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Abstract—The Preisach operator and its variants have been for magnetically hard materials). The modeling and prediction
successfully used in the modeling of hysteresis observed inerrors that result from this approach can be significant as there
ferromagnetic, magnetostrictive and piezoelectric materials. In an is no real justification for assuming one particular distribution
application involving these smart materials, one has to determine .

a density function for the Preisach operator using the input- func;'uon over a.mother [4]' In the second ap-proach, one uses a
output behavior of the material at hand. In this paper, we de- family of density functions as a set of basis vectors, and the
scribe a method for numerically determining an approximation of  required density function is assumed to be expressible as a
the density function when there is not enough experimental data |inear combination of a finite subset. The selection of this finite
to uniquely solve for the density function. We present theoretical subset is the main problem in this approach. It is shown in

justification for our method by establishing links to regularization . . .
methods for ill-posed problems. We also present numerical results Galinaitis, Joseph and Rogers [5] that the best approximation

where we estimate an approximate density function from data in @ chosen subset can yield very poor predictions. The third
published in the literature for a magnetostrictive actuator and method involves discretizing the Preisach plane (described

two electro-active polymers. in Section 2), and identifying a discrete approximation to

Index Terms— Hysteresis, Preisach Operator, Density function the actual density function via a linear least-squares method.
Identification, Constrained least squares, Electro-active polymers, Hoffman and Meyer [6] were perhaps the first to use this

Magnetostrictive actuators, Smart materials. method. Banks, Kurdila and Webb [7] address the problem
of convergence of the approximate measures identified through
I. INTRODUCTION experiments to the true density function. Galinaitis and Rogers

The phenomena of nonlinear hysteresis has been used of this method to identify an approximate Preisach
documented in magnetism and electricity. Hysteresis cont esnsity function for piezoelectric actuators. In Venkataraman,

from a Greek term meaning “to lag behind,” and describestQm a”‘?' Krishnaprasalld., a constr_ained linear .Ieast squares
relationship between inputs and outputs of a certain syste ethod is used to explicitly constrain the approximate density

A system with scalar inputs and outputs is said to exhi hmctlon to be positive [9], and an application to magnetostric-

rate-independeniysteresisif: (a) the outputs of the system _tlve actuators can be fOUUd- In our opinion, the third _appr_oach
the best suited to obtain the best possible approximation to

do not depend on the rate at which the input is applied a _ . :
(b) the outputs of the system at a certain time, depend on actual density function as no assumptions are made about
e actual density function. Furthermore, the work of Banks,

t history of the input function. Though dynamical systen
pas. isory o1 the INpLt luncion. “Nougn cynarnical syste urdila and Webb [7] provide the justification for this method,

exhibit the “memory” requirement (b), they do not exhibit thé\< X . o : .
“rate independence” requirement (a). as we are assured that finer discretizations of the input signal

The Preisach operator is a mathematical tool that has bé%'” yie_ld better approximations O.f the_c_zlen_sity function. .
én this paper, we consider the identification of the Preisach

used to model the phenomena of hysteresis for many years . : . - .
[1], [2]. Part of what is needed to describe the Preisagﬁens'ty function when there is not sufficient experimental data.

operator for a particular system is a density function deﬁné\éaygr.goyz’s repregentatlon theofem [2] yields a sufficiency
for certain parameters. In the past, several researchers h; %d!t!on on the input-output signal, S0 that a completg
addressed the problem of identifying the Preisach dens! nt|_f|cat|o_n of the measure can be achieved. However, in
function. Mayergoyz [2] first described a method to identifg actice, this would involve a very large gmount .Of data tha’?
the density function in the proof of his representation theore as to be processed to obtain the density function. There is

However, this method has limited applicability in practic@ need for a method that uses limited information to obtain
when the output signal is corrupted by noise, as it involv

&0 approximation of the density function. What is needed is
a differentiation of the output signal.

a method that utilizes all the available “information” in the
Other approaches are divided along three main lines. §PErimental data to obtain the best approximation of the

the first method, one assumes the density function to A tual density function. In this paper, we use the well-known

of a particular type (for example, factored-Lorentzian or saingular value decomposition along with a linear least squares
hod to efficiently identify the best approximation to the

Lognormal-Gauss distributions) and then sets about identifyi t . . L
the parameters that define these distributions (see Della To sity function. We also present theoretical justification for
ur method by establishing links to regularization methods for

