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Abstract— In this paper, we study the numerical solution of a
linear, compact, integral operator equation with linear inequal-
ity constraints on the solution space. The operator equation is
approximated by a linear matrix equation via discretization,
which may be then solved using a linear least squares L2

approach. Three methods, including two new methods, for the
regularization of the discretized equation without constraints
were presented. We compare the sensitivity of the solutions from
these methods for perturbations in the data; we also compare
the time taken for solution. Next, we present a new algorithm
to solve the linear inequality constrained, minimum norm, least
squares problem by adapting the solution methods presented
for the unconstrained problem. Then we compare it with the
MatLab© function quadprog with respect to residual error and
speed. Finally, we apply the new method to identify the density
of a Preisach operator for two electro-active polymers and a
magnetostrictive actuator and again show that the new method
performs as well or better than quadprog.

I. INTRODUCTION

A. The Preisach density estimation problem

The Preisach operator is a mathematical tool that has been
used to model the phenomena of hysteresis for years [1], [2].
Consider a relay Rβ,α which at any given time is at one of
two states: +1 or -1. The relay is parametrized by scalars α
and β, and its output function vβ,α(t) depends on the input
u(t) and the initial output vβ,α(0). Consider a continuous,
piecewise-monotone input function u(t) : t ∈ [0, T ] for the
relay, with vβ,α(0) either +1 or −1. Mathematically, this
elementary hysteresis operator or hysteron is defined as [3]:

vβ,α(t) =



−1 if u(t) < β,
+1 if u(t) ≥ α,
−1 if β ≤ u(t) < α, and ∃ t1 : u(t1) < β,

and ∀τ ∈ (t1, t), u(τ) /∈ [α,∞),
+1 if β ≤ u(t) < α, and ∃ t1 : u(t1) ≥ α,

and∀τ ∈ (t1, t), u(τ) /∈ (−∞, β).

To construct the Preisach operator from the elementary hys-
terons when the input is u(·), denote vβ,α(·) = Rβ,α[u](·).
The Preisach operator’s input is u(·), and the output is [1]

y(t) =

∫∫
α≥β

µ(β, α)Rβ,α[u](t) dβdα, (1)
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where µ(·, ·) ∈ L2(K) (the space of square integrable
functions on K [4]), where K is a compact region in the
(β, α) plane with α ≥ β, and support (µ) = K.

For a given µ, we can define a Preisach operator as a map:

Γµ : Cpm[0, T ]→ Cpm[0, T ], (2)

where Cpm[0, T ] denotes the space of piecewise monotone
continuous functions on [0, T ]. For compatibility with ex-
perimental evidence, we restrict µ(·, ·) to be a non-negative
function. During the identification experiments, the fixed
input u ∈ Cpm[0, T ] usually only affects a portion of the
set K in the Preisach plane. Without loss of generality, we
can restrict attention to this portion. In the following, the set
Ku is the subset of K affected by the input u. We define the
set of density functions:

Ku
4
= {µ ∈ L2(Ku) |µ ≥ 0}. (3)

Due to the assumption on Ku, the output at time 0 given by
y(0) = Γµ[u](0) is the same for all density functions in Ku.

The density function µ has to be determined from exper-
iments, by observing outputs y(·) that correspond to inputs
u(·). The initial output w = Γµ[u](0) is fixed for a given
memory curve at time t = 0. For a given u(·) ∈ Cpm[0, T ],
we define the operator:

Φu : Ku → L2[0, T ],
µ(β, α) 7→ y = Φu µ(·) = Γµ[u](·)− w. (4)

The operator Φu is a linear operator between L2(Ku) and
L2[0, T ]. Without loss of generality, we can assume w = 0
because we can subsume w into µ as follows. Define M =∫∫
α≥β

Rβ,α[u](t) dβdα. If we set µ(β, α) = µ(β, α) − w
M ,

then (4) is equivalent to y =
∫∫
α≥β

µ(β, α)Rβ,α[u](t) dβdα.

