2

dt
= p1 + dvf

∗(p2) + dvL. (26)

ii. ζ is strongly minimizing for (CS, ν L) along γ∗ (see (21)).

iii. ζ satisfies the transversality condition: there exists a λ ∈ G such that 〈ζ(b) − νλ, ξ〉 = 0 for

every ξ ∈ Tc∗(b)N.

iv. either ζ(b) 6= 0 or ν > 0 (in other words, ζ(b) and ν cannot both be identically 0).

v. ζ and ν can be chosen so that the Hamiltonian HFu∗ ,ν Lu∗ (see (16)) is constant almost

everywhere in [a, b].

For Problem P2, ζ and ν can be so chosen so that the constant value of the Hamiltonian is zero.

Proof: The theorem is a special case of Theorem 8.3 of Sussmann [1], and all of the conclusions

except the first follow from this theorem. We will show that the adjoint vector ζ = (p1, p2) along γ∗



satisfies Equations (25 - 26), where (p1, p2) are local coordinates on H∗
c∗TM ⊕ V ∗

c∗TM. According

to (16), the Hamiltonian function HFu,νLu is given in local coordinates by:

HFu,Lu(c, ζ, t) = 〈ζ, F (c, u, t)〉+ νL(x, u, t) = 〈ζ, ċ〉+ νL(x, u, t), (27)

where c(t) = (q(t), v(t)) and ċ(t) = (v(t), F (x(t), v(t), u(t), t)). Now we can choose ζ(t) = (p̄1, p̄2)(t)

in local coordinates on T ∗c(t)TM or (p1, p2)(t) on H∗
c(t)TM ⊕ V ∗

c(t)TM. These choices are related by

(10) as follows:

HFu,Lu(c, ζ, t) = 〈(p̄1, p̄2), (q̇, v̇)〉+ νL(x, u, t)

= 〈p1, q̇〉+ 〈p2,
Dv

dt
〉+ νL(x, u, t)

= 〈p1, q̇〉+ 〈p2, f(c, u, t)〉+ νL(x, u, t) (28)

At this point, obtaining the adjoint equations is simply a matter of applying the definition of a

Hamiltonian vector field given in (17). Let (ξ, w, µ, ϑ) ∈ T(q,v,p1,p2)(H∗TM ⊕V ∗TM). Then by (15)

and (17) we have:

Σ(q,v,p1,p2)((q̇, v̇, ṗ1, ṗ2), (ξ, w, µ, ϑ)) = dHFu,Lu

(q,v,p1,p2)(ξ, w, µ, ϑ) (29)

where the LHS is:

Σ(q,v,p1,p2)((q̇, v̇, ṗ1, ṗ2), (ξ, w, µ, ϑ)) = 〈q̇, (µi − p1jΓ
j
kiξ

k)ei〉 − 〈ξ, (ṗ1i − p1jΓ
j
kiq̇

k)ei〉

−vkp2iΩi
k(q̇, ξ) + 〈(v̇i + Γi

jkv
kq̇j)ei, (ϑi − p2jΓ

j
kiξ

k)ei〉

−〈(wi + Γi
jkξ

jvk)ei, (ṗ2i − p2jΓ
j
kiq̇

k)ei〉

The right hand side of (29)dHFu,Lu

(q,v,p1,p2)(ξ, w, µ, ϑ) can be computed in two ways, both yielding

the same result. Consider an equivalent class of LL curves in V ∗TM ⊕ H∗TM with each curve

(c, ζ) : (−ε, ε) → V ∗TM ⊕ H∗TM satisfy: (c, ζ)(0) = (q, v, p1, p2) and d
ds(c, ζ)(0) = (ξ, w, µ, ϑ).

Notice the slight abuse of notation, wherein we refer to (c, ζ)(0) = (q, v, p1, p2)(0) as (q, v, p1, p2). In

the first method, one computes the derivative d
dsH(0) using the techniques of Riemannian geometry.

The other method is perhaps more interesting. The symplectic two-form Σ in (15) can be rewritten

using the exterior covariant differentials [15] of v = viei; p1 = p1ie
i and p2 = p2ie

i, as:

Σ = ei ∧ (∇p1)i − p2i(∇∇v)i + (∇v)i ∧ (∇p2)i, (30)

where:
∇(viei) = (dvi + Γi

kv
k) ei ∇(p1ie

i) = (dp1i − p1jΓ
j
i) ei

∇(p2ie
i) = (dp2i − p2jΓ

j
i) ei ∇∇(viei) = vkΩi

k ei



The point of this discussion is that we must employ covariant derivatives while computing the right

hand side of (29) as well! In the computation below, the evaluation is being done at s = 0.

dHFu,Lu

(q,v,p1,p2)(ξ, w, µ, ϑ) = ν
∂L

∂qi

(
∂q

∂s
(0)

)i

+ ν
∂L

∂vi

(
∇ ∂q

∂s
v (0)