[3] for a discussion using the Gaussian distribution functioi(ﬂ posed problems

Manuscript submitted to the IEEE Trans. Magnetics. We cast the identification problem as a constrained mini-



mization problem (the details are in Section 3):
50) = [ [ w(6.0) By alul(t) dide @

o1 2 -
min 5 |AX —Y||* subjectto X >0, a>p

where A and Y are computed using the input and outpuhereu(:,-) € L*(K) where K is a compact region in the
signals respectively, and is unknown. Our methodology (5, @) plane witha > 3 and suppoff:) = K. Denote the set
involves the identification of the nullspace of the matri@f relays with valuet+1 at timet as S, (¢), and the relays with
AT A and obtaining a solution in its orthogonal complemenyalue—1 at timet as;S_(t). The curve separating, and.S_
In Section 2, we briefly describe the Preisach operator afftgnceforth referred to as a memory curve) corresponds to the
describe the problem in Section 3. In Section 4 we descriftate of a dynamical system in the following sense [1]:
the results of our numerical experiments for a magnetostrictives If we knew the memory curve at time and the input
actuator and two commonly used electro-active polymers. function over the intervalt, T, then the memory curve
at timeT' can be computed uniquely;
« Equation (2) can be considered as a map from the space
Il. THE PREISACH OPERATOR of memory curves to the set of output values; in other

The Preisach operator has been used to model hysteresis in Words, the memory curve at a timeyields a unique
many applications. In the following section, we will define the ~ output value at that time.

Preisach operator, and discuss its properties. Definer = anﬁ and s = QTW, the memory curve can be

Consider a relay?s , which at any given time is at one ofdescribed by a function = ¢(r). The set of Preisach memory

two states: +1 or -1. A descriptive definition of the relay cagurves is defined as follows [1]:

be given using Figure 1. The relay is parametrized by scalardefinition 2.1: The setMy = {¢ | ¢ : Ry — R, |¢(r) —

« and 8. Consider an input functiom(t); ¢ € [0,T] for the ¢(t)| < [r—1| forall, r, T > 0, Rsupp(¢) < +oo}. is called

relay, with v(0) either +1 or —1. If the input monotonically the set of Preisach memory curves. In the abdvg,,,(¢) is

increases, the ascending branebede is followed by the the largest value of such thaty(r) # 0.

output v(t), while if the input monotonically decreases, thdét can be shown that for a piecewise monotone function

descending branchifba is followed. Mathematically, one de-u(t), t € [0,7], and an initial memory curve o\, the

fines this elementary hysteresis operatonysteroras follows Mmemory curve at any time € [0, 77, denoted by, (t), also

(our definition is a modification of the one in Krasnoselskipelongs inM, [1]. The memory curvep,(t) divides the set

[10], taking care of the hysterons with= 3 ): K into two connected componentg, (¢) and S_(t), which

will be exploited in the next section (for a detailed description,
) please refer to Mayergoyz [2]).
-1 !f u(t) < B Thus for a givenu, we can define a Preisach operator to
+1 it u(t) 2 o be a mapl’,, : Cpw[0,T] — Cpn[0,T), where C,,,[0,T]
o(t) = -1 if f<u(t)<a,and3 t:ulti) <B  genotes the space of piecewise monotone continuous functions
_ and V7 € (11,1), u(7) ¢ [, o) on [0,T). For compatibility with experimental evidence, we
+1 it f<u(t) <a,and,3 #i:ulti) >0, regirict u(-,-) to be a non-negative function. During the
and V7 € (t1,1), u(r) ¢ (—o0, B 1) identification experiments, the fixed input € Cp[0,7]

@ usually only affects a portion of the sét in the Preisach
plane. Without loss of generality, we can restrict attention to
this portion.In the following, the sef<, is the subset ofs
affected by the input. Define the set of density functions:

Ky = {peL*(Ky)|p >0} (3)

Due to the assumption off,,, the output at time) given by
B a - T'[u](0) is the same for all density functions i@,,.

An important class of Preisach operators from the applica-
tions point of view, are th@iecewise, strictly increasinfPSl)
Preisach operators.

a b | c Definition 2.2: A Preisach operator is said to be piecewise
strictly increasing (PSI) if(T',[u](T) — T',[u](0))(u(T) —
u(0)) > 0 for a monotone input. € C[0,T] with «(0) #
u(T).

