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Abstract An important subproblem in the area of cooperative control of multiple,
autonomous, unmanned air vehicles is the determination of the minimum-time op-
timal paths for the agents to fly from one destination to the next. The tasks for the
air vehicles are usually tightly coupled in time, and hence estimates of the times
taken for each air vehicle to fly from one destination to the next is highly critical
for correct assignment of tasks. In this article, we discuss the existence and unique-
ness of minimum time solutions for the trajectory planning problem for a Micro Air
Vehicle (MAV) under wind conditions. We show that there exists a minimum time
solution for the trajectory planning problem with a minimum turn radius constraint
for the air vehicle, and for a non-zero, time-varying wind vector field satisfying cer-
tain easily checked sufficient conditions. We also prove uniqueness for almost every
combination of initial and final conditions in the case of a wind vector field that can
vary with time but is constant in the spatial variable at each time instant.

1 Introduction

Cooperative Control of multiple, autonomous unmanned air vehicles (UAVs) is an
active area of research that holds enormous potential for military and civilian ap-
plications [1, 2, 3]. This new paradigm for control has been implemented in the
MultiUAV simulation platform by the Air Force Research Laboratory [3]. The Mul-
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tiUAV platform has a hierarchical architecture, in which, at the highest level the dy-
namics of the controlled agents are suppressed, and a task allocation for the agents
is performed using graph theory. The tasks for the agents are usually tightly coupled
in time [3, 4], and hence estimates of the times taken for each agent to fly from
one destination to the next is highly critical for correct assignment of tasks. This
estimate of times is usually obtained by considering a kinematic model of the air
vehicle, along with kinematic turn-radius constraints, to keep the computation time
at a manageable level [5, 6, 7]. The key result that is used in this computation is
Dubins’ result on the existence of minimum time solutions for a kinematic model
with minimum turn-radius constraint [8]. However, this result is only for valid for
zero-wind, and hence all of the available cost estimation algorithms are only valid
for zero-wind.

In this article, we discuss the existence and uniqueness of minimum time solu-
tions for the trajectory planning problem for a Micro Air Vehicle (MAV) under wind
conditions. Numerical results from algorithms based on this paper can be found in
[10]. MAV’s are powered by batteries that typically have a very short life [2, 5].
Therefore, before deployment, it is desirable to know: (a) whether the MAV can
complete its mission - which requires flight from Point A with velocity V0 to Point
B with velocity Vf , , in the presence of wind; (b) if the answer to the previous item
is in the affirmative, then the control inputs that achieve the mission. We model an
MAV flying with a constant speed in the wind axes and at a constant altitude. The
kinematic equations of motion for the MAV are:

ẋ = V (cosθ ,sinθ)+W (x, t); θ̇ = u. (1)

where x = (x1,x2), W (x, t) = (W1(x, t),W2(x, t)), and Wi(x, t); i = 1,2 are functions
with bounded derivatives. These equations contain the wind vector field that is not
considered in earlier works [5, 8, 6, 7, 9]. Let q = (x,θ). The initial and final time
constraints are: q(0) = q0 and q(t f ) = q f where t0 is fixed and t f is free. The con-
straint on the piecewise continuous input function u(·) arising from a constraint on
the minimum turn-radius for the MAV is:

|u(t)| ≤ umax =
V

Rmin
, (2)

for all t. Here Rmin is the minimum turn radius in the absence of wind and arises due
to mechanical limitations on the aircraft. Even for such a simple model the ques-
tion of existence of time-optimal trajectories is unknown in the presence of wind. In
the absence of wind (that is W (x, t) = (0,0)), the well-known Dubins’ theorem [8]
posits the existence of a time-optimal solution for any initial and final positions and
velocities of the aircraft on a plane, when the aircraft is flying with constant speed
and has a minimum turn radius constraint. For a non-zero, time-varying wind vec-
tor field satisfying certain technical conditions, we provide easily checked sufficient
conditions under which a time-optimal solution exists. The verification of these con-
ditions can then be used as the starting point for a numerical algorithm to compute
the time-optimal trajectory. In the case of wind that is only a function of time (and
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independent of the space variable) we show that the solution is unique except for
initial and final states taking values on a set of measure zero. For more general wind
vector fields, the question of uniqueness is still to be investigated. To prove the ex-
istence of a time optimal solution, we do not use perturbation techniques around
the zero wind condition for which the solution is known to exist. Instead, we use
Filippov’s theorem on the existence of a solution in conjunction with Dubin’s result
for zero wind.

We are given the initial and final positions and orientations for the MAV, and the
problem is to find the minimum time path connecting the initial and final states. As
the speed of the aircraft increases due to a tail wind, one would expect the instanta-
neous minimum turn radius to increase as well. It is easy to check that if ‖ẋ‖>V for
some (x, t) then ‖ẋ‖= R′min(x, t) max |θ̇ |= R′min(x, t)umax, along with V = Rmin umax
implies R′min(x, t) > Rmin, as required.

