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A very important sub-problem in the task assignment problem for unmanned air vehicles

(UAVs) is the evaluation of costs for the state transitions of a directed graph. Usually

a Dubins vehicle flying in the absence of wind is considered in the computation of costs.

However, when a prevailing wind vector field is considered, the costs taken on very different

values and the task assignment problem can have very different solutions. In this paper,

we consider the problem of constructing minimum time trajectories for a Dubins vehicle in

the presence of a time varying wind vector field. We present results on the existence and

uniqueness of minimum-time solutions for a Dubins vehicle flying in a general time-varying

wind vector field under some technical conditions. These results extend the conclusions of

the well-known Dubins theorem. We also propose an algorithm for obtaining the minimum-

time solution for an UAV and prove its convergence. We also present the results of numerical

experiments that show that the importance of considering wind vector fields while planning

the tour for an UAV.
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Nomenclature
UAV Unmanned Air Vehicle

MAV Micro Air Vehicle, usually with wing span approximately 1 ft.

V Constant Speed of the MAV.

t Time in seconds.

tf Free final time for the trajectory planning problem.

x Position of the center of mass of the MAV in IR2.

ψ Heading of the MAV (in radians).

q = (x, ψ).

(x0, ψ0) Initial position and heading at initial time 0.

(xf , ψfd) Desired position and heading at final time tf .

u(·) Steering control input to the MAV.

umax Upper bound on |u(t)| for all t.

W (·, ·) The wind vector field is a function of x and t in general.

φ Angle by which the initial coordinate system is rotated for numerical

stability of the trajectory planning algorithm.

z Position of the MAV after a coordinate transformation for numerical

stability.

θ Heading of the MAV after a coordinate transformation.
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Introduction

Cooperative Control of multiple, autonomous unmanned air vehicles (UAVs) is an active

area of research that holds enormous potential for military and civilian applications.1–3 This

new paradigm for control has been implemented in the MultiUAV simulation platform by

the Air Force Research Laboratory.3 It has a hierarchical architecture, where at the highest

level the dynamics of the controlled agents are usually suppressed and a task allocation for

the agents is performed using graph theory. The tasks for the agents are usually tightly

coupled in time3,4 and hence estimates of the times taken for each agent to fly from one

destination to the next is highly critical for correct assignment of tasks. This estimate of

times is usually obtained by considering a kinematic model of the air vehicle, along with

kinematic turn-radius constraints, to keep the computation time at a manageable level.5–7

The key result that is used in this computation is Dubins’ result on the existence of minimum

time solutions for a kinematic model with minimum turn-radius constraint.8 However, this

result is only for valid for zero-wind and hence all of the available cost estimation algorithms

are only valid for zero-wind. In this paper, we propose a new method for the computation of

minimum time solutions for the trajectory planning problem for a Micro Air Vehicle (MAV)

or UAVs in the presence of time-varying wind, and prove its convergence. We also present

the results of numerical experiments that show that the order in which targets need to be

over-flown to minimize total flight time can be very different if the winds are accounted for.

We model an MAV flying with a constant speed in the wind axes and at a constant

altitude. The kinematic equations of motion for the MAV are:

ẋ = V (cos ψ, sin ψ) + W (x, t); ψ̇ = u. (1)

where x = (x1, x2), W (x, t) = (W1(x, t),W2(x, t)), and Wi(x, t); i = 1, 2 are functions with

bounded derivatives. These equations contain the wind vector field that is not considered in

earlier works.5–9 Of course, the actual model for a MAV consists of Euler’s equations10 and

kinematic model used above implies a perfect response to the turn commands. However, it

must be kept in mind that the kinematic model is only employed to compute the order in

which the targets are to be visited. Once the order is determined, optimal control theory

should be employed to determine the actual time-optimal path to be flown by the aircraft.

A major reason for using the kinematic model is the fact that only necessary conditions for

optimality exist for the second order model (given by Pontryagin’s Maximum Principle) and

no results on existence of solutions are available. The situation is different for the kinematic

model where in the absence of wind (that is W (x, t) = (0, 0)), the well-known Dubins’

theorem8 posits the existence of a time-optimal solution for any combination of initial and
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final positions and velocities of the UAV or MAV.

Contemporaneously during the development of the results in this manuscript, McGee,

Spry and Hedrick11 have addressed the problem of trajectory planning in the presence of

constant wind. The mathematical method employed by them appears similar to ours for the

case of constant wind. They classify the set of initial and final states into Types 1 and 2,

where Type 1 states have a minimum time solution while Type 2 states don’t. Here we prove

that their Type 2 states form a set of measure zero which means that they are sparse in the

set of all possible states. In our earlier work,12 we addressed the more general case of time

and space-varying winds and proved the existence of time-optimal solutions (for almost every

initial and final states) under technical conditions involving the gradients of the wind. The

verification of these conditions can be used as the starting point for a numerical algorithm to

compute the time-optimal trajectory. Here, we consider time-varying wind vector fields (that

is W (x, t) = W (t) for all x ∈ IR2 and any t ∈ IR) and prove the convergence of an algorithm

for computing the minimum-time solutions. Therefore, the work in this manuscript is a

generalization of the work of McGee, Spry and Hedrick.11

Getting back to the equations of motion, let q = (x, ψ). The optimal control problem to

be solved can be formulated in two ways:

