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Abstract

In previous work, we had proposed a low (6) dimen-
sional model for a thin magnetostrictive actuator that
was suitable for real-time control. One of the main
results of this modeling effort was the separation of
the rate-independent hysteretic effects from the rate-
dependent linear effects. The hysteresis phenomenon
may also be captured by a (modified) Preisach opera-
tor with the average magnetic field as the input.

If one can find an inverse for the Preisach operator, then
the composite system can be approximately linearized.
In this paper, we propose a new algorithm for compu-
tation of the inverse for the classical Preisach model.
Prior approaches depended on the linearization of the
operator at the operating point. As numerical differen-
tiation is involved, this approach can cause divergence.
Our algorithm does not linearize the Preisach operator,
but makes use of its strictly incrementally increasing
property. Convergence of the algorithm is proved using
the contraction mapping principle.

1 Introduction

The Preisach operator is a mathematical construction
that has been used successfully over the years to model
the phenomenon of hysteresis occurring in magnet-
ics, superconductivity, elasto-plastic deformations etc
[1, 2, 3]. Though it does not provide any physical in-
sight into the physical phenomenon, it provides a means
of developing phenomenological models that are capa-
ble of producing behaviour similar to physical systems.
It is of great interest to the smart structures and con-
trols community because of its utility in developing low
order models that can be used for designing real-time
controllers.

The general structure of models for piezostriction, mag-
netostriction and electrostriction that capture hystere-
sis and dynamic behaviour is shown in Figure 1. In this
figure, G(s) is the Laplace-transform representation of
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a linear system while W denotes a rate-independent
hysteretic non-linearity. The operator W could be a
Preisach operator or some modification of the Preisach
operator or it could a similar type of operator de-
pending on the phenomenon being modeled – for in-
stance Galinaitis and Rogers [4] use the Krasnoselskii-
Pokrovskii (KP) operator in their model for piezostric-
tion. Reimers [5] has used (a modification of) the
Della Torre-Kadar-Oti (DOK) operator to model mag-
netostriction in Terzinol-D. In our previous work [6, 7],
we have shown that a key component of a low-order
model for magnetostriction in Terfenol-D has a struc-
ture resembling Figure 1.
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Figure 1: Structure of models for smart actuators
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Figure 2: Controller design schematic

A basic idea for controller design for such systems is to
design an right-inverse operator as shown in Figure 2.
W−1 is the right-inverse of the rate-independent hys-
teresis operator W and hence the signal v(·) = ū(·).
Thus the controller design problem is reduced to de-
signing a linear controller K(s) for the linear system
G(s). This idea can be found in the works of Tao and
Kokotovic [8] and Rogers [4]. In the work of Tao and
Kokotovic, the hysteresis non-linearity is considered to
be composed of linear segments and thus does not pos-
sess the important non-linear property known as minor
loop closure. This very important property is found in
physical phenomena exhibiting hysteresis like ferromag-



netism, magnetostriction, piezostriction etc. to name a
few. The Preisach model does possess this property
and that is one of the reasons for the great popularity
of the Preisach model among researchers in the smart-
structures community.

We propose a constructive procedure to compute the
inverse that is based on the Banach contraction map-
ping principle and utilises the incrementally strictly in-
creasing property of the Preisach operator. Thus the
inverse operator computation utilises the information
of the full nonlinear Preisach operator and is not based
on a linearisation or local information about the opera-
tor around an operating point. A very important prop-
erty of our inverse algorithm is that we can show the
tracking of a specified output signal with any specified
(non-zero but arbitrarily small) tolerance. The algo-
rithm can also be used for hysteresis operators other
than the Preisach operator as long as they are incre-
mentally strictly increasing.

In Section 2 we very briefly describe the Preisach opera-
tor. In section 3 we show how the contraction mapping
principle can be used the construction of inverses of
operators that are incrementally strictly increasing. In
Section 5 we present numerical simulations where the
output of a forced Van der Pol oscillator is used as the
desired trajectory and we compute the corresponding
input required for trajectory tracking.

