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Abstract— In this paper, we have considered the problem
of velocity and range estimation for an UAV using a camera
and the knowledge of linear speed through a GPS device.
In earlier work [1], a method for decomposition of a scene
into structure blocks, and finding correspondences between
such blocks in successive frames was developed. The result
of this low-level image processing is (a) a set of structure
blocks; (b) the motion of each structure block; and (c)
a reliability index between zero and one denoting the
confidence of the solution in (b). Here, we show that by
solving a constrained optimization problem set up using
the results of the image processing, one can obtain the
linear and angular velocity of the camera motion, provided
the speed of the linear motion is known. Once the velocity
parameters is computed, we show how the range to objects
in the field of view can be computed.

I. I NTRODUCTION

In this paper, we have considered the problem of
velocity and range estimation for an UAV using vision
based techniques. Such a problem is of great importance
to Micro Air Vehicles (MAVs) that fly at low enough
altitudes so that GPS geo-registration errors can cause
them to fly into obstacles. Loss of GPS during flight for
short periods of time could also result in the loss a MAV.
For such applications such as search and classification
of targets, it is necessary for MAV’s to carry an on-
board camera that streams video signals to a stationary
receiver. The question that naturally arises is whether
the video data can also help the MAV navigate in the
presence of obstacles. Recent work along these lines can
be found in [2], [3], [4].

The problem can be broken down naturally into three
subproblems:

1) Estimation of motion flow field in the image plane
of the camera in an unconstrained environment
(that is, the camera is not made to move in a
controlled manner);

2) Estimation of the linear and angular velocities of
the MAV and the current range of the objects in
the visual field; and
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3) Navigation to the desired way-points while avoid-
ing the obstacles that might cause the loss of the
MAV.

In [1] the first problem of motion flow field estimation
is tackled using a correspondence computation scheme
that applies to successive frames of a video stream.
The result of this image processing is a set of structure
blocks that are important features in the scene; a set of
motion vectors for these blocks - the “optical flow” field;
and a reliability index for each of the structure blocks
that indicates the confidence level in the optical flow
computation. For example, corner blocks would have
a higher reliability index than edge blocks, which in
turn would have a higher reliability index than interior
blocks. In this paper, we address the second problem
listed above - that of estimation of velocities and range to
objects. The fundamental question for this sub-problem
is whether the linear and angular velocities of the
MAV and the current range of the objects in the visual
field of an MAV can be computed correctly, assuming
that the first question has been solved correctly. The
classical solution to the problem is the continuous-
time eight point algorithm [5], while we provide an
alternate solution methodology in this paper. Assuming
that component of the linear velocity along the axis of
the camera is positive (this is equivalent to the positive
range assumption employed in the literature [5] and is
necessary to resolve an ambiguity in the direction of
the linear velocity), we show here that subproblem 2
is solvable correctly, provided additional information on
the speed of the MAV.

We have considered the case of the calibrated camera
in this paper. Our approach is different from the classical
continuous eight-point algorithm [5] that is used to de-
termine the linear and angular velocities of the camera.
The key difference is that in our approach only a single
constrained optimization is required (see Theorem 3.1),
while in the continuous eight-point algorithm there are
a sequence of four steps that need to be implemented:

1) solution of a constrained linear least squares prob-
lem to estimate the continuous essential matrix;

2) recovery of the symmetric epipolar constraint;
3) recovery of the linear velocity; and
4) recovery of the angular velocity from the contin-

uous essential matrix.



There are variations in the continuous eight-point al-
gorithm but all the versions are based on the epipolar
constraint equation and hence are based on recovering
the essential matrix [5], [14]. Our algorithm side-steps
the essential matrix, and directly solves for the linear and
angular velocities. Due to availability of high quality
feasible sequential quadratic codes, the new approach
would be easier to implement on a MAV. In related
work, it was shown that in theabsence of the speed
information, the linear and angular velocities could
still be estimated provided the camera resembled the
compound eye of a house fly [6]. It is clear that the
scene being imaged must be “rich” in some sense for
the problem to have a solution. In the literature, the the
structure blocks are required to be in “general position”
[5]. Here we precisely define the notion of a set of
nonsingular structure blocksthat is necessary for the
solution of the ego-motion problem.