Problem 1. For the system (1), minimize the final time tf subject to the constraints:

q(0) = q0 = (x0, ψ0) and q(tf ) = qf = (xf , ψfd); u(·) a Lebesgue measurable function, and

satisfies,

|u(t)| ≤ umax =
V

Rmin

, (2)

for all t. In (2), Rmin is the minimum turn radius in the absence of wind and arises due to

mechanical limitations on the aircraft. As an MAV is designed to fly between the streets

while searching for targets, we must ensure that the MAV enters a street along its center

line, or at least parallel to it. In our numerical examples, ψfd is the angle that the centerline

makes with the x-axis of the coordinate system. Due to the wind vector field, the actual

tangent line to the solution of Problem 1 would make an angle:

∠ẋ(tf ) = arctan

(
V sin ψ(tf ) + W2(x, tf )

V cos ψ(tf ) + W1(x, tf )

)
= arctan

(
V sin ψfd + W2(x, tf )

V cos ψfd + W1(x, tf )

)
, (3)

which could result in the loss of the MAV. Hence, it is clear that one must change the

end condition to require that ∠ẋ(tf ) = ψfd to minimize the possibility of aircraft loss. We

denote ψ(tf ) by ψf for simplicity and also denote W1(x, tf ) = ‖W (xf , tf )‖2 cos θW (xf , tf )

and W2(x, tf ) = ‖W (xf , tf )‖2 sin θW (xf , tf ). The following computations yield a formula for
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ψf :

V sin ψf + W2(x, tf )

V cos ψ(tf ) + W1(x, tf )
= tan ψfd (4)

V sin ψf + ‖W (xf , tf )‖2 sin θW (xf , tf )

V cos ψf + ‖W (xf , tf )‖2 cos θW (xf , tf )
=

sin ψfd

cos ψfd

(5)

V sin(ψf − ψfd) = ‖W (xf , tf )‖2 sin(ψfd − θW (xf , tf )), (6)

which leads to:

ψf = arcsin

(‖W (xf , tf )‖2

V
sin(ψfd − θW (xf , tf ))

)
+ ψfd; (7)

where

θW (xf , tf ) = arctan
W2(xf , tf )

W1(xf , tf )
(8)

This leads us to Problem 2:

Problem 2. For the system (1), minimize tf subject to the constraints: q(0) = q0 = (x0, ψ0);

x(tf ) = xf ; and ∠ẋ(tf ) = ψfd; u(·) a Lebesgue measurable function, and satisfies (2).

In this paper, we will focus on the special case W (x, t) = W (t). An existence of minimum-

time solution result for the more general case of time and space varying winds (for Problem

1) can be found in McNeely.12 In the same work, we proved the uniqueness of minimum-time

solutions for almost every combination of initial and final states for Problem 1. Here, we

prove existence and uniqueness of minimum-time solutions for the case of time-varying wind

vector fields (that is, W (x, t) = W (t)) for Problem 2.

In other related work, Lissaman13 and Zhao and Qi14 discuss the use of wind gradients to

do work for the vehicle while in flight. Another study by Venkataramanan and Dogan is based

upon the use of a nonlinear controller when reconfiguring the formation of a group of UAVs

and how wind effects are taken into consideration.15 Studies by Boyle and Chamitoff16 are

based on a stepwise solution to a constrained optimization problem which solves a nonlinear

two-point boundary value problem at each timestep.

The Tour Problem

In the considered mission, a small unmanned air vehicle (SUAV) gives the MAV a set of

N targets xi = (xi1, xi2); i = 1, · · · , N to fly over. The case in which the sensor is located

on the aircraft such that a straight line flight along the center-line must be altered in order

to view the target, is outside the scope of this paper though it is an interesting problem

in its own right. For each target, the street where it is located is found on a map which

yields two possible angles ψi or ψi + π for flying over the target. The mid-line of that
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street is found and the point xi is projected perpendicularly from the target onto that line.

To simplify notation, we will represent this new point also as xi and continue to work with

these coordinates henceforth. For the i-th target, two way-points x1
i , x2

i ); are created equally

spaced along the street about the projected point. These are considered entrance/exit points

for viewing the target. Thus, each exit point is described by coordinates qj
i = (xj

i1, x
j
i2, ψ

j
i ),

where i = 1, 2, · · · , N and ψj
i is chosen to be one of the two angles ψi or ψi +π, such that the

unit vector (cos ψj
i , sin ψj

i ) points away from the target (xi, yi) at the point xi. The objective

is to fly from target i to target k 6= i by flying from a point, qj
i to ql

k. Thus there are four

possible paths corresponding to j, l = 1, 2. In this paper, we do not address the problem of

flying between qr
i to qs

i (that is flying over the target xi) where r 6= s, and assume it to be

a simple straight line along the street. Once the cost of flying the optimal path between qj
i

to ql
k for all i, k = 1, 2, · · · , N ; i 6= k and j, l = 1, 2 then one can set up a task assignment

problem as outlined in.3

Discussion of Dubins’ Theorem for the zero wind case

We briefly discuss Dubins’ result on the existence and uniqueness of minimum length

solutions for a particle following a Lipschitz continuous path at a constant speed V , with a

bound on the maximum of the curvature given by 1
Rmin

. This theorem states that for every

initial, final positions and velocities the minimum time (or minimum length) solution is an

arc-line-arc or arc-arc-arc curve. Here, by “arc” we mean a portion of a circle or radius

Rmin and “line” means a straight line segment. Furthermore, for the arc-arc-arc solution,

Dubins’ theorem states that the middle arc must have length greater than π Rmin. For the

Tour planning problem, Dubins’ theorem8 posits the existence of a solution to the minimum

time optimal control problem for the special case W (x, t) = (0, 0) for all x ∈ IR2 and t ∈ IR+.

