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Abstract— In this paper, we have considered the problem 3) Navigation to the desired way-points while avoid-

of velocity and range estimation for an UAV using a camera ing the obstacles that might cause the loss of the
and the knowledge of linear speed through a GPS device. MAV

In earlier work [1], a method for decomposition of a scene

into structure blocks, and finding correspondences between |n 1] the first problem of motion flow field estimation
such blocks in successive frames was developed. The resultiS tackled using a correspondence computation scheme
of this low-level image processing is (a) a set of structure . . .

blocks; (b) the motion of each structure block; and (c) that applies to successive frames of a video stream.
a reliability index between zero and one denoting the The result of this image processing is a set of structure
confidence of the solution in (b). Here, we show that by blocks that are important features in the scene; a set of
solving a constrained optimization problem set up using mgtion vectors for these blocks - the “optical flow” field:;
the results of the image processing, one can obfain the onq 5 yefianility index for each of the structure blocks

linear and angular velocity of the camera motion, provided i . . -
the speed of the linear motion is known. Once the velocity that indicates the confidence level in the optical flow

parameters is computed, we show how the range to objects Computation. For example, corner blocks would have
in the field of view can be computed. a higher reliability index than edge blocks, which in

turn would have a higher reliability index than interior

blocks. In this paper, we address the second problem
listed above - that of estimation of velocities and range to
In this paper, we have considered the problem 0.t,pbjects. The fundamental question for this sub-problem

velocity and range estimation for an UAV using vision!S Whether the linear and angular velocities of the
based techniques. Such a problem is of great importantAV and the current range of the objects in the visual
to Micro Air Vehicles (MAVs) that fly at low enough field of an MAV can be computed correctly, assuming
altitudes so that GPS geo-registration errors can cault@t the first question has been solved correctly. The
them to fly into obstacles. Loss of GPS during flight forclassical solution to the problem is the continuous-
short periods of time could also result in the loss a MAVime eight point algorithm [5], while we provide an

For such applications such as search and classificatigffernate solution methodology in this paper. Assuming
of targets, it is necessary for MAV’s to carry an on-that component of the linear velocity along the axis of
board camera that streams video signals to a stationdf} camera is positive (this is equivalent to the positive
receiver. The question that naturally arises is whethéfNge assumption employed in the literature [5] and is
the video data can also help the MAV navigate in thé€cessary to resolve an ambiguity in the direction of

presence of obstacles. Recent work along these lines cii§¢ linear velocity), we show here that subproblem 2
be found in [2], [3], [4]. is solvable correctly, provided additional information on

] the speed of the MAV.
The problem can be broken down naturally into three

subproblems:

I. INTRODUCTION

We have considered the case of the calibrated camera
in this paper. Our approach is different from the classical
1) Estimation of motion flow field in the image plane continuous eight-point algorithm [5] that is used to de-

of the camera in an unconstrained environmerdgermine the linear and angular velocities of the camera.
(that is, the camera is not made to move in &he key difference is that in our approach only a single
controlled manner); constrained optimization is required (see Theorem 3.1),
2) Estimation of the linear and angular velocities ofwhile in the continuous eight-point algorithm there are
the MAV and the current range of the objects ina sequence of four steps that need to be implemented:

the visual field; and . . :
1) solution of a constrained linear least squares prob-
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There are variations in the continuous eight-point al-
gorithm but all the versions are based on the epipolar
constraint equation and hence are based on recovering
the essential matrix [5], [14]. Our algorithm side-steps
the essential matrix, and directly solves for the linear and
angular velocities. Due to availability of high quality
feasible sequential quadratic codes, the new approach
would be easier to implement on a MAV. In related
work, it was shown that in thabsence of the speed
information, the linear and angular velocities could
still be estimated provided the camera resembled the
compound eye of a house fly [6]. It is clear that the
scene being imaged must be “rich” in some sense fdp the image plane. Thus if the camera is mounted in
the problem to have a solution. In the literature, the th&ont of the aircraft with the image plane parallel to the
structure blocks are required to be in “general positionY; — Z, plane of the aircraft, thed, and Z will be

[5]. Here we precisely define the notion of a set ofparallel and perhaps collinear.

nonsingular structure blockshat is necessary for the
solution of the ego-motion problem.

Fig. 1. Kinematics of Camera Motion

The point O, has coordinates denoted by in the
inertial frame. The poinO. has coordinates denoted by
Going back to the motion field computation problemb;, in the body frame. Suppose that a poiftin space
[1], other techniques for the computation of the flowhas the inertial coordinate®,;, body coordinatesk,
field on the image plane include the optical flow [7], [8],and camera-centered coordinat@s, then the relation
[3] and scale-invariant feature tracking methods (see [9jetween these coordinates are given by:
and references therein). As the optical flow computation
can result in wildly inaccurate solutions (see [7] for a R = QB +bi (1)
discussion), and in light of Theorem 3.1 it seems that Ry = QucRe+by )
a feature tracking metho_d in some sense is necessafere;;,, Qu. € SO(3) are3 x 3 matrices satisfying:
As there can be translation, rotation and scaling of the
image from one frame to the next, it is clear that a scale- Qh Qi = I; and det(@) =1 ()
invariant approach will be more fruitful. The theoretical QL. Qve = I; and detQy.) = 1 (4)

results of this paper do not depend on which of the
SUs 'S pap P e n the following, all variables are assumed to be func-

specific motion-field computation methods are used, : -
though we use the notation and terminology employeﬁons of time unless explicitly stated as constants. Equa-

in [1] tions (1-2) immediately imply the well-known equations:
Qun = Qu, (5)
Il. KINEMATICS OF CAMERA MOTION Qve = Quce, (6)