Going back to the motion field computation problem
[1], other techniques for the computation of the flow
field on the image plane include the optical flow [7], [8],
[3] and scale-invariant feature tracking methods (see [9]
and references therein). As the optical flow computation
can result in wildly inaccurate solutions (see [7] for a
discussion), and in light of Theorem 3.1 it seems that
a feature tracking method in some sense is necessary.
As there can be translation, rotation and scaling of the
image from one frame to the next, it is clear that a scale-
invariant approach will be more fruitful. The theoretical
results of this paper do not depend on which of the
specific motion-field computation methods are used,
though we use the notation and terminology employed
in [1].

II. K INEMATICS OF CAMERA MOTION

There are several reference frames employed in air
vehicle computations. The main ones are the inertial
frame and the body frame which is centered on the
center of mass. When a camera is used on a UAV,
one introduces an additional frame that is centered on
the focus of the camera. If the camera is fixed, then
the change of coordinates from the body frame to
the camera-centered frame is accomplished by a fixed
rotation and translation. This is the case we assume in
this note.

Figure 1 shows an inertial frame with origin at the
point Oi, an UAV body frame with origin at the point
Ob and the camera-centered frame origin at the point
Oc. For the inertial and UAV body frames the standard
convention for labelling the axes is assumed [10] with
Xb pointing through the nose of the aircraft,Yb pointing
out the right wing, andZb pointing down. For the camera
frame, the standard convention used in the machine
vision literature is assumed [7] withZ pointing normal

Fig. 1. Kinematics of Camera Motion

to the image plane. Thus if the camera is mounted in
front of the aircraft with the image plane parallel to the
Yb − Zb plane of the aircraft, thenXb and Z will be
parallel and perhaps collinear.

The point Ob has coordinates denoted bybi in the
inertial frame. The pointOc has coordinates denoted by
bb in the body frame. Suppose that a pointP in space
has the inertial coordinatesRi, body coordinatesRb

and camera-centered coordinatesRc, then the relation
between these coordinates are given by:

Ri = Qib Rb + bi, (1)

Rb = Qbc Rc + bb (2)

whereQib, Qbc ∈ SO(3) are3×3 matrices satisfying:

QT
ib Qib = I; and det(Qib) = 1 (3)

QT
bc Qbc = I; and det(Qbc) = 1 (4)

In the following, all variables are assumed to be func-
tions of time unless explicitly stated as constants. Equa-
tions (1-2) immediately imply the well-known equations:

Q̇ib = Qib Ω̂b, (5)

Q̇bc = Qbc Ω̂c, (6)

whereΩ̂b and Ω̂c are skew-symmetric angular velocity
matrices, with the subscript indicating the frame where
it is defined. Differentiating Equations (1-2) with the
condition that the pointP is fixed in the inertial frame,
we get:

0 = Q̇ib Rb + Qib Ṙb + ḃi which implies

Ṙb = −(QT
ib Q̇ib Rb + QT

ib ḃi) = −(Ω̂b Rb + Vb) &

Ṙb = Q̇bc Rc + Qbc Ṙc + ḃb which implies

Ṙc = −(Ω̂c Rc + Vc)−QT
bc (Ω̂b Rb + Vb) (7)

where:Vb = QT
ib ḃi is the linear velocity of the UAV in

the body coordinates, andVc = QT
bc ḃb is the linear ve-

locity of the camera in the camera-centered coordinates.
If Ωk = [Ωk1 Ωk2 Ωk3]T wherek = b or c, thenΩ̂k is a
skew-symmetric matrix that satisfies:Ω̂k Rk = Ωk×Rk.

In special cases, Equation (7) can be simplified:

1) If the camera is fixed on the aircraft, thenḃb =
0 ⇒ Vc = 0 and Q̇bc = 0 ⇒ Ωc = 0. This leads



to Equation (7) being modified to:

Ṙc = −QT
bc (Ω̂b Rb + Vb).

