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Abstract— The Preisach operator and its variants have been
successfully used in the modeling of hysteresis observed in
ferromagnetic, magnetostrictive and piezoelectric materials. In an
application involving these smart materials, one has to determine
a density function for the Preisach operator using the input-
output behavior of the material at hand. In this paper, we de-
scribe a method for numerically determining an approximation of
the density function when there is not enough experimental data
to uniquely solve for the density function. We present theoretical
justification for our method by establishing links to regularization
methods for ill-posed problems. We also present numerical results
where we estimate an approximate density function from data
published in the literature for a magnetostrictive actuator and
two electro-active polymers.

Index Terms— Hysteresis, Preisach Operator, Density function
Identification, Constrained least squares, Electro-active polymers,
Magnetostrictive actuators, Smart materials.

I. INTRODUCTION

The phenomena of nonlinear hysteresis has been well
documented in magnetism and electricity. Hysteresis comes
from a Greek term meaning “to lag behind,” and describes a
relationship between inputs and outputs of a certain system.
A system with scalar inputs and outputs is said to exhibit
rate-independenthysteresisif: (a) the outputs of the system
do not depend on the rate at which the input is applied and
(b) the outputs of the system at a certain time, depend on the
past history of the input function. Though dynamical systems
exhibit the “memory” requirement (b), they do not exhibit the
“rate independence” requirement (a).

The Preisach operator is a mathematical tool that has been
used to model the phenomena of hysteresis for many years
[1], [2]. Part of what is needed to describe the Preisach
operator for a particular system is a density function defined
for certain parameters. In the past, several researchers have
addressed the problem of identifying the Preisach density
function. Mayergoyz [2] first described a method to identify
the density function in the proof of his representation theorem.
However, this method has limited applicability in practice
when the output signal is corrupted by noise, as it involves
a differentiation of the output signal.

Other approaches are divided along three main lines. In
the first method, one assumes the density function to be
of a particular type (for example, factored-Lorentzian or a
Lognormal-Gauss distributions) and then sets about identifying
the parameters that define these distributions (see Della Torre
[3] for a discussion using the Gaussian distribution function

Manuscript submitted to the IEEE Trans. Magnetics.

for magnetically hard materials). The modeling and prediction
errors that result from this approach can be significant as there
is no real justification for assuming one particular distribution
function over another [4]. In the second approach, one uses a
family of density functions as a set of basis vectors, and the
required density function is assumed to be expressible as a
linear combination of a finite subset. The selection of this finite
subset is the main problem in this approach. It is shown in
Galinaitis, Joseph and Rogers [5] that the best approximation
in a chosen subset can yield very poor predictions. The third
method involves discretizing the Preisach plane (described
in Section 2), and identifying a discrete approximation to
the actual density function via a linear least-squares method.
Hoffman and Meyer [6] were perhaps the first to use this
method. Banks, Kurdila and Webb [7] address the problem
of convergence of the approximate measures identified through
experiments to the true density function. Galinaitis and Rogers
[8] used of this method to identify an approximate Preisach
density function for piezoelectric actuators. In Venkataraman,
Tan and Krishnaprasad, a constrained linear least squares
method is used to explicitly constrain the approximate density
function to be positive [9], and an application to magnetostric-
tive actuators can be found. In our opinion, the third approach
is the best suited to obtain the best possible approximation to
the actual density function as no assumptions are made about
the actual density function. Furthermore, the work of Banks,
Kurdila and Webb [7] provide the justification for this method,
as we are assured that finer discretizations of the input signal
will yield better approximations of the density function.

In this paper, we consider the identification of the Preisach
density function when there is not sufficient experimental data.
Mayergoyz’s representation theorem [2] yields a sufficiency
condition on the input-output signal, so that a complete
identification of the measure can be achieved. However, in
practice, this would involve a very large amount of data that
has to be processed to obtain the density function. There is
a need for a method that uses limited information to obtain
an approximation of the density function. What is needed is
a method that utilizes all the available “information” in the
experimental data to obtain the best approximation of the
actual density function. In this paper, we use the well-known
singular value decomposition along with a linear least squares
method to efficiently identify the best approximation to the
density function. We also present theoretical justification for
our method by establishing links to regularization methods for
ill-posed problems.

We cast the identification problem as a constrained mini-
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mizationproblem (the details are in Section 3):

min
1
2
‖AX − Y ‖2 subjectto X ≥ 0,

where A and Y are computed using the input and output
signals respectively, andX is unknown. Our methodology
involves the identification of the nullspace of the matrix
AT A and obtaining a solution in its orthogonal complement.
In Section 2, we briefly describe the Preisach operator and
describe the problem in Section 3. In Section 4 we describe
the results of our numerical experiments for a magnetostrictive
actuator and two commonly used electro-active polymers.

II. THE PREISACH OPERATOR

The Preisach operator has been used to model hysteresis in
many applications. In the following section, we will define the
Preisach operator, and discuss its properties.