As the minimum time solution is invariant with respect to translations and rotations of

the coordinate axis, we can change coordinates so that the initial position is at the origin

of IR2 and the final position is along the x axis. The initial and final velocity directions

measured with respect to the x-axis are termed φ0 and φf respectively in Figures 1 - 2.

The direction of the velocity induces an orientation on the circles tangent to the velocity

vector. In the figures, we denote the center of the counterclockwise oriented circle by Z0 and

Zf respectively, while the centers of the clockwise oriented curves are denoted by Y0 and

Yf respectively. Thus we can distinguish between the Z0LYf from the Y0LZf arc-line-arc

solutions etc. The arc-line-arc solution is found when the initial and final positions are fairly

separated as in Figure 1, while the arc-arc-arc solution is usually found when the initial and

final positions are close enough as in Figure 2. l = 0 in Figure 2 means that the distance

between the initial and final positions is 0. Figure 2(a) shows a Y0ZfYf arc-line-arc curve
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connecting the initial and final velocities. Though the minimum time solutions exist, they

need not be unique as seen in Figures 1(b) and 2(b). A more important point from the

point of view of numerical methods is the differentiability of the arc-lengths as a function

of the final positions and velocities while holding the initial positions and velocities fixed.

This issue is discussed in12 in detail. The final result is that there is a set of final positions

and velocities that has a measure zero, and where the minimum time curves change from

arc-line-arc to arc-arc-arc type or vice-versa and at these points the arc length function

is discontinuous and hence non-differentiable. It is also possible for arc-line-arc curves to

change to arc-line-arc curves in a discontinuous manner.

Time optimal trajectories in the presence of wind

For a non-zero time-varying (Caratheodory) wind vector field, it is possible to show

existence of a time-optimal solution if we make the following assumptions. Suppose that W

is a differentiable function of t with bounded derivative and furthermore:

A1. ‖W‖∞ = supt ‖W (t)‖ < V.

A2. ‖∂W
∂t
‖∞ ≤ β

√
V 2 − ‖W‖2∞ umax,

where: ‖∂W
∂t
‖∞ = supt ‖∂W

∂t
(t)‖2, and 0 < β < 1 is some constant.

Remarks: The assumption A1 is easy to explain. It is needed to ensure that the MAV will

have non-zero forward velocity in the presence of the worst-case head wind. The assumption

A2 is needed because the MAV has a limitation on the maximum rate of turn given by

inequality (2) and hence cannot keep up with very rapid large changes in the wind direction

(please refer to McNeely12 for more details).

Solution to Problem 1

In12 we proved the following theorem (the statement has been modified from12 to include

two results proved in the same manuscript):

Theorem 1 Suppose that W (t) is a time-varying (Carathéodory) vector field of wind ve-

locities satisfying assumptions A1 - A2. Then there exists a solution to Problem 1 for the

system (1). The solution is unique for almost every collection of initial and final states.

Suppose the wind W (x, t) = W (t) depends only on the time variable, while satisfying

the conditions (A1) - (A2). Then, we can the transform coordinates (with the same time

variable) as follows:

x̄ = ϕ(x, t) = x−
∫ t

0

W (s) ds and ψ̄ = ψ. (9)
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Let q(t) = (x(t), ψ(t)) be the solution to (1) with initial condition q0. After coordinate

transformation, this solution becomes:

x̄(t) = x(t)−
∫ t

0

W (s) ds and ψ̄(t) = ψ(t). (10)

Therefore, in the new coordinates (x̄, ψ̄), the system equations take on the form:

˙̄x = V (cos ψ̄, sin ψ̄), x̄(0) = x0; (11)

˙̄ψ = u, ψ̄(0) = ψ0, (12)

which is of the form considered by Dubins. The final states of the transformed system for

Problem 1 are given by:

x̄(tf ) = xf −
∫ tf

0

W (s) ds, ψ̄(tf ) = ψfd. (13)

By Theorem 1, the time optimal solution exists for all initial and final conditions, and is

unique for almost every set of initial and final conditions for the original system. Clearly, the

optimal trajectory must be a Dubin’s solution for the transformed system with initial states

(x̄, ψ̄)(0) and final states (x̄, ψ̄)(tf ) (see McNeely12 for a fuller discussion). The problem is

that tf is unknown and hence x̄(tf ) is also unknown. In the algorithm in Theorem 2, we

make an initial guess for tf and improve it using Newton’s method. The convergence of the

sequence of final times is proved.

Theorem 2 Select τ 0
f > 0. For n = 1, 2, · · · , consider the final states:

x̄(τn−1
f ) = xf −

∫ τn−1
f

0

W (s) ds; ψ̄(τn−1
f ) = ψfd. (14)

Let L(τn−1
f ) be the length of the minimum-time Dubins trajectory with initial state (x̄, ψ̄)(0)

and final states (x̄, ψ̄)(τn−1
f ), and denote

T (τn−1
f ) =

L(τn−1
f )

V
. (15)

Set

τn
f = τn−1

f − τn−1
f − T (τn−1

f )

1− T ′(τn−1
f )

. (16)

Then, the sequence {τn
f ; n ∈ ZZ} converges to a unique τ ∗f > 0 for almost every set of initial

and final conditions for the original system provided τ 0
f is sufficiently close to τ ∗f .
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Proof: Consider the function f(τ) = τ −T (τ). The equation f(τ) = 0 has a unique solution

τ ∗f by Theorem 1 for almost every set of initial and final states. This is because f(τ ∗f ) = 0

yields τ ∗f =
L(τ∗f )

V
. This means that the minimum-time trajectory from x̄(0) to the point

xf −
∫ τ∗f

0 W (s) ds takes exactly time τ ∗f – or, in other words – x̄(τ ∗f ) = xf −
∫ τ∗f

0 W (s) ds. The

existence and uniqueness of τ ∗f having been addressed, lets consider the differentiability of

the function L(τ). As studied in McNeely,12 this function is continuously differentiable for

almost every choice of τ. Hence, provided the initial selection τ 0
f is sufficiently close19 to τ ∗f ,

Newton’s method is applicable to the solution of f(τ) = 0 which results in (16).

