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Abstract–In this paper, we combine the theoretical result
of Pontryagin’s Minimum Principle and a new numerical
method to obtain a fast algorithm for the trajectory de-
sign problem for a reusable launch vehicle. We work with
the outer-loop equations for an aircraft and consider the
angle-of-attack to be the input. We cast the trajectory
design problem as an optimal control problem and use
Pontryagin’s Minimum Principle to obtain first order nec-
essary conditions. These are in the form of a two-point
boundary-value problem (TPBVP) and we solve them by
means of the Modified Simple Shooting Method (MSSM).
In recent work, the MSSM has been shown to be superior,
both in speed and accuracy, for TPBVPs.
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NOMENCLATURE

TPBVP Two point boundary value problem
MSSM Modified Simple Shooting method
x State variables
λ Costate variables
V Velocity of the air vehicle with respect

to an earth fixed frame
γ Flight path angle
X Downrange
H Altitude
L Lift
D Drag
CD Drag coefficient
CL Lift coefficient
m Mass of vehicle
g Acceleration due to gravity
T Time unit (90 s)
α Angle of attack, the control parameter
K1,K2 Parameters in cost function
ε, ε1 Tolerances in the MSSM algorithm
H Hamiltonian function

1. INTRODUCTION

Recently several authors have studied the problem of tra-
jectory redesign for hypersonic aircraft [7], [6]. The usual
procedure for solving such problems is to set it up as a
constrained optimal control problem. Lu and Schierman
used direct methods to numerically solve the optimal con-
trol problems. Alternatively, one could use Pontryagin’s
Minimum Principle to obtain first–order necessary condi-
tions for the optimal control problem and obtain a two–
point boundary–value problem (TPBVP).

Originally created to solve two-point boundary value
problems (TPBVPs), the Modified Simple Shooting
Method (MSSM) has been shown to be superior, both in
speed and accuracy, to known methods for solving TP-
BVPs [2]. Since optimal control problems can be for-
mulated with differential equations and boundary condi-
tions, it seems feasible to propose that the MSSM could
be used to solve problems in optimal control. Here, the
original MSSM algorithm (given with detail in [2]) was
altered and used in conjunction with Pontryagin’s Mini-
mum Principle in an attempt to solve an optimal control
problem in trajectory generation.

In this paper, we consider the problem of trajectory re-
design of the unpowered reentry phase for a hypersonic
air vehicle. We consider outer loop equations governing
the motion of the center of mass and consider the angle of
attack to be the input variable. The lift and drag forces
for the aircraft considered were obtained from a polyno-
mial neural network approximation of experimental data.
Effector deflections were chosen so that the aircraft un-
derwent trimmed flight.

2. MODIFIED SIMPLE SHOOTING

The Modified Simple Shooting Method has been used to
successfully solve TPBVPs [2]. Using Pontryagin’s min-
imum principle [5], we can obtain first-order necessary
conditions for an optimal control problem and apply an
adapted version of the MSSM to solve the resulting TP-
BVP.
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Suppose we want to minimize the cost function

J =
∫ t1

t0

l(x, u) dt (1)

subject to

ẋ = f(x, u), (2)

x(t0) = x0, x(tf ) = xf fixed, (3)

u(·) ∈ Ω(t). (4)

The following equation can be formed from (1) and (2),

λ̇(t) = −f ′xλ(t)− l′x, (5)

where λ are called the costates. The pre-Hamiltonian is
defined by

H(x, u, λ) = λ′(t)f(x, u) + l(x, u). (6)

Let x∗(t), u∗(t) be the optimal solution. Then Pontrya-
gin’s Minimum Principle provides the Hamiltonian [4],[5]:

H(x∗(t), u∗(t), λ(t)) = inf
v∈Ω(t)

H(x∗(t), v, λ(t)) (7)

for all t ∈ [t0, tf ]. The above equation can also be stated
as:

u∗(t) = argmin
v∈Ω(t)

H(x, v, λ). (8)

Equations (2),(3),(5), and (7) constitute a TPBVP. To
solve the problem, one needs to compute the value of
λ(t0). Once this is done, the functions x(t), u(t), are
known for all t ∈ [t0, tf ]. We propose to use the MSSM
[2] to solve this TPBVP.