2 The Preisach operator

Consider a simple hysteretic element shown in Figure
3. The relationship between the ‘input’ variable u and
the ‘output’ variable v at each instant of time t can be
described by:

v = +1 if u > α, (1-a)
v = −1 if u < β, (1-b)
v remains unchanged if β ≤ u ≤ α (1-c)
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Figure 3: Illustration of the hysteresis phenomenon.

Call the operator relating u(·) to v(·) as Rβ,α[u](·),
where we now view the input and output variables as
functions of time. This operator is sometimes referred
to as an elementary Preisach hysteron as it is a basic
block from which the Preisach operator will be con-
structed. We now outline this construction. Suppose

u(·) ∈ C[0, T ] is the input to the elementary hysteron.
The Preisach operator is defined as :

w(t) =
∫∫

α≥ β

µ(β, α)Rβ,α[u](t) dβ dα. (2)

where µ(·, ·) is a density function. The support of this
measure is usually taken to be a compact subset of IR2.
This representation is the most natural for the Preisach
operator and is closest to Preisach’s original definition
[2]. The Preisach operator has non-local memory and
it “remembers” the dominant maximum and minimum
values of the past input. For an exposition of this and
other basic properties of the Preisach operator, please
refer to Mayergoyz [2] and Brokate [1].

The memory effect of the Preisach can be captured by
curves in the Preisach (α, β)-plane. These curves have
a staircase structure when the input is piecewise mono-
tone and continuous. As it is difficult to describe them
using the α, β variables, one typically transforms them
to (r, s) variables with: r = α−β

2 and s = α+β
2 .

Then the elementary hysteron can be re-described in
the (r, s) variables as follows:

v = +1 if u > s + r, (3-a)
v = −1 if u < s− r, (3-b)
v remains unchanged

if s− r ≤ u ≤ s + r (3-c)

Note that r satisfies r ≥ 0 while −∞ ≤ s ≤ ∞. Then
the Preisach operator is re-written as:

w(t) =
∫ ∞

0

∫ ∞

−∞
ω(r, s)Rs−r,s+r[u](t) ds dr. (4)

With the (r, s) variables as co-ordinates of the Preisach
plane, the memory curve can be expressed as a function
of r. ω(·, ·) is the measure µ(·, ·) in (2) expressed in the
new co-ordinates.

For further understanding of the Preisach operator,
Brokate and Sprekels express it in terms of the Play op-
erator [1]. At the heart of the analysis is the observation
that for a given value of r, the variation of the memory
curve ψ(r)(·) as a function of time, can be described by
a play operator. This very important development in
the study of the Preisach operator enables one to show
properties such as Lipschitz continuity and the exis-
tence of an inverse. We only present the main results
in this paper. In the version of this paper that was re-
viewed, we presented a completed proof of Brokate and
Sprekel’s existence theorem for the inverse. It will be
published elsewhere for lack of space.

3 The contraction mapping principle and
construction of inverse operators

If a non-linear operator g : X → X (where (X, d)
is a a complete metric, vector space) has a Lipschitz



constant ρ < 1, then the Banach fixed point theorem
can be used to obtain a constructive inverse for the
operator f = I − g where I : X → X is the identity
operator. To see this let x, y ∈ X and we need to
solve f(x) = y.

Rewrite this equation as: x = g(x) + y. Since g has a
Lipschitz constant ρ < 1, there exists a fixed point for
the successive approximations xn+1 = g(xn) + y by the
Banach fixed point theorem [9]. This solution is unique
and therefore the operator f has an inverse.