2

Remark: Unfortunately, it is difficult to characterize how “close” the initial selection τ 0
f needs

to be to τ ∗f as this depends on x0, xf , ψ0, ψf and the wind vectorfield W (t) in a complicated

way.

Solution to Problem 2. We will first prove the existence of time-optimal solutions for

the special case of time-varying wind W (x, t) = W (t). The proof for the general case also

follows the same pattern though the equations look more complicated. As the algorithm in

this paper is designed for the case for W (x, t) = W (t), this is the significant case for our

purposes. We have the following theorem:

Theorem 3 Suppose that W (x, t) = W (t) is a time-varying (Carathéodory) vector field of

wind velocities satisfying assumptions A1 - A2. Then there exists a solution to Problem 2

for the system (1), and the solution is unique for almost every collection of initial and final

states.

Proof:

Existence: The proof of existence proceeds in similar fashion to the proof of Theorem 1 as

given in.12 The idea is to establish one solution and then use Filippov’s theorem12,18 to prove

the existence of a minimum-time solution. The worst case wind vector-field is the one that

yields the system equations:

ẋ = (V + ‖W‖∞) (cos ψ + sin ψ); ψ̇ = u, (17)

as the instantaneous turn-radius given by R′
min(t) = ‖ẋ‖

max θ̇
= V +‖W‖∞

V
Rmin is the largest

possible. The condition on ψ(tf ) becomes: ψ(tf ) = ψfd. Dubin’s Theorem8 is applicable to

system (17) with initial states (x0, ψ0) and final states (xf , ψfd), and it yields the existence

of a minimum-time solution for the worst-case wind. For a given wind field W (t), one can

construct a piecewise continuous u(t) such that the solution stays on the trajectory for the

worst-case wind as shown in the proof of Theorem 1 in McNeely.12 This solution satisfies

∠ẋ(tf ) = ψfd for some tf > 0, that is exactly what was desired. However, this solution is
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not the minimum time optimal solution for the wind W (t), and we prove the existence of the

latter using Filippov’s theorem. In order to apply the theorem, we need to make a change

of variables. Let

α(t) = arctan

(
V sin ψ(t) + W2(t)

V cos ψ(t) + W1(t)

)
. (18)

Then we obtain (the variable t is suppressed for brevity):

α̇ =
(V cos ψ + W1)(V u cos ψ + Ẇ2)− (V sin ψ + W2)(−V u sin ψ + Ẇ1)

V 2 + ‖W‖2 + 2 V (W2 sin ψ + W1 cos ψ)
(19)

=
V 2 u + V u (W2 sin ψ + W1 cos ψ) + V (Ẇ2 cos ψ − Ẇ1 sin ψ) + (W1 Ẇ2 −W2 Ẇ1)

V 2 + ‖W‖2 + 2 V (W2 sin ψ + W1 cos ψ)
(20)

The above equation can be written entirely in terms of α(t) using the equations:

ψ(t) = arcsin

(‖W (t)‖2

V
sin(α(t)− θW (t))

)
+ α(t); θW (t) = arctan

W2(t)

W1(t)
. (21)

The system in variables (x, α) has initial and final conditions as follows:

x(0) = x0; x(tf ) = xf (22)

α(0) = arctan

(
V sin ψ0 + W2(0)

V cos ψ0 + W1(0)

)
; α(tf ) = ψfd (23)

It is straightforward to see that the system in the variables (x, α) satisfies all the conditions of

Filippov’s theorem.12,18 As we have already shown the existence of one solution that satisfies

the initial and final conditions, there exists a measurable control u∗(·) and a minimum-time

solution x∗(·), α∗(·) that satisfies the boundary conditions for almost all initial and final

states.

Uniqueness: To show the uniqueness of the solution for almost all initial and final states, we

need to work with the x̄, ψ̄ coordinates as in (9):

˙̄x = V (cos ψ̄, sin ψ̄), x̄(0) = x0, x̄(tf ) = xf −
∫ tf

0

W (s) ds; (24)

˙̄ψ = u, ψ̄(0) = ψ0, arctan

(
V sin ψ̄(tf ) + W2(tf )

V cos ψ̄(tf ) + W1(tf )

)
= ψfd. (25)

By our proof of existence, we know that there exists a minimum time solution for almost all

initial and final states for the original system. Assuming it exists, let (x, ψ)(t), t ∈ [0, tf ] be

this solution. Denoting x̄(tf ) by x̄f and ψ̄(tf ) by ψ̄f , the final states in (24) and (25) can be
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written as:

x̄f = xf −
∫ tf

0

W (s) ds; (26)

ψ̄f = arcsin

(‖W (tf )‖2

V
sin(ψfd − θW (tf ))

)
+ ψfd; θW (tf ) = arctan

W2(tf )

W1(tf )
. (27)

With (x̄f , ψ̄f ) as the desired final state for the transformed system, we see that Dubins