As is well known, the minimum time trajectory planning problem can be cast
as an optimal control problem for the sake of numerical solution [13]. Direct and
indirect methods are usually employed to solve the optimal control problem [13].
Such methods assume the existence of the optimal solution and use gradient-based
techniques to find the solution. For the minimum-time problem for the no wind case,
we can show using Dubins’ theorem [8] that the length of the trajectory (which is
proportional to the minimum time) is a discontinuous function of the final state
when the initial state is held fixed. To be specific, if the initial position and velocity
is fixed, then the length of the minimum time path is a discontinuous function of
the final position and velocity. Recall, that the magnitude of the velocity is fixed
and only the direction is a variable. We show that the discontinuities are of the
first-kind - that is, they are simple jump discontinuities. This implies that numerical
methods must be carefully initialized for convergence. In the next section, we study
the aspects of the solution for the no wind case paying careful attention to two
issues: nonuniqueness of solutions and discontinuity of the solution. For the special
case of constant wind vector field, we show using coordinate transformations that
the qualitative nature of the solutions is the same as the zero wind case, and hence
we can expect both discontinuous and non-unique solutions.

2 Discussion of Dubins’ Theorem for the zero wind case

Dubins’ theorem [8] establishes the existence of a solution to the minimum time
optimal control problem for the special case W (x, t) = (0,0) for all x ∈ R2 and
t ∈ R+. This theorem states that for every initial, final positions and velocities the
minimum time solution is an arc-line-arc or arc-arc-arc solution. As the minimum
time solution is invariant with respect to translations and rotations of the coordinate
axis, we can change coordinates so that the initial position is at the origin of R2

and the final position is at (l,0) on the ordinate axis. The initial and final velocity
directions measured with respect to this axis are termed φ0 and φ f respectively in
Figures 1 - 3. To understand the behavior of the minimum time solution as a function
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of the initial and final states, we considered - without loss of generality - the initial
state to be fixed, and varied the final states. As the final state comprises of the final
position and the final direction for the velocity vector, we consider each change in
turn.

The direction of the velocity induces an orientation on the circles tangent to the
velocity vector. In all the figures, we denote the center of the counterclockwise ori-
ented circle by Z0 and Z f respectively, while the centers of the clockwise oriented
curves are denoted by Y0 and Yf respectively. Thus we can distinguish between the
Z0LYf from the Y0LZ f arc-line-arc solutions etc. This distinction is important in
what follows. It turns out that for each φ0 and φ f one can compute a critical sepa-
ration lc such that only arc-line-arc solutions can exist for l > lc (see Appendix I).
Below, we will fix the initial and final positions at points T and S respectively; fix
the initial velocity direction φ0; and vary the final velocity direction φ f (see Figures
1 - 3). There are primarily three cases to consider:

1. l = ‖x f − x0‖> lc.
2. 0 < l ≤ lc;
3. l = 0.

Case 1: Please refer to Figure 1. In this case, l > lc; the circles Y0, Z0 and Yf , Z f
do not intersect even at a single point; and hence the trajectories are always of the
arc-line-arc type. We further observe that:

• the length of the minimum time solution is a continuously differentiable function
of the angle φ f ;

• the solution changes from Y0LZ f to Z0LYf as the angle goes through specific
angle φ ∗f . The exact value of φ ∗f is not as important as its property – it is the
angle for which two minimum time solutions exist (see Fig. 1(c)). As the solution
changes from Y0LZ f to Z0LYf for φ f > φ ∗f , its length changes in a continuous
manner as a function of φ f .

• As φ f increases beyond φ ∗f the solution is of the type Z0LYf (see Fig. 1(d)) until
φ f = φc when we have a LYf solution (see Fig. 1(e)).

• For φc < φ f < 2π , the solution is of the type Y0LYf .

To re-emphasize, when l > lc, the minimum length remains continuous function of
φ f .
Case 2: Please refer to Figure 2. In this case, 0 < l ≤ lc. Hence, intersections of the
circles Y0 or Z0 with either Yf or Z f is possible. This leads to two phenomena not
observed in the previous case:

• A discontinuous change in the length of the minimum time trajectory at two
critical angles (one of which is shown in Figure 2(b) and the other in Figure
2(h)). At the angle φ f = φ̄c in Figure 2(b)), the circle Z f touches Y0 and hence
the Y0LZ f solution has a line section of zero length. As φ f increases from φ̄c, the
solution switches to a Z0LYf solution shown in Figure 2(c).

• Appearance of arc-arc-arc solutions for φ f satisfying: φ f ∈ [φ̃c, φ̂c]. The lengths of
the solutions, vary continuously as the arc-arc-arc solutions appear or disappear.
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(a) A Y0L solution for φ f = 0. (b) A Y0LZ f solution for 0 < φ f < φ ∗f .