Consider a relayRβ,α which at any given time is at one of
two states: +1 or -1. A descriptive definition of the relay can
be given using Figure 1. The relay is parametrized by scalars
α and β. Consider an input functionu(t); t ∈ [0, T ] for the
relay, with v(0) either+1 or −1. If the input monotonically
increases, the ascending branchabcde is followed by the
output v(t), while if the input monotonically decreases, the
descending branchedfba is followed. Mathematically, one de-
fines this elementary hysteresis operator orhysteronas follows
(our definition is a modification of the one in Krasnoselskii
[10], taking care of the hysterons withα = β ):

v(t) =





−1 if u(t) < β
+1 if u(t) ≥ α
−1 if β ≤ u(t) < α, and,∃ t1 : u(t1) < β

and ∀τ ∈ (t1, t), u(τ) /∈ [α,∞)
+1 if β ≤ u(t) < α, and,∃ t1 : u(t1) ≥ α,

and ∀τ ∈ (t1, t), u(τ) /∈ (−∞, β)
(1)
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Fig. 1. Input-output relationship for the relay.

To construct the Preisach operator from the elementary
hysterons when the input isu(·), denotevβ,α(·) = Rβ,α[u](·).
The Preisach operator’s input isu(·), and the output is given
by [2]:

ȳ(t) =
∫∫

α≥β

µ(β, α)Rβ,α[u](t) dβdα (2)

whereµ(·, ·) ∈ L2(K) whereK is a compact region in the
(β, α) plane withα ≥ β and support(µ) = K. Denote the set
of relays with value+1 at timet asS+(t), and the relays with
value−1 at timet asS−(t). The curve separatingS+ andS−
(henceforth referred to as a memory curve) corresponds to the
state of a dynamical system in the following sense [1]:
• If we knew the memory curve at timet and the input

function over the interval[t, T ], then the memory curve
at timeT can be computed uniquely;

• Equation (2) can be considered as a map from the space
of memory curves to the set of output values; in other
words, the memory curve at a timet yields a unique
output value at that time.

Define r = α−β
2 and s = α+β

2 , the memory curve can be
described by a functions = φ(r). The set of Preisach memory
curves is defined as follows [1]:

Definition 2.1: The setM0 := {φ | φ : IR+ → IR, |φ(r) −
φ(r̄)| ≤ |r−r̄| for all, r, r̄ ≥ 0, Rsupp(φ) < +∞}. is called
the set of Preisach memory curves. In the above,Rsupp(φ) is
the largest value ofr such thatφ(r) 6= 0.
It can be shown that for a piecewise monotone function
u(t), t ∈ [0, T ], and an initial memory curve inM0, the
memory curve at any timet ∈ [0, T ], denoted byφu(t), also
belongs inM0 [1]. The memory curveφu(t) divides the set
K into two connected componentsS+(t) and S−(t), which
will be exploited in the next section (for a detailed description,
please refer to Mayergoyz [2]).

Thus for a givenµ, we can define a Preisach operator to
be a mapΓµ : Cpm[0, T ] → Cpm[0, T ], where Cpm[0, T ]
denotes the space of piecewise monotone continuous functions
on [0, T ]. For compatibility with experimental evidence, we
restrict µ(·, ·) to be a non-negative function. During the
identification experiments, the fixed inputu ∈ Cpm[0, T ]
usually only affects a portion of the setK in the Preisach
plane. Without loss of generality, we can restrict attention to
this portion. In the following, the setKu is the subset ofK
affected by the inputu. Define the set of density functions:

Ku := {µ ∈ L2(Ku) |µ ≥ 0}. (3)

Due to the assumption onKu, the output at time0 given by
Γ[u](0) is the same for all density functions inKu.

An important class of Preisach operators from the applica-
tions point of view, are thepiecewise, strictly increasing(PSI)
Preisach operators.

Definition 2.2: A Preisach operator is said to be piecewise
strictly increasing (PSI) if(Γµ[u](T ) − Γµ[u](0))(u(T ) −
u(0)) > 0 for a monotone inputu ∈ C[0, T ] with u(0) 6=
u(T ).
.