Theorem8 applies and there exists a unique solution (x̄′, ψ̄′)(·) defined on [0, t∗f ] for almost

every combination of initial and final states of the transformed system, where t∗f ≤ tf . We

can transform the solution back to the original coordinates (x′, ψ′) while remembering that:

x̄′(t∗f ) = x̄f , ψ̄′(t∗f ) = ψ̄f , (28)

to obtain:

x′(t∗f ) = x̄′(t∗f ) +

∫ t∗f

0

W (s) ds; (29)

= xf +

∫ t∗f

tf

W (s) ds; (30)

ψ′(t∗f ) = ψf . (31)

A sufficient condition for x′(t∗f ) = xf and ψ′(t∗f ) = ψf is t∗f = tf . If t∗f < tf , then it

follows that both solutions (x, ψ)(t), t ∈ [0, tf ] and (x′, ψ′)(t), t ∈ [0, t∗f ] satisfy the boundary

conditions, and the first solution is not the minimum-time solution contradicting our original

assumption. Hence t∗f = tf is both necessary and sufficient for x′(t∗f ) = xf and ψ′(t∗f ) = ψf .

As the Dubins solution in the transformed coordinates is unique for almost every choice of

end conditions, the same is true for the minimum time solution in the original coordinates

as well.

2

The same algorithm and convergence proof for Problem 1 as summarized in Theorem 2 also

applies to Problem 2 with a minor change.
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Theorem 4 Select τ 0
f > 0. For n = 1, 2, · · · , consider the final states:

x̄(τn−1
f ) = xf −

∫ τn−1
f

0

W (s) ds; (32)

ψ̄(τn−1
f ) = arcsin

(
‖W (τn−1

f )‖2

V
sin(ψfd − θW (τn−1

f ))

)
+ ψfd; where (33)

θW (τn−1
f ) = arctan

W2(τ
n−1
f )

W1(τ
n−1
f )

. (34)

Let L(τn−1
f ) be the length of the minimum-time Dubins trajectory with initial state (x̄, ψ̄)(0)

and final states (x̄, ψ̄)(τn−1
f ), and denote

T (τn−1
f ) =

L(τn−1
f )

V
. (35)

Set

τn
f = τn−1

f − τn−1
f − T (τn−1

f )

1− T ′(τn−1
f )

. (36)

Then, the sequence {τn
f ; n ∈ ZZ} converges to a unique τ ∗f > 0 for almost every set of initial

and final conditions for the original system provided τ 0
f is sufficiently close to τ ∗f .

Proof: The proof is identical to that of Theorem 2, except for the fact that Theorem 3 is

invoked in the proof instead of Theorem 1.

2

Next, we describe the algorithms given in Theorem 2 for Problem 1, and Theorem 4 for

Problem 2 in greater detail. In Step 2, we change coordinates for numerical stability from

(x, ψ) to (z, θ) such that in the new coordinates z0 is at the origin and zf is along the positive

z1-axis. One could also employ a scaling of the axes in this step. In Step 3, we set the wind

to zero and use Dubins method to obtain an initial estimate τ 0
f for the final time. In Step

4, we modify the final angle θfd to θf for Problem 2. This step is not necessary for Problem

1. At Step n, the estimate to tf is τn
f , and yields θn

f . On convergence of the algorithm the

correct value for θf will be found along with tf .

Algorithm for time optimal paths in the presence of time-varying wind

1. Start

Input q0 = (x10, x20, ψ0) and qf = (x1f , x2f , ψfd) (ψfd is the desired final angle), mini-

mum turn radius (Rmin), speed (V ), and time-varying wind velocity (W (t)). Select a

tolerance ε > 0.
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2. Perform a coordinate transformation for numerical stability

Let cos φ =
x1f−x10

‖xf−x0‖ and sin φ =
x2f−x20

‖xf−x0‖

Define: R =

[
cos φ − sin φ

sin φ cos φ

]

We use the rotation matrix R and a shift of origin so that (x, ψ) is transformed into

(z, θ), with zf along the positive z1-axis. Specifically, z = RT (x− x0), and θ = ψ − φ.

We have to consider 4 cases to compute φ in an actual implementation:

(a) If cos φ = 0 and sin φ > 0 let φ = π/2

(b) If cos φ = 0 and sin φ < 0 let φ = −π/2

(c) If cos φ > 0 let φ = arctan sin φ
cos φ

(d) Else φ = arctan sin φ
cos φ

+ π

Denote: θ0 = ψ0 − φ and θfd = ψfd − φ.

z0 and zf are computed according to the coordinate transform: z0 = (0, 0); zf =

RT (xf −x0). The wind vector field W (t) is transformed to W̄ (t) = RT W (t). The new

system of equations are:

ż = V (cos θ, sin θ) + W̄ (t); θ̇ = u. (37)

3. Step 0: Use Dubins method to find an initial value for τ 0
f

Use (z0, θ0) and (zf , θf ) to compute a Dubins trajectory for the transformed system

with zero wind. Let L be the length of this trajectory. Set τ 0
f = L

V
.

4. Step n: Find the angle θfd

Find θf dependent on θfd, V , and W̄ (τn
f ). Figure 3 describes the idea behind the

computation.

Denote by V̄ = (V̄1, V̄2) the vector V (cos θf , sin θf ). At t = τn
f , Consider V̄ +

W̄ (τn
f ) = (V̄1 + W̄1(τ

n
f ), V̄2 + W̄2(τ

n
f )) where V̄ is as yet unknown (because τn

f is un-

known).

Note that tan θfd =
V̄2+W̄2(τn

f )

V̄1+W̄1(τn
f )

.

Therefore

V̄1 + W̄1(τ
n
f ) = ‖V̄ + W̄ (τn

f )‖ cos θfd (38)

V̄2 + W̄2(τ
n
f ) = ‖V̄ + W̄ (τn

f )‖ sin θfd (39)
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If we combine these equations and solve for V̄2, we have the following equation.

