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Abstract–Given a time history of desired moments, the
control allocation problem is to solve for the effector in-
puts so that some norm of the error between the achieved
and desired moments is minimized. Existing methods
solve for the actuator deflections, while accounting for
Magnitude and rate limitations of the effectors. In
this paper, we propose the Dynamic Control Allocation
(DCA) Method, that also accounts for effector dynam-
ics, in addition to magnitude and rate limits. We show
through numerical experiments that the DCA method al-
locates the desired moments according to effector band-
widths - that is the slow effectors are allocated the lower
frequencies in the desired moments. The numerical simu-
lations also show that the DCA outperforms the existing
simplex algorithm based LP method, that does not ac-
count for actuator dynamics.
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NOMENCLATURE

DCA Dynamic Control Allocation
Gδ,des(t) 3-vector of desired moments at time t
Gδ(t) 3-vector of moments achieved by

the effectors at time t
E(t) Moment error = Gδ,des(t)−Gδ(t)
‖f‖p The p norm of the function f for 1 ≤ p ≤ ∞
f̂ The Fourier transform of the function f
Lp(I) The space of functions defined on the

interval I with bounded p norm
J(u) The functional to be optimized as a

function of the control input u

1. INTRODUCTION

The problems of control allocation and reconfigurable
control have recently been widely studied. A review
of existing methods can be found in Bodson [1]. Due

to onboard, real-time computational constraints, exist-
ing methods address the problem of control allocation at
each discretized time-step separately and attempt to min-
imize the difference between the desired and the achiev-
able moments, while accounting for rate and magnitude
limits on the effectors. This approach can be found in
Buffington [2], and Doman, Ngo [3]. The downside of
this approach is that the dynamics of the actuators are
not taken into account, and this could mean that the mo-
ments actually achieved might be significantly different
from the computed moments. This becomes a problem
in reconfigurable control because the goal of reconfigura-
tion is to recover from damaged effectors. Burken et al.
[4] and Pachter et al. [5] try to include actuator dynam-
ics by first solving an LQR problem and then solving for
the closest achievable moments when rate and magnitude
limits are present. We propose to solve for the inputs to
the effectors in one step via an optimization procedure.

In this paper, we propose the Dynamic Control Allocation
(DCA) method that takes into account individual effector
dynamics as well as rate and magnitude limits. We uti-
lize an effector model that incorporates these effects, to
predict the moments achieved for some input. The DCA
method minimizes the difference between the desired and
”predicted” achievable moments over all possible inputs
to the effector model. For effectors whose dynamics can
be modeled by a linear system, our method leads to a
convex optimization problem.

A different approach was taken in our earlier work [6]
where we assumed the control allocation was solved by
existing methods and constructed a controller for an effec-
tor with magnitude-limited first-order dynamics so that
it can follow the commanded deflection. However, the
analysis gets quite complicated for effectors with higher-
order dynamics, while the method presented here is less
complex.

Mathematical Preliminaries

Let I = [t0, t1] be an interval of time over which the
control allocation problem is required to be solved. Let
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Gδ,des(t) denote the 3-dimensional vector of desired mo-
ments and δ(t) denote the n-dimensional vector of control
effector positions at time t ∈ I. We assume n ≥ 3. The
space of functions Gδ(t) and Gδ,des(t) where t ∈ I, is a
vector space on which we can consider several types of
norms. The useful norms that could be considered are
defined as follows:

‖f‖p =
(∫

I

|f(t)|p dt

) 1
p

(1)

‖f‖∞ = ess sup
t∈I

|f(t)| (2)

If ‖f‖p < ∞ for some p such that 1 ≤ p ≤ ∞ then f is
said to be in the normed vector space Lp(I).

The control allocation problem can be formulated in the
time-domain in terms of the moment-error, or in the
frequency domain by considering the Fourier transform
of moment-error. The Fourier transform of a function
f ∈ L1(I) is the function f̂ defined by:

f̂(ω) =
1√
2π

∫

I

f(t)e−jωtdt, (3)

where j =
√−1. Then we have the following useful theo-

rem:

Theorem 1.1:(Rudin [7])

• If f ∈ L1(I), thenf̂ ∈ C0(IR), and‖f̂‖∞ ≤ ‖f‖1.

• If f ∈ L2(I), then‖f̂‖2 = ‖f‖2 (Parseval-Plancheral).