Under the mild condition that the density function is contin-
uous, and greater than zero along the diagonalα = β, it is easy
to show that the Preisach operator is PSI. Clearly, the definition
of PSI is for a fixed density function and varying monotone
increasing input functionsu. However, in the identification
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problemthe input function is fixed while the density function
is the independent variable. For a non-constantu ∈ Cpm[0, T ],
let 0 = T0 < T1 < · · · < TN = T be the standard
partition (see Brokate and Sprekels [1]). Asu is non-constant,
u(Ti−1) 6= u(Ti) for i = 1 · · ·N. Denote∆i = [Ti−1, Ti] for
i = 1 · · ·N. Define the set of density functions:

Ku,PSI := {0} ∪ {
µ ∈ L2(K) |µ ≥ 0; and

(Γ[u](t1)− Γ[u](t2))(u(t1)− u(t2)) > 0
for t1, t2 ∈ ∆i, t1 6= t2; i = 1, · · · , N.}(4)

The idea is that the density function for a PSI Preisach operator
(that can be identified) should come from this set. The sets
Ku andKu,PSI are clearly non-empty withKu,PSI ⊂ Ku.
To further study their properties, recall that a convex setC
is a subset in a vector space, such that ifx1, x2 ∈ C, then
θ x1 + (1 − θ) x2 ∈ C for 0 ≤ θ ≤ 1 (Luenberger [11]). A
cone with vertex at the originis a setC in a vector space
with the property that ifx ∈ C, then θ x ∈ C for all θ ≥ 0.
A convex cone is defined as a set that is both convex and a
cone. Closed convex sets are important from the point of view
of numerical methods for constrained optimization problems.

Lemma 2.1:The setKu is a closed convex cone with vertex
at the origin, while the setKu,PSI is a convex cone with vertex
at the origin that is not closed.

Proof: The assertions aboutK follow directly from the
definitions ofKu and of closed convex cone with vertex at
the originµ = 0. Using the definitions, it is easy to see that
Ku,PSI is a convex cone with vertex at the origin. However, it
is not a closed set for the following reason. Letµ∗ ∈ Ku with
µ > 0 on K except on the right-triangle formed by the points
u(TN−1) andu(TN ) with the lineα = β in the Preisach plane.
Then we can construct a sequenceµn > 0 on K, with µn ∈
Ku,PSI that converges toµ∗ in norm. Now µ∗ /∈ Ku,PSI ,
as in the time interval∆N , the outputΓµ∗ [u] is a constant.
HenceKu,PSI is not closed.
The importance of the setsKu andKu,PSI for identification
problems will be seen in Theorem 3.1 in the next section.

It has been shown that a PSI Preisach operator has several
useful mathematical properties [1]: (a) Lipschitz continuity, (b)
regularity, (c) invertibility. In addition it has the so-called “con-
gruency”, and “wiping-out” properties (please refer to Mayer-
goyz for an excellent description [2]). The wiping out property
is observed in magnetic materials and “smart” actuators such
as those based on piezoelectricity and magneto-striction. This
makes the Preisach operator a valuable mathematical tool for
researchers in smart structures. However, it is possible that the
congruency property is violated in these materials, which can
only be verified by exhaustive experimental work.

We take the view (which is implicit in the rest of literature
in this area) that we will assume the congruency property to
hold and perform identification experiments. Once the best
approximation to the density function is obtained, we will
performpredictionexperiments in which the density function
will be tested against inputs not used in the identification.
This comparison will yield an answer to the suitability of
the Preisach model for the given material. An important point

to note is that the Preisach operator is rate-independent, and
therefore the test signals need only have different local maxima
and minima from the signals used in identification - the
frequency of the test signals do not matter! In related work
by Venkataraman, Tan and Krishnaprasad [9], the identified
Preisach model for a magnetostrictive actuator was used in a
controller based on an approximate inverse of the Preisach
operator. The signals used in the test of the inverse were
significantly different in both magnitude and frequency in this
test.

III. THE PROBLEM

When using the Preisach operator to model a physical
system, it is necessary to find the density functionµ(β, α),
that models the physical phenomenon. We have to determine
µ from experiments, by observing outputsy(·) that correspond
to inputsu(·). What we would like is an approximation of the
density functionµ to put into the Preisach operator which fits
the current input and output data.

The proof of Mayergoyz’s representation theorem [2] yields
a way to exactly compute the density functionµ, but we need
continuous inputs and no sensor noise. The second condition
cannot be assumed from experimental data and so we need
another method to determineµ. Due to the experimental
limitations, we have to discretize the input values. This leads
to a discretization of the Preisach plane. This procedure is
described in Shirley and Venkataraman [12]. In this paper, we
show that discretization is desirable from a theoretical point
of view also. The key is the singular value decomposition of
the operatorΦu described in Equation (5) below and Picard’s
theorem (Theorem 3.3).

Recall that for allµ in Ku, the initial outputw = Γ[u](0)
is fixed. For a givenu(·) ∈ Cpm[0, T ], define the operator:

Φu : Ku → L2[0, T ]
µ(β, α) 7→ y = Φu µ(·) = Γµ[u](·)− w

(5)

The operatorΦu is a linear operator betweenL2(Ku) and
L2[0, T ] which is not true for the Preisach operatorΓ! The
key is thatΦu maps the functionµ = 0 to the functiony =
0. The following is an important theorem that concerns the
identification problem for a PSI Preisach operator.