V̄2 = (V̄1 + W̄1(τ
n
f )) tan θfd − W̄2(τ

n
f ) (40)

We also have:

V̄ 2
1 + V̄ 2

2 = V 2 (41)

Solve for V̄1 and V̄2 using equations (40) and (41).

As cos(θf ) = V̄1

V
and sin(θf ) = V̄2

V
, we find θf using the following process:

(a) If cos θf = 0 and sin θf > 0 let θf = π/2

(b) If cos θf = 0 and sin θf < 0 let θf = −π/2

(c) If cos θf > 0 let θf = arctan
sin θf

cos θf

(d) Else θf = arctan
sin θf

cos θf
+ π

5. Step n continued: Compute τn
f

Let z̄f = zf −
∫ τ

(n−1)
f

0 W̄ (s) ds. Use Dubins method with initial state (z0, θ0) and final

state (z̄f , θ
n−1
f ). Denote the length of the path divided by the speed V by T (τ

(n−1)
f ) as

it is a function of τ
(n−1)
f .

6. If |T − τ
(n−1)
f | < ε, then go to Item 7. Otherwise, compute the solution τn

f to f(τ) =

T (τ)−τ using Newton’s Method or Modified Newton’s Method.19 τn
f = τn−1

f − f(τn−1
f )

f ′(τn−1
f )

.

The derivative term in the denominator is computed numerically. Go to Item 4.

7. Stop We take τn
f as the approximate value of τn

f .

Remark: For the case of constant wind W (t) = W, the algorithm is particularly simple to

implement and intuitive. It can be interpreted as follows. We seek to find a state (x̄w
f , ψ̄f )

such that in the absence of wind, the Dubins solution takes time tf to reach this state from

(x̄0, ψ̄0). The property of this state is that it takes exactly time tf for a particle to go from

x̄w
f to x̄f . The same interpretation also holds for the case of time-varying wind.

Numerical Results

To illustrate the effectiveness of the algorithm, we look at a few numerical examples while

considering a constant wind vector field. In practice, it is not possible to have knowledge

of the wind vector field W (t) before hand, and hence constant wind is the important case

15 of 33



to consider. We first consider a simple trajectory planning problem with given initial and

desired final positions x0, xf and headings ψ0, ψfd. We consider Problem 2 for several cases

with various constant wind vector fields. For all cases, we set V = 40 m/s and Rmin = 100 m.

The units of distance in the discussion below is meters, that of speed is meters per second,

and that of angle is radians.

Trajectory Planning Example

We consider two generic initial and final states, where the final states where chosen using

the random number generator in MATLAB. The wind vectors range from W = [−10;−15]

to W = [10; 15] and all satisfy the condition ‖W‖2 < V . Specifically, the states were q0 =

(−650,−100, π/4) and qf = (−692.9, 433.62,−0.1824). The tolerance ε for the algorithm

was chosen to be ε = 0.1. Applying the algorithm for Problem 2, the results shown in

Figure 4 and summarized in Table 1 were obtained. Figure 4 shows the actual trajectories

computed and their variation with the wind can be seen. Notice that all trajectories are

tangential to each other at the end point in spite of the different wind conditions, which is

exactly as required for solutions to Problem 2. As the wind increases from W = [10; 10] m/s

to [10; 15] m/s, a qualitative change in the trajectory can be observed. This could perhaps

be explained by observing that the minimum time trajectory would be the one with the

maximum “coasting” in the direction of the wind.

Next, we consider a case where the initial and final positions are identical - to be precise,

q0 = (0, 0, 0) and qf = (0, 0, pi). It is well-known that this problem has a non-unique arc-

arc-arc solution for the zero-wind case and the algorithm computes one of the solutions (the

clockwise one) as shown in Figure 5. The same figure also shows the solution to Problem 2

in the presence of constant wind W = [−5; 15] m/s. Notice that now the symmetry is lost,

and the solution to Problem 2 is a clockwise trajectory which is tangential to the x-axis, as

required.

Optimal Tour Planning

In this subsection, we consider the effect of the wind on the tour planning or task assign-

ment for MAV’s. Given several target locations, an initial starting point and heading, we

would like to find the order in which to visit the targets such that the total time of travel

is minimized. To do this, we first compute exit/entry points for each target as described in

the section on the Tour Problem. Then we set up a directed graph containing all possible

paths between the targets themselves, and between the starting state and the targets. The

minimum time taken for each state transition is computed using the algorithm and assigned

as the cost of the state transition. Finally, one needs to search the cost table for the directed

graph to find a state transition sequence of minimum cost that starts with the initial state
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and covers all the targets. Several publications1,2, 9 in the literature have addressed the search

problem and that is not the topic under investigation in this paper. As our interest is in

demonstrating the effect of wind on the task assignment problem, we consider two examples

with 3 targets each and the direct graph search was done manually with some effort. The

wind for both examples was set at [10; 15] m/s though this is just a number and the theory

developed earlier does not depend on any specific wind speeds.