Rﬁ, u[U]

Fig. 1. Input-output relationship for the relay.
Under the mild condition that the density function is contin-
To construct the Preisach operator from the elementangus, and greater than zero along the diaganal g, it is easy
hysterons when the input i§-), denotevg () = Rz o[u](-). to show that the Preisach operator is PSI. Clearly, the definition
The Preisach operator’s inputig-), and the output is given of PSI is for a fixed density function and varying monotone
by [2]: increasing input functions.. However, in the identification



problemthe input function is fixed while the density functionto note is that the Preisach operator is rate-independent, and
is the independent variable. For a non-constaatC,,,,[0,T], therefore the test signals need only have different local maxima
let 0 = Tp < Ty < --- < Ty = T be the standard and minima from the signals used in identification - the
partition (see Brokate and Sprekels [1]). Ass non-constant, frequency of the test signals do not matter! In related work
w(T;—1) # u(T;) fori =1--- N. DenoteA; = [T;_1,T;] for by Venkataraman, Tan and Krishnaprasad [9], the identified
i =1---N. Define the set of density functions: Preisach model for a magnetostrictive actuator was used in a
controller based on an approximate inverse of the Preisach
) operator. The signals used in the test of the inverse were
Kupsr = {0}U{pe€ L*(K)|p>0; and significantly different in both magnitude and frequency in this
(Tlu](t1) — Tlu](t2)) (u(tr) — u(tz)) >0 test.
for t1,t9 € Ai, tq 75 to; 1=1,--- ,N}(4)

. . _ . _ I1l. THE PROBLEM
The idea is that the density function for a PSI Preisach operatoRN

. - . hen using the Preisach operator to model a physical
(that can be identified) should come from this set. The Sestgstem, it is necessary to find the density functie(s, ),

that models the physical phenomenon. We have to determine
u from experiments, by observing outputs) that correspond

to inputsu(-). What we would like is an approximation of the
density functionu to put into the Preisach operator which fits

K, and K, pgr are clearly non-empty withiC,, psr C KCy.
To further study their properties, recall that a convex Get
is a subset in a vector space, such thatif zo € C, then
Ox1+ (1 —0)xzy € C for 0 < 6 < 1 (Luenberger [11]). A
cone with vertex at the origis a setC in a vector space the current input and outout data
with the property that itz € C, then6z € C for all 6 > 0. Th ¢ [f)M p, j tation th 21 vield
A convex cone is defined as a set that is both convex and a ¢ Proot of Mayergoyz's representation theorem [2] yields
cone. Closed convex sets are important from the point of view'&y o exgctly compute the densny functionbut we need. .
of numerical methods for constrained optimization problemgf)ntlnuous inputs and no Sensor noise. The second condition
Lemma 2.1:The set, is a closed convex cone with vertexcannOt be assumed from experimental data and so we need

I . : : another method to determing. Due to the experimental
at the origin, while the s€€,, pss is a convex cone with vertex . =~ - . . )

i . ’ limitations, we have to discretize the input values. This leads
at the origin that is not closed.

' ) . to a discretization of the Preisach plane. This procedure is
Proof: The assertions about follow directly from the : . : X
. : escribed in Shirley and Venkataraman [12]. In this paper, we
definitions of £, and of closed convex cone with vertex a . A . ) .
. . L L how that discretization is desirable from a theoretical point
the origin x = 0. Using the definitions, it is easy to see thal, . ) ) "
Of view also. The key is the singular value decomposition of

Ku,psr is a convex cone with vertex at the origin. However, I%?ne operator®,, described in Equation (5) below and Picard’s
is not a closed set for the following reason. L&te K, with
theorem (Theorem 3.3).

© > 0 on K except on the right-triangle formed by the points Recall that for all in K., the initial outputw — T[u](0)

u(Ty—1) andu(Ty) with the linea = 5 in the Pre|s§1ch plane. is fixed. For a givenu(-) € Cp, [0, T], define the operator:
Then we can construct a sequenge> 0 on K, with pu,, €

K. ,psi that converges tq.* in norm. Now p* ¢ K, psr, P, : K —  L%[0,T) ®)
as in the time intervalA i, the outputl',-[u] is a constant. w(B,a) — y=,u()=Tylu)()—w
HencelC, psr is not closed. [ |

. : I The operator®,, is a linear operator betweer?(K,) and
The importance of the set€, andC,, ps; for identification L2[0,T] which is not true for the Preisach operaor The

roblems will be seen in Theorem 3.1 in the next section. ’ . .
P w : ! X ! k(afls that®,, maps the function: = 0 to the functiony =