Henceforth, we consider the linear operator Φu with w = 0
in (4). Note that this would necessitate a minor modification
to the definition of Ku as µ ≥ − w

M .
The adjoint operator Φ∗u : L2[0, T ] → Ku satisfies the

adjoint equation to (4):

µ̃ = Φ∗u z, (5)

µ̃(β, α) =

∫ T

0

Rβ,α[u](t) z(t) dt. (6)

One can easily check that we have

〈y, z〉L2[0,T ] = 〈µ, µ̃〉Ku . (7)

By Lemma 3.1 in [5], Φu is Hilbert-Schmidt and hence
a compact linear operator. Therefore, it does not possess a
bounded linear inverse [6], [7].



Given functions u and y ∈ L2[0, T ], one may consider a
least squares formulation of the density estimation problem:

Find argmin
µ∈Ku

1

2
‖Φu µ− y‖2. (8)

The normal equation corresponding to this problem is

Φ∗u Φu µ = Φ∗u y. (9)

We collect a few facts about Φu, Φ∗u and the normal equation
below:

Lemma 1.1: (1) Φ∗u is a compact linear operator.
(2) Φ∗u Φu is a self-adjoint, compact linear operator.
(3) Equation (9) is consistent for every y ∈ L2[0, T ].

Proof:
(1) Φ∗u is a compact linear operator by Schauder’s theorem

as Φu is a compact linear operator.
(2) Φ∗u Φu is a compact linear operator as it is a composition

of compact linear operators. Then (Φ∗u Φu)∗ = Φ∗u Φu
is easy to check using (7).

(3) The consistency of (9) follows from the Fredholm
alternative [6].

Although (9) is consistent, it is ill-posed due to the fact
that the eigenvalues of Φ∗uΦu, or equivalently, the singular
values of Φu converge to zero. Thus the solution of (9) for
µ requires a regularization scheme.

There are several regularization strategies including
Tikhonov regularization, Landweber iteration, Mollification,
Filtering singular systems, and discretization methods like
Galerkin projection and collocation [7]. In [5], discretization
of the values of the input function and the time interval is
used to set up a regularization scheme by truncating singular
values of the resulting matrix approximation to Φu. In this
paper, we study other possibilities for the solution of (9).

B. Regularization strategies for the estimation problem

In [8], two broad regularization schemes for linear ill-
posed operator equations are discussed.
(1) Discretization of time and input values

Consider the operator equation y = Φu µ (which might
be inconsistent). Let 0 = t1 < · · · < tN = T be a
discretization of time so that we have

(Φu µ)(tj) = y(tj), j = 1, · · · , N. (10)

If the minimum and maximum values of the input
signal u(t) are umin and umax, respectively, then one
considers the input to take one of the discrete values
umin = u1 < · · · < un = umax (where ui+1−ui = ∆u
is a constant) at each collocation time ti. Therefore the
memory curves, at the collocation times, have corners
that lie on the grid (up, uq) where u1 ≤ up ≤ uq ≤ un.
Hence, one can consider the density function to be
piecewise constant on the rectangles of the grid.
The operator Φu can then be considered to be dis-
cretized as (β, α) only take values on the grid (up, uq).
We denote the piecewise constant density function by

µn, the discretized operator by (Φu)n and the time-
discretized output by yn. Thus, we have

(Φu)n µn = yn. (11)

The above equation is a matrix equation. The corre-
sponding normal equation is

(Φu)Tn (Φu)nµn = (Φu)Tnyn, (12)

which is solved using Cholesky factorization assuming
full rank for (Φu)n,

(Φu)Tn (Φu)n = LnL
T
n . (13)

(2) Discretization of time and output values
This method has not been tried in the context of Preisach
density estimation. Let Qn denote projection of the
function y to a finite dimensional subspace of step func-
tions discretized by value. Then, formally, the operator
equation y = Φu µ (which might be inconsistent) yields

QnΦuµ = Qny. (14)

After discretizing time, one arrives at the matrix equa-
tion (possibly inconsistent):

Qn(Φu µ)(tj) = Qny(tj), j = 1, · · · , N. (15)

The normal equation to (15) is solved using a Cholesky
decomposition [8]. As the discretization of u is a
consequence of the discretization of y, the step function
approximation to the density function µ is more difficult
to calculate. Therefore, we do not discuss this method
in what follows.