We are interested in the converse of the above fact -
namely, under what conditions does an operator g exist
(with a Lipschitz constant ρ < 1) such that f = I − g,
if we know that f is invertible and has a Lipschitz con-
stant ρ+1. The answer is that in addition to the above
conditions, f must be incrementally strictly increasing.
For example for x1, x2 ∈ IR with x1 ≥ x2, suppose
there exists 1 > k > 0 such that

k(x1 − x2) ≤ f(x1)− f(x2) ≤ (x1 − x2)

Then we can write, 0 ≤ (x1 − f(x1))− (x2 − f(x2)) ≤
(1 − k)(x1 − x2). For x1 ≤ x2 we have 0 ≥ (x1 −
f(x1)) − (x2 − f(x2)) ≥ (1 − k)(x1 − x2). Therefore,
|g(x1) − g(x2)| ≤ (1 − k) |x1 − x2|, where g(x) = x −
f(x). Hence g has a Lipschitz constant 1 − k < 1. For
general Banach spaces, we need to define an ordering
on the space, before we can speak of strictly increasing
operators.
Definition 3.1 (Order Cones) [9] Let X be a Banach
space and let K be a subset of X. Then K is called an
order cone if and only if:

• K is closed, nonempty and K 6= {0};
• a, b ∈ IR, a, b ≥ 0, x, y ∈ K ⇒ ax+by ∈ K;

• x ∈ K and −x ∈ K ⇒ x = 0.

Definition 3.2 (Ordering in Banach Spaces) [9] Let
K ⊂ X be an order cone in a Banach space X. Then
define:

• x ≤ y if and only if y − x ∈ K,

• x < y if and only if x ≤ y and x 6= y,

• x ≤/ y if and only if x ≤ y is false.

Definition 3.3 (Normal Cones) The order cone K is
called normal if and only if there is a number c > 0
such that for all x, y ∈ X, 0 ≤ x ≤ y implies ‖x‖ ≤
c ‖y‖.
Example 3.1 Let X = C[0, T ]. Then K =
C+[0, T ] = {f ∈ C[0, T ] : f(x) ≥ 0 on [0, T ]} is a
normal cone with ‖f‖ ≤ ‖g‖ if 0 ≤ f ≤ g.

Definition 3.4 (Incrementally Strictly Increasing Op-
erators) An operator F : X → X is called incremen-
tally strictly increasing, if for x1 x2 ∈ X with x1 ≥ x2,
there exists k1, k2 > 0 such that k1 (x1−x2) ≤ F (x1)−
F (x2) ≤ k2 (x1 − x2).

Lemma 3.1 Let X = C[0, T ]. Let F : X → X
be an incrementally strictly increasing operator with
constants k1, k2 as defined in Definition 3.4. Then
‖(k2x1−F (x1))−(k2x2−F (x2))‖ ≤ (k2−k1)‖x1 − x2‖
for all x1, x2 ∈ X.
Proof It was seen in Example 3.1 that X is a normal
cone. For x1, x2 ∈ X with x1 ≤ x2, the claim is
obvious. Similarly for x1 ≥ x2. For general x1, x2, let
D ⊂ [0, T ] be defined as D1 = {t ∈ [0, T ] | x1(t) ≤
x2(t)}. D1 is a closed set. Let ‖ · ‖D1 be the norm on X
restricted to X1 = {x(t)| x(·) ∈ X; t ∈ D1}. Then

‖(k2x1 − F (x1)) − (k2x2 − F (x2))‖D1 ≤
(k2 − k1)‖x1 − x2‖D1 . (5)

Define D2 = {t ∈ [0, T ] | x1(t) ≥ x2(t)}. D2 is also
a closed set. Now define ‖ · ‖D2 be the norm on X
restricted to X2 = {x(t)| x(·) ∈ X; t ∈ D2}. Then

‖(k2x1 − F (x1)) − (k2x2 − F (x2))‖D2 ≤
(k2 − k1)‖x1 − x2‖D2 . (6)

Now [0, T ] = D1

⋃
D2 and ‖·‖ = max{‖·‖D1 , ‖·‖D2}.