It has been shown that a PSI Preisach operator has sev% he following is an important theorem that concerns the

useful mathematical properties [1]: (a) Lipschitz continuity, (bI entification problem for a PSI Preisach operator.

regularity, (c) invertibility. In addition it has the so-called “con- ) . .
gruency”, and “wiping-out” properties (please refer to Mayer: Theorem 3.1:Let w be a non-constant function in
’ . e Cpm[0,T] and®,, : K, — L?[0,T] be as defined in (5. Then,

goyz for an excellent description [2]). The wiping out property P
is observed in magnetic materials and “smart” actuators sucht) {w € Kul (I’ué‘(t) = _0}_:_ {O_}?
as those based on piezoelectricity and magneto-striction. Thi€) $u: Ky — L*[0, T} is injective;
makes the Preisach operator a valuable mathematical tool foP) Range®.] # L2[0, T'; ,
researchers in smart structures. However, it is possible that thd) Suppose thay € Range[%] and [ is PSI. Then there
congruency property is violated in these materials, which can ~ €XiSts & unique: € Ky, psr such that®, pu = y.
only be verified by exhaustive experimental work. Proof:

We take the view (which is implicit in the rest of literature 1) The claim follows from the definition of’,, and the
in this area) that we will assume the congruency property to  assumption that € C,,,[0,T] is non-constant.
hold and perform identification experiments. Once the best2) Suppose|u; — ua|lx, 7 0. Then there exists a sét C
approximation to the density function is obtained, we will K, in the (5,a) plane, with non-zero measure, such
perform prediction experiments in which the density function that i1 # ue on C. As K, is the region influenced by
will be tested against inputs not used in the identification.  the inputu, andu € C,,,[0,T], there exists a set of
This comparison will yield an answer to the suitability of non-zero measure ifd, 7] such thaty; # y» on this
the Preisach model for the given material. An important point  set. In other words||y; — 2|/ .2(0,7] # 0.



3) Thefact that the range ob,, is a strict subset of2[0,7] A basic fact about the compact linear operatgr is that its
follows from the observation that the standard partitioadjoint®; , and the compositio®; ®,, are also compact linear
of y is the same as that ef for non-negative measuresoperators (Theorem 4.10, Kress [13]).
we Ky Definition 3.1: (Singular Values) The non-negative square
4) The last conclusion follows from the injectivity @, roots of the eigenvalues of the non-negative self-adjoint com-
when restricted to the séf, ps; (from item 2 above), pact linear operato®’ @, : L*(K,) — L?*(K,) are called

and the definition of}C,,. the singular values ob,. The singular values ob,, will be
m denoted by{o,, }>2,.
Remarks Note that the singular values could be repeated. The important

We conclude from the above theorem and Lemma 2.1 thfact regarding singular values relevant to this paper is that

« Even thougty € K, ps; for a PSI Preisach operator, wedsn — oo, o, — 0. The folloyving theqrem combines the
have to carry out the identification over the déf, as statements of Theorem 8.3-1 in Kreyszig [14], and Theorem

K. psr is not a closed convex set. 15.16 in Kress [13].

. The setkC, is a closed convex cone, and &s is a linear Theorem 3.2:The set of singular values of the operator
injective operator on this set, it is “well-suited” from a®u @ L*(Ku) — L?[0,T] is countable (perhaps finite or
numerical point of view. even empty), and the only possible point of accumulation is

« However, as the closure of the rangedf is not all of ¢ = 0- Furthermore,_there exists orthonormal sequerges
L2[0,T), we need to construct a regularization schem8 Z*(Ku) and{g,} in L*[0,T] such that
to counter-act noise (see the remarks after (Picard’s)
Theorem 3.3 below).