Theorem 3.1:Let u be a non-constant function in
Cpm[0, T ] andΦu : Ku → L2[0, T ] be as defined in (5. Then,

1) {µ ∈ Ku |Φu µ(t) = 0} = {0};
2) Φu : Ku → L2[0, T ] is injective;
3) Range[Φu] 6= L2[0, T ];
4) Suppose thaty ∈ Range[Φu] and Γ is PSI. Then there

exists a uniqueµ ∈ Ku,PSI such thatΦu µ = y.

Proof:

1) The claim follows from the definition ofKu and the
assumption thatu ∈ Cpm[0, T ] is non-constant.

2) Suppose‖µ1−µ2‖Ku 6= 0. Then there exists a setC ⊂
Ku in the (β, α) plane, with non-zero measure, such
that µ1 6= µ2 on C. As Ku is the region influenced by
the input u, and u ∈ Cpm[0, T ], there exists a set of
non-zero measure in[0, T ] such thaty1 6= y2 on this
set. In other words,‖y1 − y2‖L2[0,T ] 6= 0.
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3) Thefact that the range ofΦu is a strict subset ofL2[0, T ]
follows from the observation that the standard partition
of y is the same as that ofu for non-negative measures
µ ∈ Ku.

4) The last conclusion follows from the injectivity ofΦu

when restricted to the setKu,PSI (from item 2 above),
and the definition ofKu.

Remarks
We conclude from the above theorem and Lemma 2.1 that:

• Even thoughµ ∈ Ku,PSI for a PSI Preisach operator, we
have to carry out the identification over the setKu, as
Ku,PSI is not a closed convex set.

• The setKu is a closed convex cone, and asΦu is a linear
injective operator on this set, it is “well-suited” from a
numerical point of view.

• However, as the closure of the range ofΦu is not all of
L2[0, T ], we need to construct a regularization scheme
to counter-act noise (see the remarks after (Picard’s)
Theorem 3.3 below).

¤
Next, we recall some standard facts about linear operators

that can be utilized to solve forµ, in the operator equation
Φu µ = y. It is also useful to think ofΦu as acting not just
on Ku, but on all ofL2(Ku).

Lemma 3.1:The operatorΦu : L2(Ku) → L2[0, T ] is a
compact linear operator.

Proof: For a given input functionu(·) ∈ Cpm[0, T ],
the memory curveφu(t); t ∈ [0, T ] defined in the previous
section uniquely determines the values of the kernel function
Rβ,α[u](t); t ∈ [0, T ] in Equation (2). For fixedt, this kernel
function satisfies:

Rβ,α[u](t) =
{

+1; if (β, α) ∈ S+(t);
−1; if (β, α) ∈ S−(t). (6)

For fixed (β, α), the kernel function takes+1 or −1 on
finite intervals foru(·) ∈ Cpm[0, T ]. These facts imply that
the kernel functionR·,·[u](·) belongs inL2(Ku × [0, T ]).
Therefore,Φu is a Hilbert-Schmidt and hence a compact linear
operator.

The adjoint of operatorΦu is defined to be :Φ∗u :
L2[0, T ] → L2(Ku) with

< Φ∗uy, µ >L2(Ku) = < y, Φuµ >L2[0,T ]; (7)

where y ∈ L2[0, T ] and µ ∈ L2(Ku),

where < ·, · > denotes the inner product of functions.
Specifically:

< φ, µ >L2(Ku) =
∫∫

Ku

φ(β, α) µ(β, α) dβ dα

< y1, y2 >L2[0,T ] =
∫ T

0

y1(t) y2(t) dt.

One defines norms on the spacesK andL2[0, T ] by setting:

‖µ‖L2(Ku) =
[
< µ, µ >L2(Ku)

] 1
2 (8)

‖y‖L2[0,T ] =
[
< y, y >L2[0,T ]

] 1
2 . (9)

A basic fact about the compact linear operatorΦu is that its
adjointΦ∗u, and the compositionΦ∗u Φu are also compact linear
operators (Theorem 4.10, Kress [13]).

Definition 3.1: (Singular Values) The non-negative square
roots of the eigenvalues of the non-negative self-adjoint com-
pact linear operatorΦ∗u Φu : L2(Ku) → L2(Ku) are called
the singular values ofΦu. The singular values ofΦu will be
denoted by{σn}∞n=1.
Note that the singular values could be repeated. The important
fact regarding singular values relevant to this paper is that
as n → ∞, σn → 0. The following theorem combines the
statements of Theorem 8.3-1 in Kreyszig [14], and Theorem
15.16 in Kress [13].

Theorem 3.2:The set of singular values of the operator
Φu : L2(Ku) → L2[0, T ] is countable (perhaps finite or
even empty), and the only possible point of accumulation is
σ = 0. Furthermore, there exists orthonormal sequences{φn}
in L2(Ku) and{gn} in L2[0, T ] such that

Φu µn = σn yn; Φ∗u yn = σn µn, (10)

for all n ∈ IN. For eachµ ∈ Ku we have the singular value
decomposition

µ =
∞∑

n=1

< µ, µn >Ku µn, (11)

and

Φu µ =
∞∑

n=1

σn < µ, µn >Ku gn. (12)

Proof: The proof follows from those of Theorem 8.3-1
in Kreyszig [14], and Theorem 15.16 in Kress [13], combined
with item 1 of Theorem 3.1.