II. THE UNCONSTRAINED DISCRETIZED PROBLEM

A. Solution methods

In this section, we study the solution of the equation
(11) without the constraint µ ≥ 0. In the remarks after
Lemma 1.1, we saw that the matrix (Φu)n could have some
very small singular values. While applying the truncated
singular value decomposition (TSVD) regularization method,
the singular values are set below a certain threshold value to
zero. If we apply a method other than TSVD regularization,
we are led to consider the least squares problem:

Find argmin
x∈Rn

‖Ax− b‖22, (16)

where A ∈ Rm×n with m > n and rank(A) = p < n. As
rank(A) < min{m,n}, this problem requires regularization.

The two broad approaches to regularization are:
(a) The Tikhonov regularization approach:

Consider

Find argmin
x∈Rn

‖Ax− b‖22 + λ‖x‖22, (17)

where λ is a parameter that needs to be chosen. Methods
to choose λ are cross-validation, generalized cross-
validation, and L-curve method [9], [10], [11]. The
solution to (17) satisfies the normal equation

(AT A+ λ I)x∗ = AT b. (18)



For λ > 0, the above equation has a unique solution as
AT A+ λ I is positive definite.

(b) Rank estimation methods:
Let X = {x ∈ Rn | argmin ‖Ax−b‖22}. The minimum-
norm, least squares problem is

Find argmin
x∈X

‖x‖22. (19)

As x ∈ X , it satisfies the normal equation to (16):
AT Ax = AT b. (20)

As rank(AT A) = rank(A), solutions to the above
equation lie on an affine subspace or hyperplane of
Rn. Therefore, the problem is to find x that minimizes
the cost function in (19) while satisfying the normal
equation (20) as its constraint.
All the methods in this category involve the estimation
of the rank of the matrix A or AT A, and the subsequent
solution of the projected version of the equation Ax =
b. The most well known of these methods is the TSVD
method. However, as the computation of SVD is quite
slow, alternative methods to estimate rank using the
pivoted QR decomposition [12] or the more recent piv-
oted Cholesky decomposition [13] could be considered.
Note that for some matrices, rank determination by the
pivoted QR decomposition can fail [12], although in
general, it can be considered an efficient way of esti-
mating rank compared to the SVD method. The pivoted
Cholesky decomposition fares worse [13] and is not
recommended for rank determination. The truncation
criterion may be chosen according to a generalized
cross-validation criterion [9], [10].

The difficulty with the Tikhonov approach is that for small
values of λ, we still have a rank estimation problem, as AT A
is rank-deficient. Therefore, we focus on the rank-estimation
based methods below, and their sensitivity to perturbations
(with the latter three in detail):
(1) TSVD of A: “skinny” SVD A = Ũ S̃ Ṽ T yields x∗ =

Ṽ S̃−1 ŨT b [14];
(2) Complete Orthogonal Factorization (COF) method:

rank estimation by QR decomposition of pivoted A
followed by second QR decomposition to obtain the
solution [12];

(3) QR-Cholesky (QRC) method: rank estimation by QR
decomposition of pivoted A followed by a Cholesky
decomposition to obtain the solution [15];

(4) QR-Cholesky of ATA (QRCH) method: rank estimation
by QR decomposition of pivoted ATA followed by a
Cholesky decomposition to obtain the solution;

(5) Cholesky-Cholesky (CHCH) method: rank estimation by
pivoted Cholesky decomposition of ATA followed by a
second Cholesky decomposition to obtain the solution.

As far as we are aware, the QRCH and CHCH methods are
novel.

QRC METHOD

Suppose AP = QR where Q is an m × p matrix with
orthonormal columns, R is an upper-triangular p×n matrix,

P is a permutation matrix, and rank(A) = p. The rank
estimation is achieved using the pivoted QR equation above.
Then (20) reduces to (RRT ) v = QT b and x = P RT v.

We compute a Cholesky factorization of the reduced
normal equations. The matrix RRT is a non-singular p× p
matrix. Therefore, we may compute a Cholesky factorization
LLT = RRT and proceed to solve for v using forward and
back substitutions. Once v is found, x is computed.

This method is not common in the literature because the
recommended method in the literature is the COF method
[16]. However, in our studies [15], the QRC method should
be preferred as the errors and sensitivities from both methods
are identical while QRC is significantly faster.

QRCH METHOD

If m� n, the pivoted QR decomposition of A in the QRC
method is very computationally expensive compared to the
pivoted QR decomposition of ATA. However, the squaring
of the condition number is a concern, so we expect the
method to be successful for matrices A with low to moderate
condition numbers.