In the first example, the drop off point is (−650,−100, π
4
), and in the second example,

the drop off point is (400, 400, 5π
4

), and they have been denoted by S in Figures 6(a) and

6(b). The three targets are Target 1 ≡ (−703, 434.9), Target 2 ≡ (790.9, 632.2), and Target

3 ≡ (−179.5,−124.8). Note that these targets were chosen using the map of a simulated

city that is available in the MultiUAV simulation.3

The entry/exit points for each of the targets were found as discussed in Section on the

Tour Problem. Those about the first target are 1a ≡ (−682.9, 433.6,−0.18) and 1b ≡
(−722.2, 440.9, 2.96). The second target has bounds 2a ≡ (810.8, 629.8,−0.19) and 2b ≡
(771.53, 637.19, 2.9565). The third target has entry/exit points 3a ≡ (−158.5,−121.0,−0.18)

and 3c ≡ (−197.8,−113.7, 2.96). For the first example, the Tables 2 and 3 were obtained

for the state transition times, where the time is measured in seconds. The time optimal

tours are plotted in Figure 6(a). The results of the minimum-time tour computation showed

an improvement in the time needed to travel the minimal path in these wind conditions.

The optimal path where there is no wind present was computed to be S-1b-1a-3b-3a-2b-2a –

which is travel from the drop off point to the first target, then the third target, and finally to

the second target. The cost of traveling this path in the case of no wind was 69.4 seconds. In

the presence of wind, the optimal path was found to be S-1a-1b-3b-3a-2b-2a and the cost got

reduced to 64.9 seconds. Although travel to each target was performed in the same order,

the approach was different in each scenario. This case shows how the presence of wind could

help the trajectory of an MAV.

For the second example, only the relationships with S and the other points change. The

cost tables for this problem are given in Tables 4 and 5. The time optimal tours for the zero

wind and wind case is shown in Figure 6(b). The results of the search routine showed that

the minimal path in wind conditions was longer than that in no wind. The optimal path

where there is no wind was S-2a-2b-3a-3b-1a-1b with cost 75 seconds. In the presence of

wind, the optimal path was S-3a-3b-1a-1b-2b-2a and the cost was 92.8 seconds. This path

is very different from that where no wind is present.
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Conclusion

In this paper, we consider the problem of constructing minimum time trajectories for a

Dubins vehicle in the presence of a time varying wind vectorfield. We have presented results

on the existence and uniqueness of minimum-time solutions for a Dubins vehicle flying in a

general time-varying wind vectorfield under some technical conditions. Using these results

we have proposed and proved the convergence of an algorithm for obtaining minimum-time

solution for such a vehicle. We have presented the results of numerical experiments that show

that the importance of considering wind vectorfields while planning the tour for a Dubins

vehicle.

Acknowledgements

R. McNeely would like to acknowledge a graduate student fellowship granted by the Air

Vehicles Directorate Summer Research Program, Summer 2005. R. Iyer was supported by

an USAF/ASEE Summer Faculty Fellowship during Summer 2005. The authors would like

to thank Prof. S. Darbha, Texas A & M university, for introducing the work of McGee, Spry

and Hedrick to us in May 2006. We thank the anonymous referees for taking the time to

review the paper and giving us valuable suggestions, and this has resulted in an improvement

in the quality of the manuscript.

18 of 33



References
1Chandler, P., and Pachter, M., “Hierachical control for autonomous teams”, AIAA-

2001-4149, Proc. AIAA Guidance, Navigation and Control Conference, Montreal, Canada,

August, 2001.

2Schumacher, C., Chandler, P., and Rasmussen, S., “Task allocation for wide area search

munitions via network flow optimization”, AIAA-2001-4147, Proc. AIAA Guidance, Navi-

gation and Control Conference, Montreal, Canada, August, 2001.

3Rasmussen, S., Mitchell, J. W., Chandler, P., Schumacher, C., and Smith A. L., “Intro-

duction to the MultiUAV2 simulation and its application to cooperative control research”,

pp. 4490 - 4501, Vol. 7, Proc. American Control Conference, Portland, OR, June, 2005.

4Chaudhry, A. I., Misovec, K. M. , and D´Andrea, R., “Low Observability Path Planning

for an Unmanned Air Vehicle Using Mixed Integer Linear Programming”, pp. 3823 - 3829,

Vol. 4, Proceedings of the 43rd IEEE Conference on Decision and Control, Paradise Island,

The Bahamas, December 2004.

5Yang. G., and Kapila, V., “Optimal path planning for unmanned air vehicles with

kinematic and tactical constraints”, pp. 1301 - 1306, Vol. 2, Proc. 41st IEEE Conference on

Decision and Control, pp. 1301 – 1306, Las Vegas, NV, December 2002.

6Howlett, J., “Path Planning for Sensing Multiple Targets from an Aircraft,” Masters

Thesis, Department of Mechanical Engineering, Brigham Young University, December 2002.

7Anderson, E., “Extremal Control and Unmanned Air Vehicle Trajectory Generation,”

Masters Thesis, Department of Electrical and Computer Engineering, Brigham Young Uni-

versity, April 2002.

8Dubins, L., E., “On curves of minimal length with a constraint on average curvature

and with prescribed initial and terminal positions and tangents”, American Journal of Math-

ematics, vol. 79, 1954, pp 497-516.

9Savla, K., Bullo, F., and Frazzoli, E., “On traveling salesperson problems for Dubins’

vehicle: stochastic and dynamic environments”, Proc. IEEE Conf. on Decision and Control,

Seville, Spain, pages 4530-4535, December 2005.

10Etkin, B., Dynamics of Atmospheric Flight, John Wiley & Sons, Inc., 1972, pp. 143

-145.

11McGee, T., Spry, S., and Hedrick, K., “Optimal path planning in a constant wind with

a bounded turning rate”, AIAA Guidance, Navigation and Control, 2006.

12McNeely, R., “Trajectory Planning for Micro Air Vehicles in the Presence of Wind”,

Masters Thesis, Department of Mathematics and Statistics, Texas Tech University, May

2006.