Here C0(IR) is the supremum-normed Banach space of all
complex continuous functions on IR that vanish at infin-
ity. The Fourier transform of a vector-valued function is
defined component-wise. If E(t) = [E1(t) E2(t) E3(t)]T ,

then Ê(jω) = [Ê1(jω) Ê2(jω) Ê3(jω)]T . If Ei(t), i =
1, 2, 3 ∈ L1(I) or L2(I), then Theorem 1.1 can be ap-
plied as follows:

‖Ê(·)‖∞ := max
i=1,2,3

‖Êi(·)||∞ (4)

≤ max
i=1,2,3

‖Ei(·)||1 (5)

≤
3∑

i=1

‖Ei(·)||1 (6)

= ‖E(·)‖1; (7)

and ‖Ê(·)‖2 :=

(
3∑

i=1

‖Êi(·)||22
) 1

2

(8)

=

(
3∑

i=1

‖Ei(·)||22
) 1

2

(9)

= ‖E(·)‖2. (10)

In the control allocation problem, E(t) is taken to be the
difference between the desired moments and the achieved
moments.

2. CONTROL ALLOCATION

Suppose there are n control effectors. The effectors are
assumed to satisfy the differential equations:

ẋi(t) = fi(xi(t), ui(t)), (11)

δi(t) = hi(xi(t), ui(t)) i = 1, · · ·n, t ∈ I (12)

The vector functions fi and hi could be nonlinear due to
rate and/or magnitude limitations. The control effective-
ness functionB(p(t), ·) maps δ(t) = [δ1(t) · · · , δn(t)]T to
the 3-dimensional vector of moments Gδ(t) produced by
the effectors:

Gδ(t) = B(p(t), δ(t)); t ∈ I, (13)

where p(t) is a set of parameters such as Mach number,
angle of attack and side slip angle. It is assumed in this
work that the time scale on which B(p(·), ·) changes is
much larger than the length of the interval I. This as-
sumptions is justified because the parameters p(t) are
typically slowly changing. Thus we regard B(p(t), ·) to
be denoted by B(·), so that:

Gδ(t) = B(δ(t)); t ∈ I. (14)

Note that this general definition can also be used to model
actuator interactions. Define E(·) = Gδ,des(·) − Gδ(·) to
be difference between the desired and achieved moments.
As usual, we denote Ê(ω) as the Fourier transform of
E(t).

The control allocation problem can be posed in several
ways:

Problem Statement 1: Obtain the control inputs to the
effectors ui(t); i = 1, · · ·n, t ∈ I, so that ‖E(·)‖p is min-
imized for some p such that 1 ≤ p ≤ ∞.

Problem Statement 2: Obtain the control inputs to the
effectors ui(t); i = 1, · · ·n, t ∈ I, so that ‖Ê(·)‖q is min-
imized for some q such that 1 ≤ q ≤ ∞.

To begin the development of the DCA, denote Jp(u) =
‖E(·)‖p and J̃q(u) = ‖Ê(·)‖q. Also denote up =
arg min
u∈L1(I)

Jp(u) and ũp = arg min
u∈L1(I)

J̃p(u). Then it is clear

from the discussion in the mathematical preliminaries
that:

• ‖Ê‖∞ ≤ ‖E‖1 =⇒ min
u

J̃∞(u) ≤ min
u

J1(u);

• ‖Ê‖2 = ‖E‖2 =⇒ min
u

J̃2(u) = min
u

J2(u).

From the second result, we see that the same solution u2

minimizes the 2-norm of the moment-error or its Fourier
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transform. The same is true when min
u

J1(u) = 0 (or

equivalently, min
u

J̃∞(u) = 0). Constraints on the set

in which u belongs could lead to min
u

J1(u) 6= 0. By

our notation, u1 = arg min
u∈L1(I)

J1(u), and it is possible

that there exists u∞ = arg min
u∈L1(I)

J̃∞(u) that satisfies

J̃∞(u∞) < J̃∞(u1). If our goal is to allocate controls ac-
cording to bandwidth of the actuators, then it seems that
a more natural cost function would be J̃∞(u), rather than
J1(u). We call the solutionu∞ as the optimal solution.How-
ever, as the minimization problem is more easily solved in
the time-domain (which leads to the solution u1), we ob-
tain a sub-optimalsolution. The 1-norm is used frequently
in Control allocation literature as it leads to linear pro-
gramming approaches to the numerical solution [1], [2],
[3].

Existing methods allocate control at a time instant t by
minimizing the moment-error at that time alone [1], [2],
[4], [5], [3]. One can see that as the interval I in our
discussion collapses to one point, we obtain the existing
methods. Some methods take into account actuator rate
and magnitude limits in the control allocation problem
but do not include actuator dynamics [1], [2], [3]. Other
methods try to include actuator dynamics by first solving
an LQR problem and then solving for the closest achiev-
able moments (using LP or QP) when rate and magnitude
limits are considered [4], [5].

Our proposed method includes both actuator dynamics
as well as rate and magnitude limits on the actuators.
Suppose that the Equations 11 are integrated to yield:

xi(t) =
∫ t

t0

fi(xi, ui) dt (15)

δi(t) = hi(xi(t), ui(t)) i = 1, · · · , n (16)

where t ∈ I. We consider the “current” time to be in I
and the problem is to solve for u(t) for the entire inter-
val I. Once this is done, the inputs corresponding to the
current time is applied to the actuators.