Using Theorem 3.2, the solution to the operator Equation
Φu µ = y is given by Picard’s theorem [13] in the case when
µ is unconstrained:

Theorem 3.3:(Picard) LetΦu : L2(Ku) → L2[0, T ] have
the singular system(σn, µn, gn). The equation

Φu µ = y

is solvable if and only ify belongs to[Null(Φ∗u)]⊥ (which is
the same as the closure of Range[Φu] in L2[0, T ]) and satisfies

∞∑
n=1

1
σ2

n

| < y, yn > |2 < ∞

In this case, a solution is given by:

µ =
∞∑

n=1

1
σn

< y, yn > µn.

As observed by Kress [13], the above theorem clearly
demonstrates the ill-posed nature of the equationΦuµ = y. If
the right hand side is perturbed toyε = y + ε yn, we obtain
the solution

µε =
∞∑

n=1

1
σn

< yε, yn >L2[0,T ] µn = µ +
ε

σn
µn.
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Thus the ratio ‖µε−µ‖
‖yε−y‖ = 1

σn

n→∞−→ ∞ by Theorem 3.2.
The above argument implies that the inverse operatorΦ−1

u

is unbounded, and thus there is a need for abounded ap-
proximation to the unbounded inverse. This brings to the
topic of regularization that is discussed in the next subsection.
Another important reason for regularization is thatΦu for a
given u ∈ Cpm[0, T ] is not injectivein L2[0, T ] as observed
in Theorem 3.1. In other words, Picard’s condition that the
closure of Range[Φu] be equal toL2[0, T ], for the solvability
of Φu = y, where y ∈ L2[0, T ] is not satisfied when
u ∈ Cpm[0, T ]. Therefore, wheny is perturbed by noise to
yε, it is possible that there is no non-negative solutionµε to
the equationΦu µε = yε.

A. Collocation and Singular Value Decomposition based Reg-
ularization

As Φu is a compact linear operator (Lemma 3.1), it does
not possess a bounded linear inverseΦ−1

u (Kress [13], Kirsch
[15]). The computation of the density function needs a regu-
larization scheme that yields a bounded approximation of the
unbounded inverse operator. To be precise:

Definition 3.2: A regularization scheme is a family of linear
and bounded operators

Ψλ : L2[0, T ] → Ku, λ > 0

such that

lim
λ→0

(Φu ◦Ψλ)y = P y, for all y ∈ L2[0, T ],

whereP : L2[0, T ] → Range(Φu) is the orthogonal projection
operator.

In other words, the operatorsΦu ◦ Ψλ converge pointwise
to the identity operator onRange(Φu).

The following is a standard result for compact linear opera-
tors that says that the familyΦu ◦Ψλ does not converge in the
norm. The implication is that one can only expect pointwise
convergence as in the definition of the regularization scheme.

Theorem 3.4:Let Ψλ : L2[0, T ] → Ku, λ > 0 be a
regularization scheme forΦu. Then the operatorsΨλ cannot
be uniformly bounded with respect toλ, and the operatorsΨλ

cannot be norm convergent asλ → 0.

Proof: The proof is an elementary consequence of the
fact thatΦu is a compact linear operator and can be found in
Kress [13](page 299).

Oneof the standard regularization strategies is to compute
the singular value decomposition of a compact linear operator
and then truncate the singular values if they are smaller
than a tolerance value (Kirsch [15]). In this paper, we first
construct a finite dimesional approximation toΦu and then
carry out a singular value decomposition. Another standard
method of regularization for ill-posed problems isdiscretiza-
tion [13], [15]. This approach leads to a moment problem
that is discussed below. The regularization scheme discussed
in this paper involves collocation in time, and singular value
decomposition of a finite-dimensional approximation to the
operatorΦu.

Let 0 = t1 < · · · < tn = T be a discretization of time, so
that we have :

(Φu µ)(tj) = y(tj),∫
K

Rβ,α[u](tj) µ(β, α) dβdα = y(tj),

}
j = 1, · · · , n.

(13)
whereµ(β, α) is unknown, whileu(·) and y(tj) are known.
The time instantst1, · · · , tn are known ascollocationpoints.
It has been shown that for such amoment problem, the
sequence of approximationsµn(β, α) to the solutionµ(β, α),
is a finite linear combination of the functionsRβ,α[u](tj) [15].
Therefore the moment solutionsµn(β, α) are as smooth as the
functionsRβ,α[u](tj) even if the true solution is smoother. For
the Preisach operator,Rβ,α[u](tj) are discontinuous functions
by Equation (6), and thus the numerically obtained approxima-
tions of µ(β, α) tend to have discontinuous character ( please
see Figures 3(a), 6(a), 8(a) and 9(a) at this time).