Substituting forRb from Equation (2), we get:

Ṙc = −QT
bc Ω̂b Qbc Rc −QT

bc Ω̂b bb −QT
bc Vb

= −Q̂bc Ωb Rc −QT
bc Ω̂b bb −QT

bc Vb. (8)

Equation (8) relates the velocity of a point in space
in camera-fixed coordinates to linear and angular
velocities of the UAV. This is the key equation
that will be used in Section III. Notice that even
if the camera is positioned so that the normal to
the image plane points along the nose of the UAV,
the matrixQbc is given by:

Qbc =




0 0 1
0 1 0
−1 0 0


 . (9)

2) In case the camera is gimballed and it is possible
to control the angular rate of the camera withbb

fixed, we get:

u = Ωc

Ṙc = −û Rc − Q̂bc Ωb Rc −QT
bc Ω̂b bb −QT

bc Vb.

III. C OMPUTATION OF MOTION PARAMETERS FROM

RELIABILITY INDEXED MOTION FIELD

Fig. 2. Notation for the Real Motion Field Computation

Figure 2 shows the notation used for modeling the
camera motion. The focal plane contains the focus of
the camera and is parallel to the image plane. The
origin for the3 dimensional coordinate system(X, Y, Z)
(henceforth referred to as the camera-centered coor-
dinate system) is at the focus of the camera. As is
customary in the machine vision literature, it is assumed
that theZ axis is normal to the focal plane. The origin
for the coordinate system(x̃, ỹ) on the image plane is
located at the point(0, 0,−f) in (X,Y, Z) coordinates,
wheref is focal length of the camera. The pointR with

coordinates(X, Y, Z) maps to the point(x̃, ỹ) on the
image plane with

x̃ = −f
X

Z
, and ỹ = −f

Y

Z
.

As the image is inverted, we will consider a “normal-
ized” image plane located at(0, 0, 1) and parallel to the
focal plane.

Suppose the pointRc = (X, Y, Z) maps to the point
(x, y) on the normalized image plane. Then:

x =
X

Z
, and y =

Y

Z
. (10)

If the camera moves with linear velocityV =
(VX , VY , VZ) and angular velocityΩ = (ΩX , ΩY ,ΩZ),
then in the camera-centered coordinate system, the ve-
locity of the pointRc is given by Equation (8):

(Ẋ, Ẏ , Ż) = Q̂bc Ωb Rc −QT
bc Ω̂b bb −QT

bc Vb. (11)

Fig. 3. Object motion in camera frame.

Let Qbc = [Qbc1 Qbc2 Qbc3] where we have explicitly
written the columns ofQbc. Denote the angular velocity
Ωb represented in the camera-centered frame asΩc =
Qbc Ωb , [ΩX ΩY ΩZ ]T . Then:

ẋ =
Ẋ

Z
− X Ż

Z2

≈ 1
Z

(x 〈Qbc3, Vb〉 − 〈Qbc1, Vb〉)
+ΩX x y − ΩY (1 + x2) + ΩZ y (12)

ẏ =
Ẏ

Z
− Y Ż

Z2

≈ 1
Z

(y 〈Qbc3, Vb〉 − 〈Qbc2, Vb〉)
+ΩX(1 + y2)− ΩY x y − ΩZ x. (13)

The approximations would be correct ifbb

Z ≈ [0 0 0]T .
Henceforth we will assume this approximation because
the distance from the center of mass of the aircraft to
the focus of the camera should be much smaller than
the distance from the focus to external objects close the
axis of the camera.Note that there might be objects with
very smallZ value on the periphery of the image, but



theseobjects are not of much interest as they are not
obstacles the aircraft needs to avoid.

Let Vb = [Vb1 Vb2 Vb3]T . For the special orientation
of the camera given by (9), we get (assumingVb1 > 0
which means that the air vehicle has a positive speed
along the nose of the air vehicle):

ẋ=
Vb1

Z

(
x+

Vb3

Vb1

)
+ΩXxy−ΩY (1 + x2)+ΩZy (14)

ẏ =
Vb1

Z

(
y− Vb2

Vb1

)
+ΩX(1 + y2)−ΩY xy−ΩZx.(15)

An erroneous form of these equations appear in [11].
The correct form with a different method of proof
appears in [12].