We discretize the time axis into instants τk, k = 0, · · · ,K
such that τ0 = t0 and τK = t1. The problem is then:

min
u

J(u) = min
u
‖E(·)‖p (17)

= min
u
‖B(δ(·))−Gδ,des(·)‖p, (18)

where p = 1 or 2. There is no constraint on the set to
which u belongs. When the system dynamics are linear,
then δ(·) is a linear function of u(·). Furthermore, if the
achieved moments B(δ(·)) can be approximated by a lin-
ear function B1 δ(·) where B1 is a 3×n matrix, then J(u)
is a convex functional of the input function u(·). The lin-
ear approximation of the control effectiveness function is
valid when I is a small enough interval and can be seen
in works of other researchers [1], [2], [3].

3. NUMERICAL EXPERIMENTS

We consider control effectors such as flaperons, rudders
only in the following numerical study. We assume the
air vehicle is on an unpowered descent so that the engine
is not used, though it should be noted that our method
is general enough to handle complex engine models also.
Each effector is considered to be a 2nd order linear sys-
tem with magnitude and rate limitations as shown in Fig-
ure 1. In the figure, the signals δj

des correspond to uj in
Equations 15 and 16. The constants for the actuators are
shown in Table 1.

The control effectiveness matrix was taken to be:

B =




1 1 1 1
0.5 0.5 1 1
2 2 1 1


 . (19)

The numerical experiments were conducted with t0 equal
to the current time and the interval I only included the
current time, so as to allow a comparison with existing
methods. The time-axis discretization used was 0.02 sec-
onds. The minimization of the cost function 18 with p = 2
was performed with the ’ucSolve’ routine in TOMLAB.
The constants K1 and K2 in Figure 1 are computed using
the values for the natural frequency ω and damping coef-
ficient ζ in Table 1 according to: K1 = 2ζω and K2 = ω2.

Figure 2 shows the result of the numerical experiments
with I = {t0}. The desired moments Gδ,des(·) were taken
to be 2 sin( 5t2

tf
)[1 1 1]T + [3.2 2.4 4.8]T , where tf = 9.

Figure 2(a) shows the desired moments and the moments
achieved by our proposed Dynamic Control Allocation
(DCA) method. It also shows the moments commanded
and achieved by the simplex method based LP algorithm
in Bodson [1]. For the latter method, the commanded
deflections δdes were computed only considering the rate
and magnitude limits on the effectors and ignoring the
dynamics. The commanded moments in Figure 2(a) are
then given by B δdes. Then the commanded deflections
are applied to a model of the actuators and the achieved
moments are computed according to B δ. One can see
that though B δdes tracks the desired moments well, the
achieved moments are far from satisfactory. On the other
hand, the DCA method produces achieved moments that
track the desired moments better.

Figure 2(b) shows the commanded and response deflec-
tions of the effectors. One can clearly see that initially the
slow changing moments are allocated to the rudders (with
the slow dynamics). As time increases, the rudders prove
incapable of tracking the faster changing signals and the
flaps take up the slack at an increasing rate. Thus both
optimal-tracking and allocation of moments according to the
bandwidth of the actuators are achieved simultaneously.One
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Figure 1. Effector schematic diagram

NaturalFreq. DampingCoeff. RateLimit MagnitudeLimit
rad/sec Deg/sec (low,high)Deg

Flap1 15 0.75 4 (0, 1.5)
Flap2 15 0.75 4 (0, 1.5)
Rudder1 5 0.75 2 (0, 1.5)
Rudder2 5 0.75 2 (0, 1.5)

Table 1. Actuator parameters for Figure 2.

can also see that the commanded signals δdes violate both
the rate and magnitude limits as opposed to the existing
LP method; however, the actual rate and position limits
are satisfied by δ.

4. CONCLUSION

In this paper, we proposed a new control allocation
methodology that takes into account rate and magnitude
limits on the effectors, as well as their dynamics. Exist-
ing methods only take into account rate and magnitude
limits. We solve for the inputs to the effectors so that the
achieved moments match the desired moments over an in-
terval of time. One of the interesting results obtained was
that of frequency separation - the slower effectors were al-
located the lower frequencies in the desired signal while
the faster effectors were allocated the higher frequencies.
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(a)Desired versus achieved moments for DCA and LP schemes.

0 2 4 6 8 10
−4

−2

0

2

4

6
Flap1 position

D
eg

re
es

0 2 4 6 8 10
−4

−2

0

2

4

6
Flap2 position

0 2 4 6 8 10
−10

−5

0

5

10
Rudder1 position

0 2 4 6 8 10
−10

−5

0

5

10
Rudder2 position

Commands
Responses

D
eg

re
es

D
eg

re
es

D
eg

re
es

(b) Effector command and response signals with DCA scheme.

Figure 2. Control allocation results with DCA and LP schemes.
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