We start with the pivoted QR decomposition of AT A.

AT AP =
[
Q1 Q2

] [R1 R2

0 0

]
= Q1

[
R1 R2

]
, (21)

where Q1 is a n× p matrix with orthonormal columns, R1

is a p× p upper diagonal and nonsingular matrix, and P is
a permutation matrix. Note that QT1 Q1 = Ip×p.

Let v = PT x. From the normal equation (20), we have

Q1

[
R1 R2

] [v1
v2

]
= Q1 (R1 v1 +R2 v2) = AT b. (22)

Let us write v =
[
v1 v2

]T
= w + n where n =[

n1 n2
]T

is a vector in the null space of
[
R1 R2

]
,

and w belongs in the range space of
[
R1 R2

]T
. Then

R1 n1 +R2 n2 = 0 and w =
[
R1 R2

]T
θ for some vector

θ. As R1 is invertible, we have
n1 = −R−11 R2 n2. (23)

Denote C = R−11 R2. Note that it is easy to compute R−11

as R1 is upper triangular. The minimum norm problem is to
minimize

‖x‖22 = ‖w + n‖22 = ‖w1 + n1‖22 + ‖w2 + n2‖22
subject to (22), which may be simplified to:

(R1R
T
1 +R2R

T
2 ) θ = QT1 A

T b (24)

and solved for θ. The minimum norm solution is then x =
P w which may be seen as follows.

Since n1 is related to n2 according to (23), the problem
reduces to varying n2 alone in order to find the minimum
norm solution. Consider

f(n2) = ‖w1 − C n2‖22 + ‖w2 + n2‖22. (25)

We minimize this function with respect to n2. Setting the first
derivative equal to zero, we obtain (CT C+I)n2 = CT w1−
w2. But, w =

[
R1 R2

]T
θ, and so (CT C + I)n2 = 0,

yielding n2 = 0 and also n1 = 0.



We have the following:

(R1R
T
1 +R2R

T
2 ) θ = QT1 A

T b, (26)

w1 = RT1 θ, (27)

w2 = RT2 θ, (28)
and the minimum-norm, least-squares solution is given by

x∗ = P w. (29)
Equation (26) is solved using a Cholesky decomposition and
forward and back substitutions.

CHCH METHOD

In the QRCH method, the pivoted QR step is used as
a rank determination step. In [8], the truncated Cholesky
decomposition is proposed for some linear operator equation
problems. Below, we study a truncated Cholesky followed by
another Cholesky decomposition. Consider the Lagrangian
for problem (19):

f(x, λ) =
1

2
‖x‖22 + µT (ATAx−AT b). (30)

The solution to (19) is the unconstrained minimizer of (30).
The minimizer (x, µ) of (30) satisfies

ATAx = AT b and ATAµ = x. (31)
Again, as rank(ATA) = p, the solution µ to (31) lies in an
affine subspace of Rn. Let (P,L) be the pivoted Cholesky
decomposition of ATA, that is,

P AT APT = LLT =

[
L11 0
L21 0

] [
LT11 LT21
0 0

]
, (32)

where L11 is lower triangular and nonsingular p× p matrix.
Let µ = PT θ for some θ, so that (31) becomes

P AT APT θ = P x ⇐⇒ LLT θ = P x. (33)

Now, LT θ has the form:

LT θ =

[
LT11 LT21
0 0

] [
θ1
θ2

]
4
=

[
a
0

]
.

If we can solve for a, then we can find x using (33).
Let x = PT z for some z. Then, (20) becomes

P AT APT z = P AT b ⇐⇒ LLT z = P AT b. (34)

We also have
LT z =

[
y
0

]
, (35)

for some y. From (34), we have[
LT11 LT21

] [L11

L21

]
y =

[
LT11 LT21

]
(P AT b). (36)

Denote L̃
4
=

[
L11

L21

]
. Then, (36) may be written as

L̃T L̃ y = L̃T P AT b, (37)

which can be solved for y. Next, from (35), we see that
L̃T z = y. As z = P x, we have z = L̃ a. Hence, by (35),

L̃T L̃ a = y. (38)

As rank(L̃T L̃) = p, we can solve for a using a regular
Cholesky decomposition, and then find x using x = PT L̃ a.