(c) Two minimum time Y0LZ f and Z0LYf so-
lutions when φ f = φ ∗f .

(d) A Z0LYf solution for φ ∗f < φ f < φc.

(e) A minimum time LYf solution when φ f =
φc.

(f) A minimum time Y0LYf solution when
φc < φ f < 2π .

Fig. 1 Variation of the minimum time solution with the final angle φ f for l ≥ r (3+ |sinφ0|).

• Just as in Case 1, for φ f = φ ∗f we see the appearance of two arc-arc-arc solutions
of equal length as shown in Figure 2(f). The lengths of the solution changes in a
continuous manner as a function of φ f .

• As mentioned in the first item of this case, when φ f = φ̄ ′c in Figure 2(h)), the
circle Yf touches Z0 and hence the Z0LYf solution has a line section of zero
length. When the angle φ f is decreased from this value, then the length of the
minimum time solution changes discontinuously.
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This discussion shows that the minimum time solution for Case 2 is unique and
its length is a continuously differentiable function of φ f for fixed l and φ0 is fixed,
except for at most four values.
Case 3: Please refer to Figure 3. In this case, l = 0. As the initial and final positions
coincide, there is no angle φ f for which an arc-line-arc solution with a non-zero
line segment is possible. The solutions for all angles φ f can be considered to be
arc-arc-arc solutions. The solutions are unique except for the case φ f = φ0 +π.

Instead of varying the final angle φ f while holding l fixed, we can vary l with
φ f fixed. We can for example reduce l from a large value greater than the critical
separation lc. Then the same arguments presented above still apply. The crux of the
matter is that the minimum time solution for the zero wind case is unique and is a
continuously differentiable function of φ f and l when φ0 is fixed, except for at most
four points. These features persist for the important case of non-zero, time-varying
wind vector field that is constant in the spatial coordinate, as will be seen later.

3 Existence of minimum time solution

Next, we will show that there exists a solution to the minimum time optimal con-
trol problem even when the wind is non-constant, time-varying and satisfying two
constraints. First, it is clear that there must be a bound on the wind speed so that
the aircraft is able to fly upwind. This assumption is needed for reachability, that
is, for a solution to exist. We will also need a bound on the rate of change of the
wind due to the bound on u Specifically, we will assume that W is a Lipschitz con-
tinuous function of t and x (which implies it is differentiable almost everywhere by
Rademacher’s Theorem [11]). Furthermore, suppose that:

A-1. ‖W‖∞ = supx,t ‖W (x, t)‖< V.

A-2. ‖ ∂W
∂ t ‖∞ +‖ ∂W

∂x ‖∞ (V +‖W‖∞)≤ β
√

V 2−‖W‖2
∞ umax,

where: ‖ ∂W
∂ t ‖∞ = supx,t ‖ ∂W

∂ t (x, t)‖2 and ‖ ∂W
∂ x ‖∞ = supx,t ‖ ∂W

∂ x (x, t)‖2, and 0 <
β < 1 is some constant.

Theorem 1. Suppose that W (x, t) is a time-varying (Carathéodory) vector field of
wind velocities satisfying assumptions A1 - A2. Then there exists a solution to the
minimum time optimal control problem for the system (1).

Proof: The theorem is proved using Filippov’s Theorem [14] on minimum time op-
timal control. A special case of this theorem applicable to our problem is given in
the Appendix as Theorem 2. This theorem requires that the set Q = [−umax,umax] be
convex which is true. Due to our assumptions on W (x, t), the function f (q, t,u) =
[V cosθ + W1(x, t) V sinθ + W2(x, t) u]T is differentiable a.e. with an essentially
bounded derivative in q =(x,θ) and continuous in t. The requirement that qT f (q, t,u)≤
C(‖q‖2 +1) for some C > 0 is true by the following:
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qT f (q, t,u) = V 〈x,(cosθ ,sinθ)〉+ 〈x,W (x, t)〉+θ u

≤ V‖x‖2 +‖W (x, t)‖2 ‖x‖2 + |θ |umax

≤ 2V‖x‖2 + |θ |umax

≤ max{2V,umax} (‖x‖2 + |θ |)
≤
√

2 max{2V,umax}
√
‖x‖2

2 + |θ |2

≤
√

2 max{2V,umax} (‖q‖2 +1).

As required by Filippov’s theorem, we will demonstrate that one solution exists to
the trajectory planning problem by modifying a Dubins’ solution for the zero-wind
case.