By (5 - 6),

‖(k2x1−F (x1))−(k2x2−F (x2))‖ ≤ (k2−k1)‖x1 − x2‖.
(7)

2

With the above lemma, it is an easy matter to con-
struct an inverse for operators that satisfy the condi-
tions of the lemma. This is done in Theorem 3.1. A
more abstract version of the same theorem can be found
in Krasnoselskii and Zabreiko [10]. They consider the
case when F (·) satisfies

B1(x1 − x2) ≤ F (x1)− F (x2) ≤ B2(x1 − x2) (8)

where B1 and B2 are linear operators with positive in-
verses. Our proof of Theorem 3.1 is much simpler and
is instructive in its own right.

Theorem 3.1 Let X = C[0, T ]. Let F : X → X be
incrementally strictly increasing operator as defined in
Lemma 3.1. Then there exists a unique solution x ∈ X
to the operator equation

F (x) = y (9)

where y ∈ X. This solution is the limit of the iteration:

xn+1 =
1
k2

(y + (k2xn − F (xn))) (10)

Proof Define G
4
= k2I − F, where I is the identity

operator on X. Then we can write (9) as

x =
1
k2

(y + G(x)) (11)

By Lemma 3.1, the Lipschitz constant of 1
k2

G is
k2−k1

k2
< 1. Therefore we can solve for x by the it-

eration:



xn+1 =
1
k2

(y + G(xn)))

=
1
k2

(y + (k2xn − F (xn)))

2

Theorem 3.1 allows us to decompose original system
into a feed-back system as shown in Figure 4 for the
purpose of computing the inverse. The strictly increas-
ing property of the system is taken advantage of to
achieve this. Control theorists familiar with Zames [11]
work, can see that the feed-back system is stable be-
cause the product of the incremental gains of the two
systems (k2− k1

k2
) is less than 1 !

x y
F(.)

F(.) - k  I

k +
-1
2

0

y

x
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Figure 4: Decomposition of a incrementally strictly in-
creasing system into a feedback system

4 Algorithm for the inverse of the Preisach
Operator

In this section, we extend the results of Section 3
to make them applicable to the Preisach Operator.
The need for the extension is outlined in Remark 4.1.
But first, we reproduce two results from Brokate and
Sprekels that show that the Preisach operator is Lips-
chitz continuous and incrementally strictly increasing.

4.1 Lipschitz continuity and the incrementally
strictly increasing property of the Preisach op-
erator
Brokate and Sprekels have showed the following regu-
larity property of the Preisach operator.

Proposition 4.1 (Lipschitz continuity property for
the Preisach operator) [1] Let W be the Preisach op-
erator having the initial memory curve ψ−1

1. If

C1
4
=

∫ ∞

0

sup
s∈IR

|ω(r, s)| d|ν|(r) < ∞ (12)

then P is Lipschitz continuous on C[0, T ], with Lips-
chitz constant 2C1.

It was also shown by Brokate and Sprekels [1] that the
Preisach operator is incrementally strictly increasing,
but does not satisfy the condition of Lemma 3.1.

1See Brokate and Sprekels [1] for the definition of the set of
initial memory curves

Let I = [a, b]. Define the quantity ξI(x) as the infimum
of the difference between the outputs of the Preisach
operator, when the inputs are v1, v2 ∈ C[0, T ] with
v1(t) ≥ v2(t) and v1(t), v2(t) ∈ [a, b] for all t ∈ [0, T ].
For a more precise definition using level functions of the
Preisach operator, please refer to [1].