A. Motion Parameter Computation

We will consider two different methods for motion
computation. The time interval[0, T ] is partitioned into
0 = T0 < · · · < Tk < · · · < TN = T. One assumes that
linear velocity at timeTk−1 is known in the body frame
and the angular velocity value at timeTk−1 is computed
at time Tk using the images at timesTk−1 and Tk. In
the second method, both linear and angular velocities are
computed simultaneously for timeTk−1. As discussed
in [1], the image is partitioned into structure and non-
structure blocks,Bm, 1 ≤ m ≤ P , and the optical
motion vector(ẋm, ẏm) is computed for the structure
blocks located at(xm, ym) with say, m = 1, · · · , M.
Let I : IR2×IR+ → IR denote the image function.We will
make the standing assumption that ifT denotes the time
instantst such that there existsg in the groupSE(2)
with I(·, ·, t) = I(g(·, ·), t) then T has measure zero.
Hereg(·, ·) is the standard action of the groupSE(2) on
IR2. This assumption ensures that the aperture problem
happens only on a set of measure zero in time.

The variableZ can be eliminated in Equations (14)
and (15) we getP (Ω, Vb) = 0, where:

P (Ω, Vb) = V T
b

(
A(x, y) Ω + B(x, y)

[
ẋ
ẏ

])
, (16)

where

A(x, y)=




−x −y x2 + y2

−xy 1 + x2 −y
−(1 + y2) xy x


 ; (17)

B(x, y)=



−y x
1 0
0 1


 (18)

To solve for the motion parameters(Ω∗, V ∗
b ), we find

the arguments such that:

(Ω∗, V ∗
b ) = arg min

(Ω, Vb)
Vb1 > 0; ‖Vb‖ = V

J(Ω, Vb)

J(Ω, Vb) =
M∑

m=1

|γm Pm(Ω, V )|2 (19)

Thus we are faced with a minimization problem with
constraintVb1 > 0, and ‖Vb‖ = V > 0 which is the
speed of the MAV. The idea is to make|Pm(Ω, Vb)|
as small as possible weighted by the reliability of
(ẋm, ẏm).

Let us now consider the existence of solutions for this
optimization problem. The matrixA(x, y) in Equation
(16) has eigenvalues:

0,
1
2

(
1 + x2 ±

√
(1 + x2)2 − 4 (1 + x2)y2 − 4y4

)
.

The right eigenvector corresponding to the0 eigenvalue
is vr(x, y) = [x y 1]T , while the left eigenvector is
vl(x, y) = [−1 − y x]. It can also be easily checked
that vl(x, y) ·B(x, y) = [0 0].

The physical meaning ofvT
l (x, y) and vr(x, y) is

as follows. Substituting these vectors forVb and Ω in
Equations (14-15) we geṫx = 0 andẏ = 0. Therefore at
every point(x, y) there is an ambiguity in the estimation
of the linear velocity in the directionvT

l (x, y) and
the angular velocity in the directionvr(x, y). However,
this ambiguity can be partially resolved by knowledge
of (ẋm, ẏm) at several pointsm = 1, · · · , M where
M ≥ 5. In the equation:P (Ω, Vb) = 0, we still have
the issue that ifVb 6= 0 is a solution, then anyα Vb

is a solution forα 6= 0. This is resolved by the two
constraints on the optimization problem, so that we have
a unique solution.

We need the following non-singularity condition for
the structure blocks.

Definition 3.1 (Non-singularity condition):The set
of structure blocks together with the estimated motion
vectors{((xm, ym), (ẋm, ẏm), γm); m = 1, · · · , M}
where the reliability indicesγm > 0, are said to form a
non-singular setif for eachξ ∈ IR3 the set of vectors:

Υ ,
{

A(xm, ym) ξ + B(xm, ym)
[

ẋm

ẏm

]
;

m = 1, · · · , M}
contains at least one non-zero vector.

It is clear that this is a necessary condition for the
solution of the problem, because otherwiseJ(Ω, Vb)
would be zero for some spurious value of angular
velocity.