O for all n € N. For eachu € K, we have the singular value

Next, we recall some standard facts about linear operatéi€composition

that can be utilized to solve fgr, in the operator equation

q)u MUn = On Yns (I)Z Yn = Opn Un, (10)

o, = y. Itis also useful to think of®,, as acting not just = Z < s fhny Ky s (11)
on K, but on all of L?(K,,). n=1
Lemma 3.1:The operatord, : L*(K,) — L%[0,7] is a and
compact linear operator. )
Proof: For a given input functionu(-) € C,,,[0,T], S, pu= Z On < s b >K, Gn- (12)
the memory curvep,(t); t € [0,7] defined in the previous n=1
section uniquely determines the values of the kernel function
Rp.o[u](t); t € [0,T] in Equation (2). For fixed, this kemnel Proof: The proof follows from th_ose of Theorem 8.3-1
function satisfies: in Kreyszig [14], and Theorem 15.16 in Kress [13], combined
. with item 1 of Theorem 3.1. [ ]
Rg o [u](t) = { +1’ :]t Eg’a) < ?(t); (6) Using Theorem 3.2, the solution to the operator Equation
o o) € 5-(t). ®, u =y is given by Picard’s theorem [13] in the case when

For fixed (3, «), the kernel function takest1 or —1 on g is unconstrained:

finite intervals foru(:) € C,,,[0,T]. These facts imply that Theorem 3.3:(Picard) Let®, : L?(K,) — L*[0,T] have
the kernel functionR..[u](-) belongs inL?(K, x [0,T]). the singular systenio,, 1in, g,). The equation
Therefore®,, is a Hilbert-Schmidt and hence a compact linear

operator. [ Qup=y
2The ad10|r12t of operator®, is defined to be :®, : s solvable if and only ify belongs to[Null(®*)]* (which is
L[0,T] — L*(K,) with the same as the closure of Rafiyg] in [0, T]) and satisfies
<Oy, >k, = <Y Pupt 207 (7) >~ 1 )
where y € L?[0,T] and e L*(K,), > <y >[" <o
n=1 "
Wher_e_< ..+ > denotes the inner product of funct|0ns]n this case, a solution is given by:
Specifically:
<O >k, = // o(B,a) u(B,a) dp da = Z o <Y, Yn > Hn-
oot n=1
T
o As observed by Kress [13], the above theorem clearly
<Yub2 2Lz = /O () y2(t) dt- demonstrates the ill-posed nature of the equafigp = y. If

One defines norms on the spadésand L2[0, 7] by setting: the right hand side is perturbed {6 = y + e y,, we obtain

the solution
1
2y = [<mop>rauc]® (8) e =1 e
L 2 :Z — <Y, Yn >L2[0,T] Hn = b+ — ln.
lyllzor = [<yy>r20m)®- ) =1 On Tn



n—oo

Thus the ratio =l — 1 oo by Theorem 3.2. Let0=1t; <---<t, =T be a discretization of time, so

ly—yll on

The above argument implies that the inverse operdtpt that we have :
is unbounded, and thus there is a need fdopcainded ap- (@, p1)(t;) = wylt)) .

o ; — J it i=1,- n.
proximation to the unbounded inverse. This brings to the fKRﬁ.a[u](tj)ﬂ(ﬁaa) dBda = y(t;),
topic of regularization that is discussed in the next subsection. ' (13)
Another important reason for regularization is thaf for a where (5, ) is unknown, whileu(-) andy(¢;) are known.
given u € C,,,[0, 7] is not injectivein L2[0,7] as observed The time instantg,, - - - , ¢, are known aollocation points.

in Theorem 3.1. In other words, Picard’s condition that thié has been shown that for such raomentproblem, the

closure of Rang@,] be equal toL?0, T, for the solvability sequence of approximations, (3, «) to the solutionu(s, ),

of &, = y, wherey € L?[0,T] is not satisfied when is a finite linear combination of the functiod; , [u](¢;) [15].

u € Cp,[0,T]. Therefore, whery is perturbed by noise to Therefore the moment solutions, (3, «) are as smooth as the

y¢, it is possible that there is no non-negative solutignto functionsRg ,[u](t;) even if the true solution is smoother. For

the equatior®,, ;¢ = y°. the Preisach operataRs ., [u](t;) are discontinuous functions
by Equation (6), and thus the numerically obtained approxima-

) ] . tions of u(3, o) tend to have discontinuous character ( please
A. Collocation and Singular Value Decomposition based Reggq Figures 3(a), 6(a), 8(a) and 9(a) at this time).