Two assumptions are needed for convergence of the algo-
rithm [2].

Assumption 2.1:There exists an unique solution to the opti-
mal control problem (2–5).

Assumption 2.2:Let λ̂(t0) be the initial condition of the
costates that results in the solution(x(t), λ(t) to (2–5). For
every initial conditionλ̂(t0) within a small neighborhood of
λ∗(t0) there is a unique solution defined on[t0, tf ]. The solu-
tion is continuously differentiable with respect to changes in
the initial conditions of the costates.

The algorithm proceeds as follows: Given a distance met-
ric d(·, ·) on Rn,

• Choose λ(0) and reference path φ(t) such that φ(t0) =
x0, φ(tf ) = xf , and φ(t) is sufficiently close to the op-
timal solution. Pick sufficiently small numbers ε1 and ε
such that ε1 > ε.
• At time-step k:
– Compute u(k) using x(k), λ(k) and (8).
– Integrate (2), (5), and compute x(k + 1), λ(k + 1).

– If d(φ(k + 1), x(k + 1)) > ε1, then apply the modi-
fied Newton’s method and correct λ(0) so that d(φ(k +
1), x(k + 1)) < ε. Let k = k + 1.
– Else (we have reached the final time), apply the

modified Newton’s method and correct λ(0) so that
d(xf , x(tf )) < ε.
– Stop.

Notice in this adapted version of the algorithm, initial
values are guessed and corrected for the costates λ. If ε1

is too small, the numerical method might have difficulties
in convergence. From calculus of variations it is known
that changes in the costates will affect the outcome of the
states. Optimization of the control variable is performed
at each step of the algorithm.

3. REENTRY VEHICLE EXAMPLE

The following equations are sometimes used to model a
reentry vehicle during approach and landing. Here, only
the equations of longitudinal motion are considered, de-
scribing the motion of the center of mass of the vehicle
subject to external forces. This set of equations applies
primarily to the performance of the vehicle, while the sets
of moment and elastic equations are less influential [1].

For t ∈ [t0, tf ], the equations of motion are given as

V̇ =
(−D

m
− g sin γ

)
(9)

γ̇ =
(

L

mV
− g

V
cos γ

)
(10)

Ẋ = V cos γ (11)

Ḣ = V sin γ, (12)

where V is the velocity, γ is the flight path angle, X is
the downrange position, and H is the altitude. Lift and
drag are given by

L = q̄SCL(α) (13)

D = q̄SCD(α) (14)

q̄ =
1
2
ρ(H)V 2, (15)

with the value ρ(H) as the standard atmospheric den-
sity dependent upon the altitude H. The values CD and
CL are the coefficients for drag and lift, respectively and
dependent upon the angle-of-attack, α (see Section 4 for
details).

Constraints on the control variable and states at any
given time t are

0◦ < α < 15◦ (16)

H(t) > 2177 ft (17)

V (t) > 290 ft/sec (18)
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The cost function, used to minimize the pitching moment
M0 of the wing body, is

J =
∫ t

0

[
K1(α− αdes)2 + K2γ̇

2
]

dt (19)

where αdes = 5◦, the angle at which the minimum wing-
body static pitching moment occurs for the vehicle.

For this example, the initial conditions given for t = 0
seconds are

V (0) = 466 ft/sec (20)

γ(0) = −29◦ (21)

X(0) = −15754 ft (22)

H(0) = 10066 ft. (23)

The final condition is H(tf ) = 2274 ft, with constraints
on the final values for V , X and Ḣ as follows.

V (tf ) > 342
0 ft < X(tf ) < 6000 ft

Ḣ(tf ) > −39 ft/sec (24)

Using the constraint on Ḣ, one may obtain a final con-
straint γ(tf ) > −6.5◦.

4. NUMERICAL RESULTS

Before applying the algorithm, the equations of motion
(9-12) were scaled so that the solutions were of the same
magnitude. Scaling constants were g = 32.2 ft/s and
T = 90 s. Accelerations were scaled by g, velocities were
scaled by gT , and positions were scaled by gT 2.