Lemma 4.1 [1] Let I = [a, b] and letW denote a piece-
wise strictly increasing Preisach operator having a den-
sity function ω which satisfies

ω(r, s) ≥ β(r) > 0, ∀ (r, s) ∈
Rε = (0, ε) × (a− ε, b + ε),

for some ε > 0. Then

ξI(x) ≥
∫ x

2

0

(x− 2r)β(r) dr > 0, if x ≤ ε, (13)

Remark 4.1
The above lemma shows that ξI(x) > 0 for x 6= 0.
Thus the Preisach operator is incrementally strictly in-
creasing. We can also see that

ξI(x) ≤ x2 sup
(r,s)∈Rε

ω(r, s), if x < ε, (14)

as noted by Brokate and Sprekels. This means that we
cannot have ξI(x) ≥ γ x for some γ > 0 and x < ε and
therefore cannot use the theory developed in the previ-
ous section directly. Figure 5 illustrates the above dis-
cussion. In figure, the solid curve represents the mem-
ory curve ψ(t) at time t; v(t) is the input value at time
t and it is also the intercept of ψ(t) with the s axis. x
denotes the change (decrease) in the input leading to a
value v(t + ∆t) at time t + ∆t. The area of the shaded
triangle is a measure of the change in the output value
of the Preisach operator from time t to time t + ∆t. In
the language of functional analysis that we adopted be-
fore, we are studying continuous functions v1(·), v2(·)
defined on the interval [0, t + ∆t], with v1(τ) = v2(τ)
for τ ∈ [0, t];v1(τ) = v1(t) for τ ∈ [t, t + ∆t] while
v2(τ) = v1(t) + τ−t

∆t x.

As one can observe, the area of the triangle is propor-
tional to x2. Now for the sake of illustration, choose
the interval I so that the corresponding region of the
Preisach plane to which the allowed inputs belong ( =
{(s − r) ∈ I}∪{(s + r) ∈ I}) is a strict subset of the
support of the density function ω. Then inf ω(r, s) is
strictly bounded away from zero over the compact set of
allowed input values in the Preisach plane. Denote this
value by µ. Therefore the change in the output value of
the Preisach operator is > µ x2

2 .

To extend Theorem 3.1 to the Preisach case when the
operator W is incrementally strictly increasing, but
there does not exist a k1 > 0 such that k1 (x1 − x2) ≤
W(x1) −W(x2) for (x1 − x2) > 0, we make the key
observation that given an ε > 0 we can find k1 > 0
such that ξI(x) ≥ k1x if x ≥ ε. This is because the
facts:
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Figure 5: Graphical illustration of the incrementally
strictly increasing property.

• the ratio ξI(x)
x is a well-defined continuous func-

tion of x;

• x ≥ ε and bounded from above because of the
restriction on the input magnitudes

imply that inf ξI(x)
x is well-defined and greater than

zero. 2

Theorem 4.1 Let X = CI [0, T ], where I = [a, b]. Let
F : X → Y, where Y is the range of F. Let F be an in-
crementally strictly increasing operator with constants
k1, k2 as defined in Definition 3.4. Let ε > 0 and the
operator equation

F (x) = y (15)

where y ∈ Y, be given. Consider the algorithm:

• x0 ∈ X;

• while ‖xn − xn−1‖ ≥ ε :

xn+1 =
1
k2

(y + (k2xn − F (xn))) . (16)

The sequence {xn} terminates at z which satisfies ‖z −
x‖ ≤ ε where x is the solution of (15). The rate of
convergence is linear.

Proof The proof is essentially the same as that of The-
orem 3.1. The one difference is that we need to show
that xn+1 also belongs to X when xn belongs to X.
This is because the definition of X now only allows for
continuous functions on [0, T ] with values in [a, b].

That xn+1 ∈ C[0, T ] is obvious. Next, suppose F (v) =
y where v ∈ X. (We do not worry here about whether
v is unique or not. Later it will become obvious that
it must be.) Suppose that xn ≥ v so that F (xn) ≥ y.
Consider (xn+1 − v) and (xn − v). We show that
0 ≤ (xn+1 − v) ≤ (xn − v). The second inequality is
true because:

k2 (xn+1 − v) − k2 (xn − v) = k2 (xn+1 − xn),
= y − F (xn)
≤ 0.