ularization Furthermore, due to the time discretization, the operator

As @, is a compact linear operator (Lemma 3.1), it doe®. : K, — R™ is no longer injective (as in Theorem 3.1).
not possess a bounded linear inveiisg' (Kress [13], Kirsch Thus the density functiop cannot be exactly identified, but
[15]). The computation of the density function needs a reg@nly a step function approximation can be identified. If the
larization scheme that yields a bounded approximation of thgnimum and maximum values of the input sign&l) are

unbounded inverse operator. To be precise: Umin @Ndumq, respectively, then for experimental implemen-
Definition 3.2: A regularization scheme is a family of lineartation, one considers the input to take one of the discrete values
and bounded operators Umin = U1 < -+ < UN = Umae (WhETrewu; 1 —u; = Au is
a constant), at the collocation times Therefore the memory
Uy L2[0,T) — Ky, A>0 curves, at the collocation times, have corners that lie on the

grid (um,, un) Whereu, < u,, < u, <uy. Hence the change
in the output can only occur in discrete values, and one can
consider the density function to be piecewise constant on the
rectangles of the grid. Denote the set of step functions defined
on the grid by/C,,.
As step functions are dense iG, (Littlewood's second
_ . principle in Royden [16] (page 127), and Vitali’s convergence
In other words, the operatorB,, o W converge pointwise theorem in Folland [17]), given any € K., there exists a
to the identity operator oRange(®,). sequencey,, € K, such that
Thefollowing is a standard result for compact linear opera-
tors that says that the famifjy, o ¥, does not converge in the Jim |l = g |, = 0.
norm. The implication is that one can only expect pointwis . - )
convergence as in the definition of the regularization schen&s. the kernel function satisfieigis,q [u](t)| = 1, we have:

Theorem 3.4:Let ¥, : L2[0,7] — K., A > 0 be a T 2
regularization scheme fop,,. Then the operator®, cannot |, 1, — ®,, pl|> < / //Rﬁ o] () (e — p)dadp |dt
0
K

such that

;in}) (@, 0Wy)y= Py, foral ye L?0,T],

whereP : L?[0,T] — Rangé®,,) is the orthogonal projection
operator.

be uniformly bounded with respect {q and the operator& ),
cannot be norm convergent as— 0. T
Proof: The proof is an elementary consequence of the (meas(]g))2/ e — MmHQICudt

fact that®,, is a compact linear operator and can be found in 0 )

Kress [13](page 299). - (by Cauchy-Schwartz Inequality)
One of the standard regularization strategies is to compute (meas(K))* T ||u — pmli, -

e Sl vl decomposion of s compact Iner 908 e utput unctons converge in o,

than a tolerance val Kirg h M50, In thi y r we first Once a set of collocation points have been determined,
an a tolerance value (Kirsch [15]). S Paper, We Ngiae can discretize the input values so that a uniform grid is

. i A Lo 0
construct a f'T"te dimesional approxm_wgtlon o, and then established in the regioR’, in the Preisach plane. Then the
carry out a singular value decomposition. Another Standaé%uation@ 4 =y can be written as a linear equation

w b =

method of regularization for ill-posed problemsdiscretiza- . .

tion [13], [15]. This approach leads to a moment problem linear equation
that is discussed below. The regularization scheme discussed
in this paper involves collocation in time, and singular valuas described in Shirley and Venkataraman [12]. Each element
decomposition of a finite-dimensional approximation to thef X (except the last) denotes the area under the density
operator®,, . function for a particular grid element. The last element denotes

IN

Y = AX +e, (14)



the initial output value (at time)). To account for noise, we This method when related to the original operator equation

estimate this value also. is called Tikhonov regularization. We found that the Tikhonov
We need is a way to solve foX that will best fit the data, regularization approach is unstable numerically, as the choice

but at the same time keep;, > 0, since X represents the of « affects the solution greatly. Another method to solve (21)

integral of a density function over a grid element. involves the singular value decomposition 4f
We would like to minimize the function Let rank(A) = ¢ < min {m, n}. If we perform a
1 singular value decomposition a#” A, then we get:
J(X) = 5 AX Y|P (as) " P g

where ATA=VSVT, (22)