Furthermore, due to the time discretization, the operator
Φu : Ku → IRn is no longer injective (as in Theorem 3.1).
Thus the density functionµ cannot be exactly identified, but
only a step function approximation can be identified. If the
minimum and maximum values of the input signalu(t) are
umin andumax respectively, then for experimental implemen-
tation, one considers the input to take one of the discrete values
umin = u1 < · · · < uN = umax (whereui+1 − ui = ∆u is
a constant), at the collocation timesti. Therefore the memory
curves, at the collocation times, have corners that lie on the
grid (um, un) whereu1 ≤ um ≤ un ≤ uN . Hence the change
in the output can only occur in discrete values, and one can
consider the density function to be piecewise constant on the
rectangles of the grid. Denote the set of step functions defined
on the grid byKm.

As step functions are dense inKu (Littlewood’s second
principle in Royden [16] (page 127), and Vitali’s convergence
theorem in Folland [17]), given anyµ ∈ Ku, there exists a
sequenceµm ∈ Km such that

lim
m→∞

‖µ− µm‖Ku = 0.

As the kernel function satisfies|Rβ,α[u](t)| = 1, we have:

‖Φu µm − Φu µ‖2 ≤
∫ T

0




∫∫

Ku

Rβ,α[u](t)(µm − µ)dαdβ




2

dt

≤ (meas(Ku))2
∫ T

0

‖µ− µm‖2Ku
dt

(by Cauchy-Schwartz Inequality)

= (meas(Ku))2 T ‖µ− µm‖2Ku
.

Thus the output functions converge in norm.
Once a set of collocation points have been determined,

one can discretize the input values so that a uniform grid is
established in the regionKu in the Preisach plane. Then the
equationΦu µ = y can be written as a linear equation

linear equation
Y = AX + ε, (14)

as described in Shirley and Venkataraman [12]. Each element
of X (except the last) denotes the area under the density
function for a particular grid element. The last element denotes
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the initial output value (at time0). To account for noise, we
estimate this value also.

We need is a way to solve forX that will best fit the data,
but at the same time keepxi ≥ 0, since X represents the
integral of a density function over a grid element.

We would like to minimize the function

f(X) =
1
2
‖AX − Y ‖2 (15)

where

A : IRn → IRm, X ∈ IRn, Y ∈ IRm, andrank(A) = m

with the inequality constraintg(X) = X ≥ 0.
The Lagrange multiplier theorem yields the existence of a

λ ∈ IRn, such that the necessary conditions forX to minimize
(15) are [11],

1)
λi = 0 whenXi 6= 0 (16)

2)
λi ≥ 0 whenXi = 0 (17)

3) The augmented function

f̄(X) = f(X)− λT g(X)
= f(X)− λT X

(18)

satisfies

∂f̄(X)
∂X

= XT AT A− Y T A− λT = 0 (19)

We used the MATLAB routine “quadprog” to solve this
problem and the results are described in Section 4. This is also
the approach used in Venkataraman, Tan and Krishnaprasad
[9]. OnceX is obtained we divide the elements by the area of
the corresponding grid element to obtain the density function.

B. Limited experimental data

The method described in the last subsection works very well
when the experimental input-output data is in a form to yield
an m× n A matrix with rankn. However, if we do not have
such an situation (which can easily arise by choosing a finer
discretization of the input), we must reformulate the problem.
In the following, we consider an even more general problem
where the rank ofA is less than min{m, n}:

minimize f(X) =
1
2
‖AX−Y ‖2; rank(A) < min{m, n},

(20)
with the conditions:

AX = Y + ε
Xi ≥ 0, ∀ i = 1, . . . , n

(21)

Now, we need to minimize (20), and12 ‖X‖2. This problem
can be tackled by different methods. One method involves the
minimization of a weighted combination:

minimize g(X) = α
2 ‖X2‖+ 1

2 ‖AX − Y ‖2,
subjectto Xi ≥ 0, ∀ i = 1, . . . , n, where α > 0.

This method when related to the original operator equation
is called Tikhonov regularization. We found that the Tikhonov
regularization approach is unstable numerically, as the choice
of α affects the solution greatly. Another method to solve (21)
involves the singular value decomposition ofA.

Let rank(A) = q < min {m, n}. If we perform a
singular value decomposition onAT A, then we get:

AT A = V SV T , (22)

whereS is an n × n diagonal matrix with rankq < n, and
V T V = In×n (see page 54, Bellman [18]). Then singular
values ofAT A are the diagonal elements ofS and be ordered
as σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0. By the remarks following
Picard’s theorem 3.3, we see that “small” singular values
should be discarded as they contribute to an amplification of
the noise in the solution. We perform the following steps:

1) Pick a tolerance valueε > 0, and set those singular
values that are less thanε to 0. Call the resulting matrix
that is obtained fromS asS1.