We need to prove the first inequality. Now,

k2 (xn+1 − v) = k2 (xn − v) + y − F (xn)
≥ 0

since xn ≥ v. Similarly we can show that (xn − v) ≤
(xn+1 − v) ≤ 0 if xn ≤ v. Thus by Definition 3.3 and
Example 3.1,

‖xn+1 − v‖ ≤ ‖xn − v‖ (17)

when xn ≥ v or xn ≤ v. For the case when xn ≥/ v or
xn ≤/ v, we can divide the interval [0, T ] into regions
where xn ≥ v, xn = v and xn ≤ v respectively. Then
applying the same arguments as before, we show that
Equation 17 holds whenever xn and v belong in X.
Equation (17) further implies that xn+1 belongs in X.
Now observe that if the algorithm 16 is continued with
ε = 0, then by the proof of Theorem 3.1, xn → v and
v must be unique.

If ε > 0, the sequence xn terminates at some z that
satisfies ‖z − v‖ ≤ ε. 2

It is important to note that the condition F (x1) −
F (x2) ≤ k2 (x1−x2) does not follow from the Lipschitz
continuity of F : ‖F (x1)−F (x2)‖ ≤ k2 ‖x1−x2‖ and
F (x1)− F (x2) ≥ k1 (x1 − x2).

Example 4.1 X = C[0, 1]. Let a(t) = t + 1, and
b(t) = 3

2 t + 1
2 . Then b ≥ 1

2a À 0 and ‖b‖ ≤ ‖a‖
but b ≤/ a.

However if the operator F satisfied the following
stronger Lipschitz continuity condition

sup
s∈[0,t]

|F (x1)(s)− F (x2)(s)| ≤

k2 sup
s∈[0,t]

|x1(s)− x2(s)| ∀ t ∈ [0, T ] (18)

then we can conclude F (x1) − F (x2) ≤ k2 (x1 − x2).
This fact can be proved as follows.

Lemma 4.2 Let X = C[0, T ]. If the incrementally
strictly increasing operator F : X → X satisfies (18),
where x1, x2 ∈ X then for x1 ≥ x2 we have

F (x1)− F (x2) ≤ k2 (x1 − x2) (19)

Proof Obviously, for T = 0 we have the result. For
T > 0, let t ∈ (0, T ] and {tn} a strictly increasing
sequence converging to t, with tn < t for all n ∈ IN.
From (18) we conclude that

sup
s∈[0,tn]

(F (x1)(s)−F (x2)(s)) ≤ k2 sup
s∈[0,tn]

(x1(s)−x2(s))

(20)
and



sup
s∈[0,t]

(F (x1)(s)− F (x2)(s)) ≤ k2 sup
s∈[0,t]

(x1(s)− x2(s))

(21)
Equation (21) implies

max{LHS of (20), sup
s∈[tn,t]

(F (x1)(s)− F (x2)(s))}

≤ k2 max{RHS of (20), sup
s∈[tn,t]

(x1(s)− x2(s))} (22)

Equations (20) and (22) imply
sup

s∈[tn,t]

(F (x1)(s)−F (x2)(s)) ≤ k2 sup
s∈[tn,t]

(x1(s)−x2(s))

Taking the limit as tn → t we obtain

F (x1)(t)− F (x2)(t) ≤ k2 (x1(t)− x2(t)) (23)

As (23) is true for all t ∈ [0, T ] we get the claim. 2

Theorem 4.2 Let X = CI [0, T ], where I = [a, b]. Let
W : X → Y, where W is a strictly increasing, strongly
Lipschitz continuous Preisach operator (with Lipschitz
constant k2), some initial memory curve ψ−1, and Y is
the range of W. Let ε > 0 and the operator equation

W(x) = y (24)

where y ∈ Y, be given. Consider the algorithm:

• x0 ∈ X;

• while ‖xn − xn−1‖ ≥ ε :

xn+1 =
1
k2

(y + (k2xn −W(xn))) . (25)

The sequence {xn} terminates at z which satisfies ‖z −
x‖ ≤ ε where x is the solution of (24). The rate of
convergence is linear.