B. Numerical Results

We compare the accuracy and speed of computation of
the above methods. Let the solution obtained by the five
methods be denoted xSV D, xCOF , xQRC , xQRCH , and
xCHCH , respectively. We compare each method with the
SVD method. The relative error of the COF method is
defined as eCOF = ‖xCOF −xSV D‖/‖xSV D‖. The relative
errors eQRC , eQRCH , and eCHCH are similarly defined.

Experiment 1: Vectors b were generated from U [0, 1]. Ma-
trices A of size 100×n with singular values σk = kt +k rk
were constructed, where t ∈ {2, 3, 4}, and rk was a random
number drawn from U [0, 1], k = 1, · · · , p, where p = 70.
The rest of the singular values of A were set to 0. A was
computed using A = USV , where S was the diagonal
matrix of singular values, and the entries of U were IID from
N (0, 1). The columns of U were then orthonormalized using
Gram-Schmidt to a tolerance of 10−10, and V was created
similarly. For each of the five methods, 100 trials were
conducted. The relative error for each trial was computed.
Similar computations and comparisons were made for A
matrices with condition numbers in three different ranges:
low (1-103), moderate (103-105), and high (105-1011).

The results of Experiment 1 appear in Table I. For each
method, Table I shows the median relative error and the
median computation time for 100 trials. These summaries
show that for low and moderate condition numbers, all four
errors are relatively small. For high condition numbers, eCOF
and eQRC are relatively small, so the solutions of these two
methods are practically identical to the solution we get from
the SVD method. Moreover, the QRC method is significantly
faster than the COF method.

TABLE I
STATISTICAL SUMMARIES FROM EACH OF THE FIVE METHODS FOR THE

SOLUTION OF AN UNCONSTRAINED, MINIMUM NORM, LEAST SQUARES

PROBLEM. THE MEDIAN RESIDUAL ERRORS (E) AND COMPUTATION

TIMES (T) ARE DISPLAYED.

κ SVD COF QRC QRCH CHCH

1-103 e 0.0E+00 1.0E-12 1.0E-12 5.2E-10 1.1E-09
t 2.0E-03 1.6E-03 9.0E-04 9.0E-04 8.0E-04

103-105 e 0.0E+00 6.2E-11 6.2E-11 2.1E-06 5.5E-06
t 1.9E-03 1.6E-03 9.0E-04 1.0E-03 8.0E-04

105-1011 e 0.0E+00 4.3E-09 4.3E-09 7.0E+00 5.8E-01
t 2.8E-03 1.6E-03 8.9E-04 1.4E-03 8.6E-04

Next, we compare the solution from each of the five
methods with that obtained by perturbing the matrix A.
As A is rank-deficient, the perturbation of A will most
likely render A with full-rank. The question investigated
is whether this changes the solution significantly. Let the
perturbed solution obtained by the five methods be denoted
x′SV D, x′COF , x′QRC , x′QRCH , and x′CHCH , respectively.
We compute the sensitivity of the SVD method by e′SV D =
‖x′SV D − xSV D‖/‖xSV D‖. The sensitivities e′COF , e′QRC ,
e′QRCH , and e′CHCH are similarly defined.

Experiment 2: Matrices A with m = 100 rows, n =
90 columns and p = 70 rank and vectors b were both
generated similarly to those in Experiment 1. Perturbation



δA comprised of IID entries drawn from N (0, t), a Gaussian
distribution with mean zero and standard deviation t = 10−6.
For each of the five methods, 100 trials were conducted and
the sensitivity of each method was computed for each trial.

For each method, Table II shows min, max, and median
of sensitivities of the solutions for 100 trials. For low
condition numbers, all five sensitivities are relatively small.
For moderate condition numbers, e′SV D, e′COF , e′QRC , and
e′QRCH are relatively small. For high condition numbers,
only e′SV D, e′COF , and e′QRC are relatively small.

The results of Experiments 1 and 2 are summarized in
Table III. It suggests that the QRC method is superior to
SVD and COF in terms of accuracy of solutions, sensitivity
to perturbations of matrix A, and speed of computation.