2) Remove the rows and columns ofS1 that are identically
zero, and also remove the corresponding columns ofU
and V. By this procedure, we obtain āq × q̄ diagonal
matrix Ŝ, and an× q̄ matricesV̂ that satisfies

V̂ T V̂ = Iq̄×q̄. (23)

The operator norm of the matrixAT A−V̂ ŜV̂ T can be seen
to be:

‖AT A− V̂ Ŝ V̂ T ‖ = ‖AT A− V S1 V T ‖
= ‖V (S − S1) V T ‖
= ‖S − S1‖
< ε.

We seek solutions of the typeX = V̂ Z for the Problem
(15). Using Equations (22) and (23), the cost function (20)
can be transformed toZT ŜZ − Y T AV̂ Z. Thus we form the
constrained optimization problem:

minimize f(Z) = ZT ŜZ − Y T AV̂ Z, (24)

subject to g(Z) = V̂ Z ≥ 0. (25)

Then once we have a minimizerZ∗ to the above problem, then
the desired solution is givenX∗ = V̂ Z∗. The constrained min-
imization problem (25) can be solved by using the MATLAB
routine “quadprog”. Again, onceX∗ is obtained we divide
the elements by the area of the corresponding grid element to
obtain the density function.

IV. APPLICATIONS

The following experiments were performed in a MATLAB
environment on a PC running a 1.6 GHz Athlon Processor,
with a 1 GB RAM.
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A. Magnetostrictive actuator

We used experimental data from a commercial magne-
tostrictive actuator from Venkataraman, Tan and Krishnaprasad
[9] in our initial numerical experiments. There, a Preisach
operator was used to model the average magnetic field versus
magnetization characteristic. Figure 2 shows the average mag-
netic field versus magnetization obtained in the experiment. In
the experiment, the magnetic field input took values between
10 Oe and 410 Oe. The output values were measured in
Oe. The results of the numerical experiments for various
discretization levels for the input magnetic field are tabulated
in Table I.

Figure 4 and 5 show the approximate densities computed
for different discretization levels. As expected from the theory
of the moment method (see Subsection III-A), the computed
density functions show a discontinuous character. To obtain a
smooth density function, one simply convolves the obtained
density function with a smooth function of compact support.
This procedure is calledmollification (see Kirsch [15] for a
discussion). We do not proceed along these lines as the choice
of the convolution kernel greatly influences the smoothed out
density function. Furthermore, the smoothed out density func-
tion performed poorly in comparison to the original solution,
when we tried to match the output of the Preisach operator
with the given output waveform.

Figures 4(c) and 5(c) needed the method described in
Subsection III-B, as the matrixAT A (for these two cases) was
singular. In other words, these two cases the experimental data
available was limited. For a discretization level of20 Oe for
the magnetic field, a comparison between the output of the
Preisach operator (AX) and the given output waveform (Y)
can be seen in figure 3(b). Similarly, for the discretization level
of 10Oe, the comparison between the output of the Preisach
operator (AX) and the given output waveform (Y) can be seen
in figure 6(b).
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Fig. 2. Experimentally determined Magnetic Field versus Magnetization
curves for an ETREMA magnetostrictive actuator.

1) Prediction Experiments:From Table I, we see that the
2 and infinity norm of the errorAX − Y, is smaller for
finer discretizations of the input signal. We also see that
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(a) The computed Preisach density function
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(b) Comparison between fitted and actual Magnetization ver-
sus Magnetic field (* indicates the fitted values)

Fig. 3. Identification experiments for a commercial magnetostrictive actuator
[9] with a magnetic field discretization of20 Oe.

the time taken to compute the density functions increases at
an exponential rate for finer discretizations. So, the question
arises whether one can use a smaller amount of data to speed
up the computation of the density for the finer discretization
levels. To test this, we conducted numerical experiments where
only part of the input signal was used for the identification and
then the computed approximate density was used to predict
the output for the entire input signal. In this case, we used
every other cycle from the input signal to obtain the best
approximation to the density function. Again the “quadprog”
routine in MATLAB was used to compute the approximation
to the density function. The obtained density function can be
seen in Figure 7(a). Then the entire input signal was applied to
the identified Preisach operator and a comparison between the
simulated and the actual experimental Magnetization signal
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MagneticField Time taken ‖Φu µ− y‖∞
Discretization for Density (Oe)

(Oe) Computation(s)
6.25 4755.1 3.55× 104

10 717.69 3.21× 104

12.5 143.27 4.19× 104

20 11.70 6.27× 104

25 1.88 6.70× 104

40 0.35 7.15× 104

TABLE I

COMPARISON OF APPROXIMATE DENSITY FUNCTIONS OBTAINED WITH

DIFFERENT DISCRETIZATION VALUES FOR THE MAGNETIC FIELD.