N . . . where S is ann x n diagonal matrix with rank; < n, and
A:R"—R"™ XeR" YeR"™ andrank(A)=m yTy — . (see page 54, Bellman [18]). The singular

with the inequality constraing(X) = X > 0. values of AT A are the diagonal elements Sfand be ordered
The Lagrange multiplier theorem yields the existence of@ 01 > 02 > --- > o, > 0. By the remarks following
) € R™, such that the necessary conditions #6tto minimize Picard’'s theorem 3.3, we see that “small” singular values
(15) are [11], should be discarded as they contribute to an amplification of
1) the noise in the solution. We perform the following steps:
A =0whenX; #0 (16) 1) Pick a tolerance value > 0, and set those singular

values that are less tharto 0. Call the resulting matrix

2) . .
that is obtained front as S;.
> J— . .
Ai 2 0 whenX; =0 (17) 2) Remove the rows and columns 8f that are identically
3) The augmented function zero, and also remove the corresponding column& of
FIX) — X) - \Ta(X and V. By this procedure, we obtain @ x g diagonal
1 = jZEX; - AT% ) (18) matrix S, and an x ¢ matricesV that satisfies
satisfies VIV = Ipys. (23)
L{;(;Q =XTATA-YTA- T =0 (19) The operator norm of the matrit” A—V SV7 can be seen
to be:
We used the MATLAB routine “quadprog” to solve this
problem and the results are described in Section 4. This is also |ATA—VSVT| = |ATA-V S VT
the approach used in Venkataraman, Tan and Krishnaprasad = V(S =S VT
[9]. Once X is obtained we divide the elements by the area of o !
the corresponding grid element to obtain the density function. = |55
< e

B. Limited experimental data

The method described in the last subsection works very well'Vé Seek solutions of the typ& = VZ for the Problem
when the experimental input-output data is in a form to yielt®)- Using Equations T(ZZ) andT(23) the cost function (20)
anm x n A matrix with rankn. However, if we do not have ¢an be transformed 4~ SZ — Y7 AV'Z. Thus we form the
such an situation (which can easily arise by choosing a firfgenStrained optimization problem:
discretization of the input), we must reformulate the problem.
In the following, we consider an even more general problem o A T
where the rank ofd is less than min{m, n} minimize  f(Z) = 2752 - Y AV Z, (24)

subject to 9(Z2)=VZ>o. (25)

o 1 ) .
minimize f(X) = 9 [AX =Y % rank(A) <min{m, n}, " hen once we have a minimizer to the above problem, then
. . (20)  the desired solution is giveli* = VZ*. The constrained min-
with the conditions: imization problem (25) can be solved by using the MATLAB
o routine “quadprog”. Again, onceX* is obtained we divide
AX =Y +e¢ . .
. (21) the elements by the area of the corresponding grid element to
X; >0, Vi=1,....n - . .
obtain the density function.
Now, we need to minimize (20), an|| X||2. This problem
can be tackled by different methods. One method involves the
minimization of a weighted combination: IV. APPLICATIONS

o R L ) The following experiments were performed in a MATLAB
minimize g(X) = ¢ | X*| + 3 [AX = Y%, environment on a PC running a 1.6 GHz Athlon Processor,
subjectto X; >0, Vi=1,...,n, where «a>0. with a 1 GB RAM.



A. Magnetostrictive actuator

We used experimental data from a commercial magne-
tostrictive actuator from Venkataraman, Tan and Krishnaprasad
[9] in our initial numerical experiments. There, a Preisach
operator was used to model the average magnetic field versus 2
magnetization characteristic. Figure 2 shows the average mag-
netic field versus magnetization obtained in the experiment. In
the experiment, the magnetic field input took values between ;4 B
100e and 410 Oe. The output values were measured in
Oe. The results of the numerical experiments for various
discretization levels for the input magnetic field are tabulated
in Table I.

Figure 4 and 5 show the approximate densities computed
for different discretization levels. As expected from the theory
of the moment method (see Subsection IlI-A), the computed
density functions show a discontinuous character. To obtain a
smooth density function, one simply convolves the obtained
density function with a smooth function of compact support.
This procedure is calledhollification (see Kirsch [15] for a
discussion). We do not proceed along these lines as the choice ,xw
of the convolution kernel greatly influences the smoothed out
density function. Furthermore, the smoothed out density func- S EE
tion performed poorly in comparison to the original solution, ! i 2 i
when we tried to match the output of the Preisach operator g
with the given output waveform.

Figures 4(c) and 5(c) needed the method described in
Subsection 1lI-B, as the matrix” A (for these two cases) was
singular. In other words, these two cases the experimental data
available was limited. For a discretization level 2if Oe for
the magnetic field, a comparison between the output of the
Preisach operator (A)Xand the given output waveform Y
can be seen in figure 3(b). Similarly, for the discretization level
of 100¢, the comparison between the output of the Preisach
operator (AX and the given output waveform {}¢an be seen
in figure 6(b).