TABLE II
STATISTICAL SUMMARIES FOR THE PERTURBED MATRIX A INCLUDING

MIN, MAX AND MEDIAN OF RELATIVE ERRORS FOR EACH OF THE FIVE

METHODS WITH THREE DIFFERENT TYPES OF CONDITION NUMBERS κ.

κ r.e. SVD COF QRC QRCH CHCH
Min 2E-06 3E-06 3E-06 2E-06 2E-06

1-103 Max 2E-05 4E-05 4E-05 2E-05 2E-05
Med 9E-06 1E-05 1E-05 9E-06 9E-06
Min 2E-06 2E-06 2E-06 3E-06 4E-01

103-105 Max 2E-05 3E-05 3E-05 2E-05 4E-01
Med 1E-05 2E-05 2E-05 1E-05 4E-01
Min 5E-06 6E-06 6E-06 2E+00 5E-01

105-1011 Max 7E-05 1E-04 1E-04 3E+01 8E-01
Med 3E-05 4E-05 4E-05 4E+00 6E-01

TABLE III
SUMMARY OF UNPERTURBED AND PERTURBED SOLUTIONS OF FOUR

METHODS. G DENOTES GOOD METHOD, B DENOTES LARGER ERROR.

κ COF QRC QRCH CHCH
1-103 G G G G

unperturbed 103-105 G G G G
105-1011 G G B B
1-103 G G G G

perturbed 103-105 G G G B
105-1011 G G B B

III. SOLUTION METHODS FOR CONSTRAINED
DISCRETIZED EQUATIONS

As regularization methods such as generalized cross-
validation requires repeated solutions of (12) with the con-
straint µn ≥ 0, we study algorithms based on the solutions
of unconstrained problems discussed in the last section.

In [17], lasso, for “least absolute shrinkage and selection
operator”, minimizes ‖Ax−b‖2 subject to ‖x‖1 ≤ λ, where
λ is a regularization parameter. The one-norm constraint is
equivalently posed as a set of linear inequality constraints.
Starting with the unconstrained problem, the inequality con-
straints that are violated in each iteration are converted to
equality constraints for the subsequent iteration.

Let X = {x ∈ Rn | argmin ‖Ax − b‖22}. We adapt
the lasso to set up the following maximum negative index
algorithm for the constrained minimum-norm problem:

Find argmin
x∈X; x≥0

‖x‖22. (39)

Fig. 1. Level sets of the residual error for a two-dimensional least squares
problem with constraint x ≥ 0. The unconstrained solution has x2 < x1 <
0. The solution to the constrained problem lies on the positive x1 axis.
The lasso solution xL converges to the origin by setting x1 = x2 = 0.
The maximum negative index method sets x2 = 0 and obtains the correct
solution xM by subsequently minimizing the residual error.

Step (0) Begin: Let x0 be the solution of the unconstrained
problem (19).

Step (k) For k ≥ 1, suppose xk−1 is the solution from Step
(k-1). Set the index of xk−1 that is most negative to
zero as an additional equality constraint for Step k. The
resulting equality constraint problem is solved using the
QRC method. Increment k.

End If xN is a solution satisfying the constraints, stop.
The sequence {xk} converges because in each step the

number of constraints increases by at least one until the final
step. Figure 1 shows that this method leads to setting x2 = 0
in Step (1) as the unconstrained solution has x2 < x1 < 0.

IV. APPLICATION TO PREISACH DENSITY ESTIMATION

We applied the maximum negative index method
and quadprog to an electro-active polymer (polymer I:
VDF/TrFE/HFP (55.17/42.35/2.46) terpolymer 121) at
42◦ C [18], a VDF/HFP (5%) electro-active polymer (poly-
mer II) [19], and a commercial magnetostrictive actuator
[20]. The discretization of the electric field was chosen
to be 12.5MV/m for both polymers. Polymer I exhibits
significant hysteresis in its electric displacement vs elec-
tric field characteristic. First, the close to zero singular
values were truncated and quadprog was used to solve
the constrained least squares problem as detailed in [5].
Second, the maximum negative index method was applied
to the same data. Figure 2 and Table IV show the results
of the experiment. Figure 3 shows the average magnetic
field versus magnetization obtained in the experiment, and
the fit obtained using the maximum negative index method
with an input discretization value of 10 Oe, which may be
compared with those obtained in [5]. One can see that the
maximum negative index method outperforms quadprog for
the polymers and is at least as effective as quadprog for the
magnetostrictive actuator. Some other early work on Preisach
density estimation may be found in [21].