Full/Partial Input Time taken ‖Φu µ− y‖∞
Input Discretization (s) (Oe)
Data (Oe)

6.25 4755.1 3.55× 104

Full 10 717.69 3.21× 104

6.25 1228.3 3.16× 104

Partial 10 108.57 3.09× 104

TABLE II

COMPARISON OF COMPUTATION TIMES FOR THE NUMERICAL

EXPERIMENTS.

were made (see Figure 7(b)). Table II shows the infinity
norm of the error between the output of the Preisach operator
and the given output waveform. We note the savings in the
time of computation and the reduction in the infinity norm
of the error. We do not yet fully understand the theoretical
reason for the reduction in the error, and is something to be
explored in the future. Note that, as the Preisach operator is
rate-independent, one does not need to test the prediction of
the Preisach operator for varying input frequencies - only the
input magnitude needs to be varied. This is precisely what
was done in our experiments. To see prediction tests in an
open-loop control context, please see Venkataraman, Tan and
Krishnaprasad [9].

B. Electro-active Polymers

In this subsection, we apply our identification method to
a couple of electro-active polymers. Electro-active polymer
research has been very active over the past few years due
to the synthesis of novel materials that have properties very
similar to biological muscle. However, these materials like
their crystalline counterparts show a hysteretic relationship
between input variables (typically the electric field) and output
variables (typically electric displacement). As far as we are
aware, the Preisach operator has not been used to model
hysteresis in electro-active polymers though it is a natural
choice. The data in this section was obtained by enlarging
Figure 4 in Petchsuk and Chung [19] and Figure 6 in Lu,
Schirokauer and Scheinbeim [20]; manually putting a grid on
the figures; and approximating the input and output values.
As we are only interested in demonstrating the utility of our
method to cases where the published data is limited, it is
possible that there might be slight inaccuracies in the data.

First, we applied our method to the data published

by Petchsuk and Chung [19] on an electro-active poly-
mer (VDF/TrFE/HFP (55.17/42.35/2.46) terpolymer 121)
at 42◦ C. This polymer exhibits significant hysteresis in its
Electric Displacement vs Electric Field characteristic. The dis-
cretization of the electric field was chosen to be12.5 MV/m.
The identified Preisach density function can be seen in Fig-
ure 8(a). The comparison between the fitted data and the
experimental data obtained from Petchsuk and Chung [19] can
be seen in Figure 8(b). Finally, we show another application
to a VDF/HFP (5 %) electro-active polymer in Figures 9(a)
and 9(b), the data for which was obtained from X. Lu, A.
Schirokauer and J. Scheinbeim [20]. The discretization of the
electric field was again chosen to be12.5 MV/m.

V. CONCLUSIONS

In this paper, we have described a method to compute
(an approximation of) the Preisach density function when
there is insufficient experimental data. This is a situation
that is frequently encountered in practice. Previous methods
assumed the availability of sufficient data for the identification
to be performed, or considered a very coarse grid on the
Preisach plane leading to a poor approximation of the actual
density function. We described a method that utilizes all the
information present in the input-output data to obtain the best
approximation possible. We also presented the theoretical basis
for our method and explained why the computed densities
where discontinuous in nature. We also presented numerical
results using experimental input-output data, where we com-
pare the results of our identification with published data.
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(a) Discretization = 40 Oe
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(b) Discretization = 20 Oe
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(c) Discretization = 10 Oe

Fig. 4. Identification experiments for a commercial magnetostrictive actuator
[9] with different magnetic field discretizations
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(a) Discretization = 25 Oe
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(b) Discretization = 12.5 Oe
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(c) Discretization = 6.25 Oe

Fig. 5. Identification experiments for a commercial magnetostrictive actuator
[9] with different magnetic field discretizations
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(a) The computed Preisach density function
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(b) Comparison between fitted and actual Magnetization ver-
sus Magnetic field (* indicates the fitted values).
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(c) Fitted Magnetic field versus Magnetization characteristic.

Fig. 6. Identification experiments for a commercial magnetostrictive actuator
[9] with a magnetic field discretization of10 Oe.
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(a) The computed Preisach density function
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(b) Comparison between predicted and actual Magnetization
versus Magnetic field (* indicates the predicted values).
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(c) Fitted Magnetic field versus Magnetization characteristic.

Fig. 7. Identification experiments for a commercial magnetostrictive actuator
[9] with a magnetic field discretization of10 Oe and only some of the input
signal used.
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(a) The computed Preisach density function
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Fig. 8. Identification experiments for a VDF/TrFE/HFP electro-active
polymer [19] .
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(a) The Preisach density calculated for a VDF/HFP (5 %)
electro-active polymer.
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(b) Comparison between fitted and actual charge versus elec-
tric field data for a VDF/HFP(5 %) electro-active polymer.

Fig. 9. Identification experiments for a VDF/HFP (5 %) electro-active
polymer [20].