Theorem 3.1:Assume that the axis of the camera
is pointed along the nose of the aircraft, and that the



distanceof the external objects from the camera is much
greater than the distance of the focus of the camera
from the center of mass of the aircraft. Suppose that
the true linear speed‖Vb,true‖ is known at some instant
of time Tk. Suppose that the component of the inertial
velocity along theZ axis of the camera in Figure 3
is positive, that is,Vb1,true > 0. Furthermore, suppose
that the number of structure blocksM ≥ 5, and that the
set of structure blocks form a non-singular set for the
reliability based motion analysis. Denote the true veloc-
ities of the air vehicle at instantTk by (Ωtrue, Vb,true).
Then, there exists a unique solution(Ω∗, V ∗

b ) to the
optimization problem (19)at timeTk, and this solution
coincides with the true solution(Ωtrue, Vb,true) if and
only if (i) the speedV is known at timeTk; (ii) the
vectors(ẋm, ẏm) for the structure blocks(xm, ym) are
estimated correctly and coincide with the true values
(ẋm

true, ẏ
m
true) at timeTk.

Proof: The harder part of the claim is theif part
that we prove first. Observe that the cost function
in (19) is quadratic as a function of(Ω, Vb) and
that J(Ωtrue, Vb,true) = 0 as P (Ωtrue, Vb,true) =
0. This means that in the absence of noise, the al-
gorithm will converge to a point in the equivalence
class {(Ω, Vb) | J(Ω, Vb) = 0}. We need to show
that this equivalence class consists of only one point
(Ωtrue, Vb,true).

The reason forM ≥ 5 is that there are5 parameters to
be estimated (3for Ω and2 for the direction of the unit
vector Vb

‖Vb‖ )andso we need at least5 equations for the
structure blocks. Another preliminary observation is that
the set of points{(Ω, 0); Ω ∈ IR3} lead toP (Ω, 0) = 0.
However, these points are eliminated by the constraint
‖Vb‖ = V > 0.

If (Ωtrue, Vb,true) is the true solution, and the result of
the reliability-based motion estimation (see [1]) is error-
free (that is,(ẋm, ẏm); m = 1, · · · , M exactly satisfies
Equations (14 - 15)), then we will show that the result
of the optimization is(Ω∗, V ∗

b ) = (Ωtrue, Vb,true). By
rewriting (16) we get:

P (Ω, Vb) =
1
Z

Vb · (vl×Vb,true +A(x, y) (Ω−Ωtrue)).

Clearly, if (Ω, Vb) = (Ωtrue, Vb,true) then P (Ω, Vb) =
0. Now supposeP (Ω, Vb) = 0 for some fixed(Ω, Vb)
values. If Ω 6= Ωtrue then the second term inside the
parentheses in the equation above is non-zero for a
generic point(x, y). It is also a quadratic function of
(x, y) by the definition ofA(x, y). The first term inside
the parentheses is a linear function of(x, y) for a given
vectorVb,true. Hence for a generic point(x, y) the term
inside the parentheses is not zero and is a quadratic
function of (x, y). As Vb is a constant,P (Ω, Vb) cannot
be zero for a generic point(x, y), which implies that
our assumption ofΩ 6= Ωtrue is false.

Next suppose thatΩ = Ωtrue. Then we have:

P (Ω, Vb) =
1
Z

Vb · vl × Vb,true,

which is zero for any generic point(x, y) if and only
if Vb = α Vb,true, whereα ∈ IR. Due to the constraint
‖Vb‖ = ‖Vb,true‖, we must haveVb = ±Vb,true. Now
the second constraintVb,1 > 0 combined with the given
conditionVb,1true > 0 implies thatVb = Vb,true.