Setting the wind vector field to be identically zero, let r(τ) = (z(τ),θ(τ)) be the
Dubins’ solution (modulo identification) with minimum turn-radius R≥ Rmin where

R =
Rmin (‖W‖∞ +V )2

(1−β )V 2 . (3)

We will show later that this value of R allows the modified trajectory to satisfy
the constraint |u(t)| ≤ umax. The variable τ used to denote the Dubins’ solution
is proportional to the arc-length along this solution with proportionality constant
V. Hence, the function r(·) satisfies r(0) = q0 and r(τ f ) = q f for some τ f . The
initial condition θno wind(0) for the zero-wind case has to be chosen different from
θ(0) because at the initial time the aircraft is only capable of flying in the direction
of Z = W (x(0),0)+V (cosθ(0),sinθ(0)) and not V (cosθ(0),sinθ(0)). The angle
θno wind(0) is chosen according to: Z = ‖Z‖(cosθno wind(0),sinθno wind(0)). Using
this solution, we will obtain a solution to the trajectory planning problem when
W (x, t) 6= (0,0).
Let T be the unit vector tangent and N be the unit normal vector to the Dubins’
solution at a generic point r(·). In other words, T = 1

‖ dz
dτ ‖

dz
dτ . Select N so that it is

the outward pointing normal at the point z(τ) (see Figure 4). By Dubins’ theorem
[8], T is a piecewise continuous function.
We will construct a solution that will traverse the same points r(·) at times t, that
is, q(t) = r(τ) for some t and τ. Consider the following differential equation for the
time variable t:

dt
dτ

=
V√

V 2−‖W (z(τ), t(τ)‖2 +W 2
‖ (τ)+W‖(τ)

; t(0) = 0, (4)

where
W‖(τ)

4
= W (z(τ), t(τ)) ·T (z(τ)).

The differential equation (4) has a unique solution on [0,τ f ] because the denomina-
tor on the right hand side is strictly greater than zero by Assumption A-1 and hence
is Lipschitz continuous almost everywhere as a function of τ. As the right hand side
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of (4) is strictly greater than zero, t is a monotone increasing, Lipschitz function of

τ . Denote t f
4
= t(τ f ). By the previous discussion, for every t̂ ∈ [0, t f ], there exists a

τ ∈ [0,τ f ] such that t̂ = t(τ). By a slight abuse of notation, we will denote both t̂
and t by t in the following.
For any t ∈ [0, t f ], denote:

V̄ (t)
4
= V (cosθ(t(τ)),sinθ(t(τ))),

V̄‖(t)
4
= V̄ (t) ·T (z(τ)),

V̄⊥(t)
4
= V̄ (t) ·N(z(τ))

W⊥(t)
4
= W (z(τ), t(τ)) ·N(z(τ)).

To obtain the control law for one solution to the trajectory planning problem, set
θ(t) to be such that:

V̄⊥(t) =−W⊥(t). (5)

As there is a constraint on θ̇ (see (2)), it has to be shown that such a choice of θ(t)
can be made without violating the constraint. This is where the assumption A-2 is
needed.

Define ξ (t)
4
= V̄⊥(t)+W⊥(t). At t = 0, we can select θ(0) so that ξ (0) = 0 due

to the assumption A-1. Thereafter, we need to show that one can choose u(t) so that
dξ
dt = 0. This will imply ξ (t) = 0 or (5) is true. Now, we have the following basic
identities for T (t) and N(t) :

T (t) ·T (t) = 1 =⇒ T (t) · dT
dt

= 0

N(t) ·N(t) = 1 =⇒N(t) · dN
dt

= 0

T (t) ·N(t) = 0 =⇒ T (t) · dN
dt

+
dT
dt
·N(t) = 0

From the above equations and noting the planar nature of the curves, we get:

dT
dt

= −ω N (6)

dN
dt

= ω T (7)

where ω is either 0,
V̄‖+W‖

R or − V̄‖+W‖
R because V̄‖+W‖ is the tangential component

of the velocity (that is ẋ ·T ) along the Dubins solution. At the end of the proof, it
will become clear why ω must take these values. For example, in the case depicted

in Figure 4, we have ω =
V̄‖+W‖

R because dT
dt is directed in the opposite direction to

N.
Therefore:
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dξ
dt

=
dW
dt

·N +W · dN
dt

+
dV̄
dt
·N +V̄ · dN

dt

=ω(W +V̄ ) ·T +
dW
dt

·N +
dV̄
dt
·N

=ω(W‖+V̄‖)+
dW
dt

·N +
dV̄
dt
·N (8)

We now observe that:

dV̄
dt

= V (−sinθ ,cosθ) θ̇ = V (−sinθ ,cosθ)u

Let µ(t) = sign((−sinθ ,cosθ) ·N) . Observe that µ(·) is a piecewise function of t
because N is a piecewise continuous function of t. We pick u(t) to be:

u(t) =−µ
1

V̄‖

(
ω (W‖+V̄‖)+

dW
dt

·N
)