)i
+ 〈∇ ∂q

∂s
p1(0), v(0)〉

+〈p1(0),∇ ∂q
∂s

v(0)〉+ 〈∇ ∂q
∂s

p2(0), f(q, v, u)(0)〉+ 〈p2(0),
∂f i

∂qj

(
∂q

∂s
(0)

)j

ei〉

+〈p2(0),
∂f i

∂vj

(
∇ ∂q

∂s
v(0)

)j
ei〉+ p2j(0)f i(q, v, u)(0) Γj

ki

(
∂q

∂s
(0)

)k

After some simple manipulations, we get:

dHFu,Lu

(q,v,p1,p2)(ξ, w, µ, ϑ) = ν(dqL)(ξ) + ν(dvL)(w + Γjkξ
jvk) + 〈µ, v〉+ 〈p1, w〉

+〈ϑ, f(q, v, u)〉+ 〈p2, (dqf)(ξ)〉+ 〈p2, (dvf)(w + Γjkξ
jvk)〉

Now if we compare the terms on the left and right hand sides of (29) with µ, ϑ, w and ξ in that

order, we get the desired Hamiltonian vector field:

µ : q̇ = v

ϑ : Dv
dt = f

w : −Dp2

dt = p1 + νdvL + (dvf)∗p2

ξ : −Dp1

dt = νdqL + (dqf)∗p2 + R[(v, p2)v + p2jΓ
j
if

i

= νdqL + (dqf)∗p2 + R[(v, p2)v − [C(f)]∗p2 + [Γ(f)]∗p2

(31)

2

In the special case of parallelizable Riemannian manifolds of which Lie Groups form a subset,

the manifold TM is diffeomorphic to M×IRn and hence the expressions for the first order necessary

conditions are especially useful for numerical computations.

3.3 Cubic splines on Riemannian manifolds

Here we specialize the results of the previous section and recover the formula for cubic splines on

Riemannian manifolds [16]. Let M be a parallelizable Riemannian manifold and let q0, q1 ∈ M,

v0 ∈ Tq0M and v1 ∈ Tq1M. Consider the problem: Minimize J(u(·)) = 1
2

∫ tf
t0
‖u(t)‖2dt subject

to: q̇(t) = v(t), Dv
dt = u(t) = ui(t)ei(t), and boundary conditions q(t0) = q0; q(tf ) = qf ; q̇(t0) =

v0; q̇(tf ) = vf .

Thus we have f(q, v, u) = u and the “flattening map” [ : TM → T ∗M is the identity matrix,

that is, the metric coefficients are given by mrj = δrj for r, j = 1, · · · , n. Therefore, there is an



identification of vectors and co-vectors. The basic compatibility condition between the metric and

connection coefficients is [14]: Γr
imrj + Γr

jmri = 0 i, j = 1, · · · , n. Using mrj = δrj , we get:

Γj
i + Γi

j = 0 for i, j = 1, · · · , n.

The Hamiltonian for this problem is

HFu,Lu(c, ζ, t) = 〈p1, v〉+ 〈p2, u(t)〉+
ν

2
‖u(t)‖2

If ν = 0, then p2(t) must be zero for all t as the Hamiltonian is then a linear function of u. This

implies that p1(t) = 0 for all t by (26). This contradicts the PMP’s assertion that both ν and ζ

cannot both be 0. Hence ν > 0 and it can be chosen to be 1 (see [1]).

The PMP asserts the existence of one-form sections (p1, p2)(t) such that: Dp1

dt = −R[(v, p2)v +

(Γ∗(u)−C∗(u))p2; Dp2

dt = −p1 and u = −p2, where we have used the identification of vectors and

co-vectors in the last equation. Thus D2v
dt2

= Du
dt = − Dp2

dt = p1 which implies D3v
dt3

= Dp1

dt =

− R(v, p2)v − (Γ∗(u) − C∗(u))ν, where we have again the identification of vectors and co-vectors.

Now ((Γ∗(u)−C∗(u))p2)v = p2i(Γi
j (u)−Ci

j (u)) vj = p2i Γi
jk pk

2 vj where pk
2 = p2k ∀k = 1, · · · , n.

Therefore, ((Γ∗(u)− C∗(u))p2)v = Γi
k(v) pk

2 p2i = 0 for all v ∈ Ψ(M), because Γi
k = −Γk

i by the

basic compatibility condition for the connection with the metric. Therefore, D3v
dt + R(Dv

dt , v)v = 0,

which is the equation for a cubic spline that was obtained by Noakes, Heinzinger and Paden [16].