Each of the sources for lift and drag coefficients were ob-
tained from a polynomial neural network (PNN) model
of aerodynamics data containing the information for lift
and drag on a solid body with aerodynamic forces acting
on it. A polynomial fit to this PNN was used as the first
source of lift and drag. The second source was created
using the PNN in conjunction with an aircraft model to
develop a table of aerodynamics data on an aircraft un-
dergoing trimmed flight.

Normal Flight Condition

For the first attempt at solving this optimal control prob-
lem, the lift and drag coefficients were approximated with
polynomials of the angle of attack α [3].

CD = 0.0008α2 − 0.0015α + 0.1269 (25)

CL = 0.0737α− 0.0460 (26)

The set of polynomials was the simplest form of the lift
and drag coefficients to implement. Thus, it was used
first to obtain an initial solution and to compare with
future results.

Optimization was accomplished using a necessary con-
dition for the minimum of the Hamiltonian: if α is the
optimal control for (2), then Hα(x, α, λ, t) = 0. Hα was
calculated and set equal to zero to get a formula for ob-
taining the optimal control α. This routine is justified
in that, for this cost function (1), Hαα > 0, thus the
extremal α is in fact a minimum.

The algorithm obtained a solution in 2.18 seconds with
four iterations of the loop (see Figure 1). Corrections
to λ(0) occurred until the solution at time k fell within
ε1 = 0.15 of the reference trajectory. Integration was
halted when the solution at the final time was within
ε = 0.01 of x1. For this case, the control profile stays
within the given constraints for α (16) (see Figure 2).

Normal Flight Condition with Trimmed Flight

Using the MSSM with the tables reflecting lift and drag
coefficients from trimmed flight, results were obtained for
a normal flight situation.

TOMLAB’s ucsolvefunction was used for the solution of
(7). Convergence of the MSSM occurred after 331 sec-
onds. The intermediate tolerance ε1 was set at 0.1, with
the final tolerance ε at 0.25. The control profile remains
within bounds (see Figure 4).

A Failure Case with trimmed flight

Since the adapted version of the MSSM seemed to work
sufficiently well in solving a “normal” flight case, it was
used to attempt a solution for the case where one con-
trol surface had failed to respond to commands. That is,
one of the four control surfaces on the aircraft’s body has
failed and is locked in position. Failures of the aircraft
control surfaces can cause increases in drag, decreases in
lift, and overall instability of the aircraft. The pilot or pi-
loting program then becomes incapable of deflecting the
failed control surface to maintain stable flight.

For this particular situation, the aircraft’s left flap has
failed at 30◦ down. This was modeled by the lift and drag
coefficients, which were obtained from a table of aerody-
namics data formed from the PNN with an aircraft model
whose left flap was deflected at 30◦ down. The same im-
plementation for the MSSM was used as in Section 4.
The final time was changed to tf = 81 seconds for feasi-
bility. The tolerances were relaxed also, with ε = 1 and
ε1 = 0.2. The algorithm took 2576 seconds to converge,
and constraints were violated for V and Ḣ (24) (see Fig-
ure 5). However, the control profile stays within the given
constraints (Figure 6).

5. CONCLUSIONS

The MSSM was shown to be successful in solving the sen-
sitive optimal control problem of trajectory design. The
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Figure 1. States resulting from MSSM using polynomials for drag and lift coefficients

unfailed case resulted in a reasonable solution and con-
trol profile. It may be that the failed case is an infeasible
problem to solve without allowing for some increased an-
gular accelerations. More investigation is needed before
substantial conclusions can be made on the failure situa-
tion.

Current research involves reformulating the problem to a
time-invariant set of equations using the monotonically
increasing function X(t). Future work includes attempt-
ing other cost functions in place of (1). Other failures are
to be explored using this algorithm. Continued research
on this and better implementations of the algorithm will
provide improved solutions for the trajectory design op-
timal control problem.
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Figure 2. Control profile from MSSM using polynomials for drag and lift coefficients
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Figure 3. States resulting from MSSM using tables for trimmed flight
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Figure 4. Control profile from MSSM using tables for trimmed flight
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Figure 5. States resulting from MSSM using tables for trimmed flight
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Figure 6. Control profile from MSSM using tables for trimmed flight

7