19 of 33



13Lissaman, P., “Wind Energy Extraction by Birds and Flight Vehicles”, 43rd AIAA

Aerospace Sciences Meeting and Exhibit, AIAA, Inc., Reno, NV, January 2005, AIAA 2005

- 241.

14Zhao, Y., and Ying, Q., “Maximizing Endurance of Unmanned Aerial Vehicle Flight

By Utilizing Wind Gradient”, 2nd AIAA Unmanned Unlimited Systems, Technologies, and

Operations-Aerospace, AIAA, Inc., San Diego, CA, September 2003, AIAA 2003 -6650.

15Venkataramanan, S., and Dogan, A., “Nonlinear Control for Reconfiguration of UAV

Formation”, AIAA Guidance, Navigation, and Control Conference and Exhibit, AIAA, Inc.,

Austin, TX, August 2003, AIAA 2003 - 5725.

16Boyle, D. P. and Chamitoff, G., E.,“Robust Nonlinear LASSO Control: A New Ap-

proach for Autonomous Trajectory Tracking”, AIAA Guidance, Navigation, and Control

Conference and Exhibit, AIAA, Inc., Austin, TX, August 2003, AIAA 2003 - 5518.

17Betts, J. T., “Survey of Numerical Methods for Trajectory Optimization”, Journal of

Guidance, Control and Dynamics, Vol. 21, No. 2, March-April 1998, pp. 193–207.

18Filippov, A. F., “On certain questions in the theory of optimal control”, SIAM Journal

of Control, Ser. A, Vol. 1, No. 1, 1962, pp. 76–84.

19Stoer, J., and Bulirsch, R., Introduction to Numerical Analysis, 2nd Ed., Springer-

Verlag, New York, 1993, pp. 302-315.

20 of 33



List of Table Captions
Table 1: Wind vectors and minimum times for optimal trajectories.

Table 2: Tour example 1: zero wind case.

Table 3: Tour example 2: wind case.

Table 4: Tour example 2: zero wind case.

Table 5: Tour example 2: wind case.
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Wind vector Time
(m/s) (s)

[−10,−15] 23.33
[−5,−10] 19.75

[0, 0] 16.61
[5, 5] 17.22

[10, 10] 20.25
[10, 15] 19.11

Table 1: 22 of 33



S 1a 1b 2a 2b 3a 3b
S - 14.6 17.3 45.8 40.2 21.4 11.6
1a - - 1 44.3 36.7 24.5 18.6
1b - 1 - 52.6 44.3 32.2 24.5
2a - 44.3 52.6 - 1 35.0 40.6
2b - 36.7 44.3 1 - 30.6 35.0
3a - 24.5 32.2 35.0 30.6 - 1
3b - 18.6 24.5 40.6 35.0 1 -

Table 2: 23 of 33



S 1a 1b 2a 2b 3a 3b
S - 11.5 19.6 35.9 29.5 15.6 10.6
1a - - 0.9 35.4 29.6 26.8 24.4
1b - 1.2 - 43.0 37.2 31.5 28.3
2a - 66.3 72.7 - 0.9 60.7 65.5
2b - 57.4 63.6 1.2 - 54.4 58.5
3a - 29.0 37.0 27.0 21.8 - 0.9
3b - 18.1 26.6 32.1 25.6 1.2 -

Table 3: 24 of 33



S 1a 1b 2a 2b 3a 3b
S - 27.3 36.1 22.8 19.8 19.5 23.9
1a - - 1 44.3 36.7 24.5 18.6
1b - 1 - 52.6 44.3 32.2 24.5
2a - 44.3 52.6 - 1 35.0 40.6
2b - 36.7 44.3 1 - 30.6 35.0
3a - 24.5 32.2 35.0 30.6 - 1
3b - 18.6 24.5 40.6 35.0 1 -

Table 4: 25 of 33



S 1a 1b 2a 2b 3a 3b
S - 39.6 46.4 19.1 18.3 34.5 38.6
1a - - 0.9 35.4 29.6 26.8 24.4
1b - 1.2 - 43.0 37.2 31.5 28.3
2a - 66.3 72.7 - 0.9 60.7 65.5
2b - 57.4 63.6 1.2 - 54.4 58.5
3a - 29.0 37.0 27.0 21.8 - 0.9
3b - 18.1 26.6 32.1 25.6 1.2 -

Table 5: 26 of 33



List of Figure Captions

Figure 1: Illustration of arc-line-arc solutions for the minimum time optimal
control problem.

a): Illustration of an arc-line-arc Y0LZf minimum length/time solution for
sufficiently separated initial and final positions.

b): Illustration of non-unique arc-line-arc minimum length solutions.

Figure 2: Illustration of arc-arc-arc solutions for the minimum time optimal
control problem.

a): Illustration of an arc-arc-arc solution when the initial and final positions
coincide.

b): Illustration of non-unique arc-arc-arc solutions.

Figure 3: Relationship of θfd and θf .

Figure 4: Minimum time arc-line-arc solutions for zero and non-zero wind con-
ditions.

Figure 5: Minimum time arc-arc-arc solutions for zero and non-zero wind con-
ditions.

Figure 6: Minimum path examples comparing wind and no wind tours of three
targets.

a): Tour planning problem 1.

b): Tour planning problem 2.
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Illustration of an arc-line-arc Y0LZf minimum length/time solution for sufficiently
separated initial and final positions.

Illustration of non-unique arc-line-arc minimum length solutions.
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Illustration of an arc-arc-arc solution when the initial and final positions coincide.

Illustration of non-unique arc-arc-arc solutions.
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Tour planning problem 1.

Tour planning problem 2.
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