. (9)

We show that the choice of u(t) leads to dξ
dt = 0. First, observe that (see Figure 4):

|V (−sinθ ,cosθ) ·N|= V̄ ·T = V̄‖ (10)

Substituting (9) and (10) into (8) we get:

dξ
dt

=ω(W‖+V̄‖)+
dW
dt

·N +V u(−sinθ ,cosθ) ·N

=ω(W‖+V̄‖)+
dW
dt

·N− (ω (W‖+V̄‖)+
dW
dt

·N)

=0

All of the quantities on the right hand side of (9) are known at time t. More
importantly, u(·) is a measurable function of t because each of the functions on the
right hand side is measurable, and the denominator is always greater than zero by
Assumption A-1 and ξ (t) = 0.

Next, we show that |u(t)| ≤ umax for R chosen as in (3). For this, first observe
that the minimum value of V‖ is achieved when W (x, t) is directed orthgonal to T
and furthermore |W (x, t)|= ‖W‖∞. In this case, V̄‖ =

√
V 2−‖W‖2

∞.
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|u(t)|= 1
|V̄‖|

∣∣∣ω(W‖+V̄‖)+
dW
dt

·N
∣∣∣

≤(W‖+V̄‖)2

R |V̄‖|
+

‖ dW
dt ‖‖N‖√

V 2−‖W‖2
∞

=
(W‖+V̄‖)2

R |V̄‖|
+
‖ ∂W

∂ t + ∂W
∂x (V̄ +W )‖√

V 2−‖W‖2
∞

≤(W‖+V̄‖)2

R |V̄‖|
+β umax,

where the last inequality is due Assumption A-2. It is proved in the Appendix 4 that:

max
V⊥=−W⊥

(W‖+V̄‖)2

|V̄‖|
=

(‖W‖∞ +V )2

V
.

This yields:

|u(t)| ≤ (‖W‖∞ +V )2

RV
+β umax.

As R = 1
umax (1−β )

(‖W‖∞+V )2

V = Rmin (‖W‖∞+V )2

(1−β )V 2 , we have |u(t)| ≤ umax.

Now that existence of one solution with a measurable control has been shown,
let us see what form ẋ takes for this solution:

ẋ=V̄ (t)+W (φ(t), t)
=V̄‖(t)T +V̄⊥(t)N +W‖(t)T +W⊥(t)N

=(V̄‖(t)+W‖(t))T. (11)

Using the time variable τ for the Dubins’ solution, we have:

dx
dτ

= V T (τ).

Comparing the last two equations, we must have

dt
dτ

=
V

V̄‖+W‖
.

Using a similar argument that was used to obtain (6 - 7), we get for the Dubins’
solution:

dT
dτ

= −κ N (12)

dN
dτ

= κ T (13)
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where κ is either 0, V
R or−V

R , because the Dubins’ solution either has lines or curves
with constant turn radius R. From Equation (4) and (12), we obtain:

dT
dt

=
dT
dτ

dτ
dt

=−κ
V̄‖+W‖

V
N

which is consistent with Equation (6) and the constant ω that was introduced there.
This concludes shows the existence of a solution when the wind speed is not

zero.
Now consider the set of pairs all solutions and the final times: S = {(q(·), t f ) |q(0) =
q0; q(t f ) = q f ; t f ∈ R+}. We know that this set is non-empty. The elements of this
set can be ordered according to the final times t f . There must exist a minimal ele-
ment (q∗(·), t∗f ) by a special case of Filippov’s Theorem [14](See Appendix). 2

Remarks: Notice that when the wind is constant with speed W, then one can choose

β = 0 in A-2. Then for the Dubins’ solution for the existence part, R = 1
umax

(W+V )2√
V 2−W 2

.

In particular, when the constant wind has zero speed, we have R = 1
umax

V = Rmin.
We present a simple numerical example to illustrate the method used to show

existence of one solution. Consider a MAV with V = 50, minimum turn radius
Rmin = 35 and constant wind W (x, t) = 25(1,1). Then according to the remarks

after Theorem 1, we can choose R = R = Rmin
(W+V )2

V 2 = 102. The Dubins solution
with no wind and R = 102 is shown in Figure 5(a). The path is based on an Arc-
Arc-Arc solution from coordinates (35,76,0.5) to (24,85, π

4 ). The step-size used
was 0.1 and this path took 158 steps to travel. The next two figures are different
scenarios of a constant wind. The dark arrow symbolizes the wind direction. In each
figure, the spacing is wider where the wind seems to be helping the trajectory of the
MAV.

Figure 5(b) represents W = (25,25), which is wind directed toward the first quad-
rant. With the same step-size, travel on this path took 546 steps.