Proof The only obstacle to the direct application of
Theorem 4.1 is the fact that ξI(x)

x → 0 as x → 0
where I = [a, b]. But as pointed out in Remark 4.1, we
can find k1 > 0 such that ξI(x) ≥ k1x if x > ε. Thus
for x > ε we apply Theorem 4.1. 2

4.2 The Moving Preisach model
An important modification of the Preisach model that
is extensively used in the Magnetics community is the
moving Preisach model. The output function w of the
moving model is defined implicitly through the equation

w = W[v + αw] (26)

where W is a Preisach operator and α > 0. In magnet-
ics, the input v is the average magnetic field while the
output w is the average magnetization. A modification
of the input as in Equation (26) is to account for ex-
change interactions in a ferro-magnet in a bulk model.
In the context of bulk modeling in magnetism (as op-
posed to micromagnetics where one encounters the ex-
change interaction field), it is related to the “molecular-
field” hypothesis originally due to Weiss [6]. In the con-
text of Preisach operators, Della Torre seems to have
proposed the moving model modification first [1].

It is easy to see that if W is incrementally strictly in-
creasing we can apply Theorem 4.1 to approximately
solve Equation (26). Let z be the solution obtained by
applying the algorithm outlined in Theorem 4.1. Then
we see that

v = z − αw (27)

which can be computed since w and z are known.

5 Numerical simulations

In this section, we show the results of simulations when
the algorithm described in Section 4 is applied to the
Preisach operator. In reference to Figure 2 we assume
both the linear system and the controller to be identity
so as to highlight our work.

The Preisach plane was discretized with grid points at
(−2.995 + 0.01m,−2.995 + 0.01n) with 1 ≤ m ≤ n ≤
599. Note that the co-ordinates are given in terms of
α = s + r and β = s − r respectively. The measure is
taken to be uniform with value 0.01 at the grid points
for the sake of the discussion.

The desired signal was taken to be output of a forced
Van der Pol oscillator. The equation of the system is

ẍ + p(x2 − 1)ẋ + ω2
0x = f sin(ωt). (28)

The values of the parameters are p = f = 5, ω2
0 = 1

and ω = 2.466. The desired output for the Preisach
operator was taken to be x. The above equation was in-
tegrated using the standard Runge-Kutta method with
time step 0.02; initial time 0 and final time 100. The
error tolerance on the output was taken to be 1.25%
of the maximum value, which turns out to be about
2.25× 103 as the maximum output is 1.8× 105.

Figure 6 shows the output of the desired signal and the
actual output of the Preisach operator.Figure 7 shows
the difference between the desired and the actual sig-
nals. One can see that the error is within the required
bounds. Figure 8 shows the output versus the actual
output.

6 Discussion of Results and Conclusion

The most important difference between our algorithm
and prior approaches [4, 5] is that we have proved that
the error between actual output and the desired out-
put, is guaranteed to be within a certain specified
tolerance. We have also shown that we can improve
the tolerance by simply discretizing the input signal in
a finer way.

The next important difference is more subtle. If one
uses a linearizing approach to inversion [4, 5] then we
have to make sure that the variation in the desired out-
put is small, so that the linearization method remains
valid. This in turn means that the desired output sig-
nal must be discretized by value. This further implies
that the sampling times will be irregular. On the other
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Figure 6: Desired versus actual output signals.

0 10 20 30 40 50 60 70 80 90 100
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
x 10

4

Figure 7: Difference between the desired and actual out-
put signals.

hand, since our algorithm is non-linear and is not based
on linearization, we are allowed to have regularly spaced
sampling intervals in time. This is a highly desirable
feature for real-time control purposes.

In conclusion, we have proposed a novel algorithm for
the inverse of a Preisach operator. Such operators are
very useful in describing the hysteretic relationship be-
tween the input and output variables in a smart struc-
ture. The contribution of this paper is that now the
problem of designing controls for systems with hystere-
sis as shown in Figure 1 is reduced to a control design
problem for a linear system.
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