3.4 The Adjoint Equation

In this section, we attempt specialize our results to those in Lewis [3], by considering particular

functions f in (22); L in (23) and (24); while using frames that are compatible with a Riemannian

metric on M. Lewis [3] expresses his results in terms of the torsion, while we do not have torsion

terms in (25) and (26). Our frames are parallel translated and hence are torsion free while the

structure constants are not zero (see (25)). In [3], the structure constants are zero due to the use

of coordinate frames while the torsion is not zero. Simply setting the torsion terms to zero in the

adjoint equation of [3] results in a equation that differs from ours by one term. We claim here that

this term is actually present in the adjoint equation and can be rewritten so that our results and

[3] are identical.

For each u ∈ U , let Au be a symmetric (0, r) tensor field on M [3]. Hence, Au : ℵr(M, TM) → IR.

Let l : IR → IR be a LIL function. Consider the Lagrangian function L : ℵr(M,TM) × U → IR

defined by L = l ◦ Au. Furthermore, for each u ∈ U , let fu : TM → TM be defined by: fu(q, v) =

ui(t)Yi(q(t)), where Yi ∈ ℵ(M,TM) and i lies in some finite index set. Thus, fu does not explicitly



depend on the velocity variable v.

We only need to consider the equations for the co-states (25) and (26). Following [3], for each u ∈
U define: Âu : ℵr−1(M, TM) → ℵ(M, T ∗M), by: 〈Âu(v(t), · · · , v(t)), X〉 = Au(X, v(t), · · · , v(t)),

where X ∈ ℵ(M,TM). Then we have: dvL = ∂L
∂vi e

i = r l′(Au(v(t), · · · , v(t)) Âu(v(t), · · · , v(t)), so

that:

−Dp2

dt
= p1 + νdvL = p1 + ν r l′(Au(v(t), · · · , v(t))) Âu(v(t), · · · , v(t)). (32)

Next, we have: dqL = r l′(Au(v(t), · · · , v(t)))∇Au(v(t), · · · , v(t)), and (dqf)∗p2 = ui (∇Yi)∗(p2).

Here, (∇Yi)∗(p2) is defined by 〈(∇Yi)∗(p2), X〉 = 〈p2,∇X Yi〉 where X ∈ ℵ(M, TM), and

∇Au(v(t), · · · , v(t)) is defined similarly.

−Dp1

dt
= ν r l′(Au(v(t), · · · , v(t))∇Au(v(t), · · · , v(t)) + ui (∇Yi)∗(p2) + R[(v, p2)v

+p2jΓ
j
i Y

i
k (q(t))uk(t) (33)

We claim that the last term in the above equation is the term uk(t) 1
2T ∗(p2(t), Yk(t)) found in [3].

The reason for this is that Lewis considers the torsion to be given by: T j
ki = Γj

ki − Γj
ik which

means that the structure constants are 0, which is the case when one uses coordinate frames.

While using coordinate frames, one has: T j
ki = −T j

ik and hence one can take Γj
ki to be: Γj

ki =
1
2T j

ki by anti-symmetry in the k and i indices. Now following Lewis, define T ∗ : ℵ(M, T ∗M) ×
ℵ(M,TM) → ℵ(M,T ∗M) to be the operator defined by: 〈T ∗(p2, X), Z〉 = 〈p2, T (Z, X)〉, where

X, Z ∈ ℵ(M, TM). Then we have for a.e. t ∈ [a, b]:

〈uk(t)
1
2
T ∗(p2(t), Yk(t)), Z〉 = 〈p2(t),

1
2

T (Z, Yk(t))uk(t)〉

= 〈p2(t),Γ
j
i(Z)Yk(t)uk(t)〉

= 〈p2jΓ
j
i Y

i
k (q(t))uk(t), Z〉,

for every Z ∈ ℵ(M, TM) as desired. Note here that the term in question was also obtained in the

form given in (25) using entirely different methods [2]. Equations (32) and (25) when combined

together form the equation that Lewis terms the adjoint equation.

4 Conclusion

Sussmann [1] extended Pontryagin’s Minimum Principle for optimal control problems on manifolds.

This result did not use any additional structure on manifolds other than Lie brackets. As a result

the theorem was obtained abstractly in terms of the Hamiltonian vector field of a Hamiltonian



function. When applying this result in applications, one has to make a suitable choice of co-

ordinates. In problems arising in robotics and engineering, the manifold Q is the tangent bundle

TM of a Riemannian manifold M. Sussmann’s result was specialized to control-affine systems on

Riemannian manifolds with an affine connection by Lewis [3]. Lewis obtained an explicit expression

for the Hamiltonian vector field by using the fact that it can thought of as the cotangent lift of the

geodesic spray. In this paper, we have specialized the results of Sussmann [1] by using a different

technique. We used the fact that the Hamiltonian vector field on the cotangent bundle of a manifold

Q can be derived using the natural symplectic two-form that exists on it. Using this procedure,

obtained explicit expressions for the vector fields of the adjoint system. These expressions turn out

to be the same as those obtained in our earlier work [2] where we employed calculus of variations.

The utility of this approach for numerical computations was demonstrated in [2].
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