3.1 Uniqueness of the solution for a special wind vector field

Suppose the wind W (x, t) = W (t) depends only on the time variable, while still
satisfying the conditions (A-1) - (A-2). Then, we can the transform coordinates (with
the same time variable) as follows:

x̄ = ϕ(x, t) = x−
∫ t

0
W (s)ds and θ̄ = θ . (14)

In the new coordinates (x̄, θ̄), the equations take on the form:

˙̄x = V (cos θ̄ ,sin θ̄); ˙̄θ = u. (15)
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which is of the form considered by Dubins. We had seen earlier that except for
φ f = φ0 +π (where we have employed the notation in Figures 1, 2, 3), the minimum
time solution is unique. Even for the case φ f = φ0 + π , it is natural to identify the
two solutions, leaving us with unique minimum time solutions for all combinations
of initial, final positions and velocity directions. Therefore, in the coordinates (x̄, θ̄),
there exists a unique minimum time solution for all initial, final states. The inverse
transform is obviously:

x = ϑ(x̄, t) = x̄+
∫ t

0
W (s)ds and θ = θ̄ . (16)

There exists a minimum time solution by Theorem 1 for the original problem
with final states (x f ,θ f ). Let us denote this solution by q∗(t) = (x∗(t),θ ∗(t))
with minimum time t∗f . In the new coordinates, the final states are (x̄ f , θ̄ f )) =

(x f −
∫ t∗f

0 W (s)ds,θ f ). There exists a unique Dubins’ solution in the new coordi-
nates with final time t f . If t f 6= t∗f , then on inverse transformation, the point (x̄ f , θ̄ f ))

transforms to (x̄+
∫ t f

0 W (s)ds,θ f ) 6= (x f ,θ f ) which is a contradiction. Hence t f = t∗f ,
and the minimum time solutions in the initial and transformed coordinates are sim-
ply transformations of each other. As the solution in the transformed coordinates is
unique, the solution in the original coordinates are also unique.

4 Conclusion

In this paper, we have shown that a minimum time solution for the trajectory plan-
ning problem for a micro air vehicle with a minimum turn radius constraint in the
presence of a non-zero, time-varying wind vector field exists. For a non-zero, time-
varying wind vector field, we provide easily checked sufficient conditions under
which a time-optimal solution exists. We also shown uniqueness for almost every
initial and final conditions for the case of a wind vector field that varies with time,
but is constant in the spatial variable for each time instant. These results are of
critical importance in proving convergence of numerical algorithms for trajectory
planning [10].

APPENDIX I: Some results on the Dubins minimum time
solution

The goal of this section is to study arc-arc solutions that occur when the initial and
final positions sufficiently separated. Specifically, we show that for each value of
initial and final velocity vectors, there exists a minimum “separation” – denoted by
lc – between the initial and final positions beyond which there can only exist arc-
line-arc solutions. Using the methods of this section it is possible to compute this
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minimum separation (see Figure 8). This is useful in the numerical implementa-
tion of Dubins algorithm, as we can reject arc-arc-arc solutions apriori by simply
checking the given separation against the critical one.

Choose coordinates so that the initial position is at the origin and the final posi-
tion is on the positive x-axis. We hold φ0 as fixed and vary the final angle φ f and
position (l,0). For a given φ0 value there exists two circles tangent to the initial
velocity (denoted by A and B in Figure 7). A similar situation exists for the final
position. In the following, we will consider angles φ0 and φ f modulo π radians. It
can be seen in Figure 7 that rotation by π radians does not change the critical sep-
aration beyond which only arc-line-arc solutions exist. For a given φ f value (with
φ0 already fixed), there exists a certain critical separation lc that depends only on
φ0 and φ f for which one of the circles tangent to the final velocity vector is tangent
to one of the circles tangent to the initial velocity vector, without any of the other
circles intersecting each other. For example, when φ f ≤ φ0 the circles B and D can
be made tangent (figure 7(a)) by systematically reducing l from a large value. Sim-
ilarly, when φ f > φ0 > π

6 the circles B and C can be made tangent (figure 7(b)), by
reducing l from a large value. It is clear that for values of l greater than the critical
value lc there only exist arc-line-arc solutions as one needs the tangent circles to
intersect for an arc-arc-arc solution to exist (Dubins [8]).

The different possibilities when φ0 ≥ 0 are shown in Figure 6 (see also Figure
7). Case 1 corresponds to combinations of φ0 and φ f such that circles B and D are
tangential. Case 2 corresponds to combinations of φ0 and φ f such that circles B and
C are tangential. Cases 3, 4 corresponds to combinations of φ0, φ f such that circles
A and C are tangential. The difference between the two is in the computation of the
critical separation. To be precise, angle α ≤ φ f −φ0 for Case 3, while φ f −φ0 ≤ α
for Case 4. For each of these cases, the computation of the critical separation has to
be done using a different method. These are presented next.