V. CONCLUSION

In this article, we have presented three methods for the
solution of a minimum norm, least squares problem. We
presented numerical results comparing the three methods
with the standard SVD and COF methods in terms of solution
accuracy and sensitivity to perturbations. Building on these
results, we presented a new method (maximum negative



Fig. 2. Maximum negative index method and Matlab© quadprog method
applied to data from experiment for polymer I (see Table IV for more
details). The dashed line is the data from the experiment. The fitted data
using the maximum negative index method is indistinguishable from the data
from the experiment. The solid line shows the fitted data using quadprog.
‖residual error‖1 = 10−13% of 1-norm of electric displacement for the
maximum negative index method, while ‖residual error‖1 = 3% of 1-norm
of electric displacement for quadprog. The graph for polymer II is similar.

TABLE IV
SUMMARIES FOR THE PREISACH DENSITY ESTIMATION FOR TWO

ELECTRO-ACTIVE POLYMERS AND A MAGNETOSTRICTIVE ACTUATOR

Application Max neg. index Quadprogwith QRC

Electroactive
polymer 1

discretization 12.5 12.5
rel. error % 1E-13 2.8
time 0.13 0.09
κ 2.9E+15 2.9E+15

Electroactive
polymer 2

discretization 12.5 12.5
rel. error % 0.42 6.2
time 0.22 0.13
κ 3.6E+15 3.6E+15

Magnetostriction

discretization 12.5 12.5
rel. error % 7.5 7.5
time 61 5
κ 2.7E+51 2.7E+51
discretization 10 10
rel. error % 5.8 5.8
time 266 15
κ 1.9E+64 1.9E+64
discretization 8 8
rel. error % 6.4 6.4
time 1143 42
κ 3.3E+65 3.3E+65

index) for the solution of linear inequality constrained, min-
imum norm, least squares problem. Numerical results show
that for condition numbers approaching 1√

ε
, where ε is the

machine precision, the new method outperforms quadprog
of MatLab© with lower residual error. We then applied the
maximum negative index method and quadprog to identify
the Preisach density for two electroactive polymers and a
commercial magnetostrictive actuator. The results show that
the new method produces a fit to the data that is better than,
or at least as good as, quadprog.
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[14] Å. Björck, Numerical Methods for Least Squares Problems. SIAM,
1996.

[15] M. Lira, R. Iyer, A. Trindade, and V. Howle, “QR vs Cholesky: A
Probabilistic Analysis,” International Journal of Numerical Analysis
and Modeling, in press.

[16] L. N. Trefethen and D. Bau, Numerical Linear Algebra, Jan 1997.
[17] R. Tibshirani, “Regression shrinkage and selection via the lasso,” J.

of the Royal Stat. Soc., vol. 58, no. 1, pp. 267–288, 1996.
[18] A. Petchsuk and T. Chung, “Synthesis and electric property of

VDF/TrFE/HFP TerPolymers,” in Electroactive Polymers (EAP), Q. M.
Zhang, T. Furukawa, Y. Bar-Cohen, and J. Scheinbeim, Eds., vol. 600,
Nov-Dec 1999, pp. 53–60.

[19] X. Lu, A. Schirokauer, and J. Scheinbeim, “Giant electrostrictive re-
sponse in Poly(vinylidene-fluoride hexafluoropropylene) copolymer,”
in Electroactive Polymers (EAP), Y. B. Q. M. Zhang, Takeo Furukawa
and J. Scheinbeim, Eds., vol. 600, Nov-Dec 1999, pp. 61–69.

[20] X. Tan, R. Venkataraman, and P. Krishnaprasad, “Control of hysteresis:
Theory and experimental results,” in Smart Structures and Materials
2001: Modeling, Signal Processing, and Control in Smart Structures,
V. Rao, Ed., vol. 4326, Mar. 2001, pp. 101–112.

[21] C. Natale, F. Velardi, and C. Visone, “Identification and compensation
for Preisach hysteresis models in magnetostrictive actuators,” Physica
B, vol. 34, pp. 161–165, 2001.