(a) The computed Preisach density function

)

IS

Actual vs Fitted Magnetization in Oe
@

trr 1]l
* T T T 7

*

I I I
800 1000 1200 1400
Sample

. (b) Comparison between fitted and actual Magnetization ver-
PR ‘ ‘ ‘ ‘ ‘ ‘ : sus Magnetic field (* indicates the fitted values)

1 Fig. 3. Identification experiments for a commercial magnetostrictive actuator
[9] with a magnetic field discretization &0 Oe.

8 the time taken to compute the density functions increases at
an exponential rate for finer discretizations. So, the question
i arises whether one can use a smaller amount of data to speed
up the computation of the density for the finer discretization
levels. To test this, we conducted numerical experiments where
only part of the input signal was used for the identification and
| then the computed approximate density was used to predict
0 0w 1o MaZgéngMie‘;i‘EnoOe W wo w0 w0 the output for the entire input signal. In this case, we used
every other cycle from the input signal to obtain the best
Fig. 2. Experimentally determined Magnetic Field versus Magnetizatio%‘ppmx'r_natlon to the density function. Again the “qugdprpg"
curves for an ETREMA magnetostrictive actuator. routine in MATLAB was used to compute the approximation
to the density function. The obtained density function can be
1) Prediction ExperimentsfFrom Table |, we see that theseen in Figure 7(a). Then the entire input signal was applied to
2 and infinity norm of the errorAX — Y, is smaller for the identified Preisach operator and a comparison between the
finer discretizations of the input signal. We also see thaimulated and the actual experimental Magnetization signal

Magpnetization in Oe
@
T




l\g?gcnrzttlézﬁjlg fTOITS etﬁls(ﬁ; [®w /(wog)ylloc by Petchsuk and Chung [19] on an electro-active poly-
(Oe) Computation(s) mer (VDF/TrFE/HFP (55.17/42.35/2.46) terpolymer 121)
6.25 4755.1 3.55 x 102 at 42° C. This polymer exhibits significant hysteresis in its
o e ErRoRTY Electric Displacement vs Electric Field characteristic. The dis-
20 11.70 6.97 x 104 cretization of the electric field was chosen to 135 MV /m.
25 1.88 6.70 x 10* The identified Preisach density function can be seen in Fig-
40 0.35 7.15 x 10* ure 8(a). The comparison between the fitted data and the
TABLE | experimental data obtained from Petchsuk and Chung [19] can

be seen in Figure 8(b). Finally, we show another application
to a VDF/HFP (5 %) electro-active polymer in Figures 9(a)
and 9(b), the data for which was obtained from X. Lu, A.
Schirokauer and J. Scheinbeim [20]. The discretization of the

COMPARISON OF APPROXIMATE DENSITY FUNCTIONS OBTAINED WITH
DIFFERENT DISCRETIZATION VALUES FOR THE MAGNETIC FIELD

Full/Partial Input Time taken | [[@4 1t — yl[oo electric field was again chosen to b2.5 MV /m.
Input Discretization (s) (Oe)
e é%? 4755.1 3.55 x 10% V. CONCLUSIONS
Full 10 717.69 3.21 x 101 In this paper, we have described a method to compute
eatial 6135 %;85? g:égiigﬁl (an approximation of) the Preisach density function when
there is insufficient experimental data. This is a situation
TABLE Il that is frequently encountered in practice. Previous methods

assumed the availability of sufficient data for the identification
to be performed, or considered a very coarse grid on the
Preisach plane leading to a poor approximation of the actual
density function. We described a method that utilizes all the
information present in the input-output data to obtain the best
were made (see Figure 7(b)). Table Il shows the infinitypproximation possible. We also presented the theoretical basis
norm of the error between the output of the Preisach operater our method and explained why the computed densities
and the given output waveform. We note the savings in th¢here discontinuous in nature. We also presented numerical
time of computation and the reduction in the infinity normesults using experimental input-output data, where we com-
of the error. We do not yet fully understand the theoreticglare the results of our identification with published data.
reason for the reduction in the error, and is something to be
explored in the future. Note that, as the Preisach operator is
rate-independent, one does not need to test the prediction
the Preisach operator for varying input frequencies - only t

COMPARISON OF COMPUTATION TIMES FOR THE NUMERICAL
EXPERIMENTS
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Fig. 4. Identification experiments for a commercial magnetostrictive actuator
[9] with different magnetic field discretizations
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