Firstly, consider Case 1 that corresponds to φ f ≤ φ0 (see figure 7(a)). In this
case, the circles B and D are tangential. In ∆T SD, let ∠ST D = β , l(T D) = x and
l(T S) = l. It is easy to see that ∠T SD = π

2 + φ f . Applying the sine-rule to ∆T SD
we get:

cos(φ f )
x

=
sin(β )

r
=

cos(φ f +β )
l

.

In ∆T SD, ∠BT D = π
2 −φ0−β . Applying the cosine rule:

4r2 = r2 + x2−2rx sin(φ0 +β ).

We thus have two equations in two variables:

xsin(β )− r cos(φ f ) = 0

x2−2rx sin(φ0 +β )−3r2 = 0.

We can employ an invertible coordinate change: (x,β ) 7→ (y,z) given by xsin(β ) = y
and xcos(β ) = z. Then: y = r cos(φ f ) and
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z2−2rzsin(φ0)−2rycos(φ0)+ y2−3r2 = 0.

The latter equation is of the type: z2 + bz + c = 0 with b, c < 0 which implies that
there exist a unique positive and real solution z. This yields a unique solution for the
critical separation lc.

Secondly, consider Case 2 which is easiest to handle (figure 7(b)). In ∆OCS,
∠CSO = π

2 −φ f . Let ∠COS = ψ so that ∠OCS = π
2 +φ f −ψ . Let l(OC) = x1 and

l(OS) = l1. Applying the sine rule for triangles we get:

sin(ψ)
r

=
cos(φ f )

x1
.

Turning to ∆OBT , ∠BTO = π
2 −φ0. Let ∠BOT = ψ so that ∠OBT = π

2 + φ0−ψ .

Let l(OB) = x2 and l(OS) = l2. As x1 + x2 = 2r, we get: x1 = 2r cos(φ f )
cos(φ0)+cos(φ f )

and

x2 = 2r cos(φ0)
cos(φ0)+cos(φ f )

. We can further solve for l1 and l2 and obtain l = l1 + l2 from:

l2
1 = x2

1 + r2 +2x1r sin(φ f −ψ),

l2
2 = x2

2 + r2 +2x2r sin(φ0−ψ).

Thirdly, we consider Case 3, which consists of 0≤ φ0 ≤ π
6 and φ0 ≤ φ f ≤ φ #

f (see
Figure 7(c)). The angle φ #

f can be understood as follows. When φ0 > 0 and φ f = 0,
the circles B and D become tangential first when l is reduced from a large value.
As φ f is increased from 0, it is found that when φ f = φ0, the circles A – C and B –
D become tangential simultaneously with lc = 2r, if and only if 0≤ φ0 ≤ π

6 . When
φ f = φ0 = π

6 , we have A,B and C tangent simultaneously and at the same time B, C
and D are tangent simultaneously. If φ0 > π

6 , it is not possible to make circles A and
C tangent to each other without the other circles intersecting, for any angle φ f

1 In
the other case of 0 ≤ φ0 ≤ π

6 , there exists an angle φ ∗f for which circles A, B and C
become tangential (see Figure 7(d)). Values of φ f < φ ∗f are further sub-divided into
Cases 3 and 4 that depend on the relative position of the centers of the circles A, C
and D. There exists an angle φ #

f ≤ φ ∗f such that the centers of A, C and D collinear.
We call the case φ f ≤ φ #

f as Case 3 and φ #
f ≤ φ f ≤ φ ∗f as Case 4 (Figure 7(e)).

In ∆OAC:
sin(φ f −φ0)

2r
=

sinα
l(OC)

=
sin(α−φ f +φ0)

l(OA)

In ∆ATC:
sin(α + γ)

2r
=

sin(α)
l(TC)

=
sin(γ)

r
.

In ∆OTC:
sin(φ f −φ0)

l(TC)
=

sin(α−φ f +φ0 + γ)
r + l(OA)

.

1 To be precise, if l > 2r and φ f = φ0 > π
6 , then B and C become tangential first leading to Case 2.
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To find l(TC) which is the critical separation, denote by l1 = l(OA)): Also denote
z = [α , γ , l1]T . Then we have the equations:

f (z) =




l1 sin(φ f −φ0)−2r sin(α +φ0−φ f )
sin(α + γ)−2sin(γ)
2r sin(α + γ−φ f +φ0) sin(α)− (r + l1) sin(α + γ) sin(φ f −φ0)


 = 0

We can solve for z using Newton’s method and then compute l(TC). A similar
approach is used to compute l(TC) in Case 4. The results of the computation can be
found in Figure 8.