The easier only if part only requires the ob-
servation that if (Ω, Vb) = (Ωtrue, Vb,true), then
(ẋ, ẏ) = (ẋtrue, ẏtrue) by Equations (14-15). Further-
more, knowledge ofVb,true implies the knowledge of
the speedV. 2

B. Range Estimation

Once the camera motion(Ω, Vb) is computed through
either of the Methods I or II, we can determine the
range (or depth)Z for each block in the scene. As
discussed earlier and detailed in [1], the image is
partitioned into blocks,Bn, 1 ≤ n ≤ P . If the
(ẋm, ẏm); m = 1, · · · , M are the motion vectors
computed for the structure block(xn, yn) using the
reliability based estimation scheme [1], then the range
Zm for these blocks can be determined by least mean
squared error estimation:

Zm = argmin
Z

[ẋm − f(xm, ym, Z)]2

+[ẏm − g(xm, ym, Z)]2; (20)

where:

f=
Vb1

Z
(x +

Vb3

Vb1
) + ΩXxy − ΩY (1 + x2) + ΩZy,

g=
Vb1

Z
(y − Vb2

Vb1
) + ΩX(1 + y2)− ΩY xy − ΩZx,

where we have suppressed the arguments on the LHS
for brevity.

Let Λn = {(ẋn
j , ẏn

j )|1 ≤ j ≤ Ln} be the top
candidate motion vectors for then-th non-structure
motion block. Recall that the non-structure blocks are
not used in the computation of(Ω, Vb) and hence we
may have multiple vectors for a non-structure block. If
the block that corresponds to an object in the scene is
stationary, the true motion vector must satisfy Eqs. (14-
15). Observe that the functionsf(x, y, ·) and g(x, y, ·)
are affine functions of1Z for eachx and y. For each
candidate motion vector(ẋn

j , ẏn
j ) for the non-structure

block (xn, yn), we can compute the corresponding range
by orthogonal projection (see Figure 4):

Zn
j = arg min

Z
[ẋn

j−f(xn, yn, Z)]2+[ẏn
j −g(xn, yn, Z)]2.

The corresponding fitting error is denoted by

En
j = [ẋn

j − f(xn, yn, Zn
j )]2 + [ẏn

j − g(xn, yn, Zn
j )]2.



Fig. 4. Range Estimation for non-structure blocks

We choose the motion vector in the collectionΛn to be
the one with the least fitting error:

j∗ = arg min
j=1, ··· , Ln

En
j . (21)

The range of the block is given byZj∗ , and the
associated motion vector is(ẋn

j∗ , ẏ
n
j∗).

C. Orientation Estimation

One of the important uses of vision-based estimation
is the possibility of computing the orientation of the
vehicle with little additional information than that used
in Method II. If at some instant of timeTk; 0 ≤ k ≤ N,
one had accurate knowledge of the inertial velocity
Vi,true(Tk) through a GPS device; and in addition
the conditions of Theorem 3.1 are satisfied so that
Vb,true(Tk) is known, then it is possible to compute the
orientationQib(Tk). This computation does not rely on
earlier estimates ofQib(Tk). Vi,true is related toVb,true

according to:

Vi,true = Qib Vb,true. (22)

Consider Vi,true and Vb,true as vectors in the same
coordinate system. Then by Euler’s theorem [13], there
exists a unit vectorω such that:

Vi,true = Exp(ω̂ θ)Vb,true,

where Exp denotes the matrix exponential, andω̂ de-
notes the skew-symmetric matrix derived fromω that
satisfiesω̂ r = ω×r for any vectorr. The angleθ is the
angle of rotation fromVb,true to Vi,true. The direction
of rotationω is perpendicular to bothVb,true andVi,true,
and hence:

ω =
Vb,true × Vi,true

‖Vb,true × Vi,true‖ .

Now, ‖Vb,true‖ = ‖Vi,true‖ = V > 0 is the speed of
the MAV, and we have the equations:

Vb,true · Vi,true = V 2 cos θ,

‖Vb,true × Vi,true‖ = V 2 sin θ.

These two equations can be used to computeθ without
ambiguity, and we getQib = Exp(ω).

IV. CONCLUSION

In this paper, we have considered the problem of
velocity and range estimation for a UAV using a camera
and the knowledge of the linear speed of the UAV.
Together with [1], we have shown that the ego-motion
problem can be solved by using a reliability-based
motion computation, followed the solution of a well-
posed constrained optimization problem. Theorem 3.1
complements the well known classical eight-point algo-
rithm found in the literature and is numerically simpler
to implement. Once the velocities have been found, the
range of the objects can be computed easily.
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