APPENDIX II: Basic Results on Optimal Control

The following is a specialization of Filippov’s theorem [14] on the existence of
minimum time optimal control for the system

q̇ = f (t,q,u) (A-i)

where q and f are n dimensional vectors, u is r dimensional control parameter,
which for every t and u takes values in a fixed convex set U ⊂ Rn. The vector func-
tion f (t,q,u) is continuous in all variables; differentiable a.e. with respect to q; and
qT f (t,q,u)≤C(‖q‖2 +1) for some C > 0, for all t and q, and all u ∈U. Filippov’s
theorem [14] asks for continuous differentiability of f (t,q,u) in the q variable, but
a study of the proof shows that only differentiability a.e. is needed. By requiring
f (t,q,u) to be Lipschitz continuous in x is enough for Filippov’s theorem to be true.
By the continuity of f in the u variable, the set R(t,q) = { f (t,q,u) |u ∈ Q} is a
convex set for each t and q. For the system (A-i) satisfying the above conditions,
consider the problem:

min T such that q(0) = q0 and q(T ) = q∗. (A-ii)

Theorem 2. [14] Suppose that the conditions above are satisfied, and that there
exists at least one measurable function ũ with ũ(t) ∈U such that the solution q̄(t)
with u = ū(t) and initial condition q̄(0) = q0 attains q∗ for some t∗ > 0. Then there
also exists an optimal control for Problem (A-ii), i.e., a measurable function u(·)
with u(t) ∈U.

APPENDIX III: Maximum value of (W‖+V̄‖)2

|V̄‖|

Here, we will prove that:
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max
V⊥=−W⊥

(W‖+V̄‖)2

|V̄‖|
=

(‖W‖∞ +V )2

V
.

Denote: x = V̄‖ and y = W‖. Then:

f (x) =
(W‖+V̄‖)2

|V̄‖|
=

(y+ x)2

x
.

As W‖ =
√

W 2−V 2 +V̄ 2
‖ due to the condition V̄⊥ =−W⊥, we have:

f (x) =
‖W‖2

∞−V 2

x
+2

√
‖W‖2

∞−V 2 + x2 +2x.

The critical points where f takes its maximum or minimum values are points where
f ′(x) = 0 and the boundary points x = V, x =

√
V 2−‖W‖2

∞.
Differentiating f with respect to x we get:

f ′(x) =
V 2−‖W‖2

∞
x2 +

2x√
‖W‖2

∞−V 2 + x2
+2.

For simplicity, denote z = V 2−‖W‖2
∞

x2 . It is clear from Assumption A-1 that z > 0.
Then:

F(z) = f ′(x) = z+
2√

1− z
+2.

Setting F(z) = 0 we get the two points: z = 0 or z =−3. As neither of these points lie
in the domain of z, we check the value of f (x) at the boundary points: x1 = V and
x2 =

√
V 2−‖W‖2

∞. At x1, y =
√
‖W‖2

∞−V 2 + x2 = ±‖W‖∞; while at x2, y = 0.
Comparing the values of f (x1) and f (x2), we find f (x1) > f (x2). Therefore:

max
V⊥=−W⊥

(W‖+V̄‖)2

|V̄‖|
=

(‖W‖∞ +V )2

V
.
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(a) A Y0L solution for φ f = 0. (b) A Y0Z f solution for φ f = φ̄c.

(c) A switch to a Z0LYf solution for φ f > φ̄c. (d) A continuation of the previous case.

(e) A Z0Yf solution when φ f = φ̃c. (f) Two arc-arc-arc Z0AZ f and Y0BYf solu-
tions when φ f = φ ∗f .

(g) A Y0Z f solution when φ f = φ̂c. (h) A Z0Yf solution for φ f = φ̄ ′c.

Fig. 2 Variation of the minimum time solution with φ f for 0 < l < r(3+ |sinφ0|).
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(a) An arc-arc-arc Y0AYf solution for l = 0, |φ f −
φ0|< π.

(b) Two arc-arc-arc Z0AZ f and Y0AYf solutions
for l = 0, φ f = φ0 +π.

Fig. 3 Variation of the minimum time solution with the final angle φ f for l = 0.
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(a) Possibility 1.

(b) Possibility 2.

Fig. 4 Relation between V̄ , N, and T.
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(a) Dubins Solution.
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(b) Wind in 1st Quadrant.
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(c) Wind in 2nd Quadrant.

Fig. 5 Illustration of the construction of a solution for non-zero wind.
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Fig. 6 Flow chart for the case 0≤ φ0.
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(a) Case 1: Circles B, D are tangential.

(b) Case 2: Circles B, C are tangential.

(c) Case 3: Circles A, C are tangential with φ f −
φ0 ≤ α.

(d) Transition from Case 3 to Case 2 at φ f = φ∗f :
Going from A and C tangential to B and C tan-
gential.

(e) Case 4: Circles A, C are tangential with α ≤
φ f −φ0.

Fig. 7 Study of arc-arc Dubins solutions.
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Fig. 8 Critical length to Radius ratios.