There are several reference frames employed in aWher_EQb ar_1d {2, are skev_v-symr_net_ric angular velocity
vehicle computations. The main ones are the inertiépatr'ces_’ with the sub_scr_|pt |nd|cat_|ng the framg where
frame and the body frame which is centered on thil 1s nglned. D|frere_nt|at_|ng. Equ_atlons_ (1'2.) with the
center of mass. When a camera is used on a UA\t;,ondmon that the poinf is fixed in the inertial frame,

one introduces an additional frame that is centered of{¢ 98t
the focus of the camera. If the camera is fixed, then 0 = Q,, R, + Qi Ry, + b;  which implies
the change of coordinates from the body frame top  _ TR Tiy_ (O

_ . . = —(Q}h Qs + Qb)) =—(W Ry +Vp) &
the camera-centered frame is accomplished by a fixed " .(Q'bQ I Q/’. ) .( b ; ) b)
rotation and translation. This is the case we assume it = Qe e + Que Fe + b AWhICh implies
this note. R. = —(QR.+Ve)—Qp. (% Ry +V3) (7)

Figure 1 shows an inertial frame with origin at thewhere:V, = Q% b; is the linear velocity of the UAV in
point O;, an UAV body frame with origin at the point the body coordinates, arid. = Q7. by is the linear ve-
O, and the camera-centered frame origin at the poirbcity of the camera in the camera-centered coordinates.
O.. For the inertial and UAV body frames the standardf Q;, = [Qx1 Qo Qui3]” wherek = b or c, thenQ),. is a
convention for labelling the axes is assumed [10] witlskew-symmetric matrix that satisfie®; Ry = QX Ry
X, pointing through the nose of the aircraft, pointing
out the right wing, andZ;, pointing down. For the camera
frame, the standard convention used in the machine 1) If the camera is fixed on the aircraft, thép =
vision literature is assumed [7] witd pointing normal 0=V.=0andQp = 0 = Q. = 0. This leads

In special cases, Equation (7) can be simplified:



to Equation (7) being modified to: coordinates(X,Y, Z) maps to the poin{z,y) on the
. . image plane with
Re = —QL (O By + V). e P

- X . Y
Substituting forR, from Equation (2), we get: T=—f 7 and j = —f 7

R, = —QF 4y Que Re — QL. by — QL. As(;he imageI is inlvertcted(;i we (;NT| cor(ljsider lzli ;‘rt1ortr:]1al—
— A ized” image plane located 40,0, 1) and parallel to the
— QR - QL b - QLVi () oy e P .0, 1) andp

Equation (8) relates the velocity of a pointin space gyppose the poink, = (X,Y, Z) maps to the point
in camera-fixed coordinates to linear and angula(x’y) on the normalized image plane. Then:
velocities of the UAV. This is the key equation

that will be used in Section Ill. Notice that even z = X and y = X (10)
if the camera is positioned so that the normal to zZ’ Z
the image plane points along the nose of the UAVf the camera moves with linear velocity’ =
the matrix@Qy. is given by: (Vx, Vy,Vyz) and angular velocity2 = (2x,Qy,Qz),
then in the camera-centered coordinate system, the ve-
001 locity of the point R, is given by Equation (8):
ch = 0 10 . (9) ¢ .
100 (X,Y,2) = Que W Re — QL by — QL V. (11)

2) In case the camera is gimballed and it is possible
to control the angular rate of the camera with
fixed, we get:

u = .
R, = —iRe — Qe 0 Re — QL Q4 by, — QL Vi,

Ill. COMPUTATION OF MOTION PARAMETERS FROM
RELIABILITY INDEXED MOTION FIELD

Fig. 3. Object motion in camera frame.

Let Qpe = [Qbe1 Qe Ques] Where we have explicitly
written the columns o€),.. Denote the angular velocity
Q, represented in the camera-centered framé&as=
ch Qp £ [QX Qy Qz]T. Then:

. X Xz
T 7Tz
1
~ 7 (2 (Qbes, Vo) — (Qoe1, Vb))
HOxzy—Qy(1+2*)+Qzy  (12)
Fig. 2. Notation for the Real Motion Field Computation . v v 7
T 72
Figure 2 shows the notation used for modeling the 1
camera motion. The focal plane contains the focus of ~ (Y (Quves, Vo) — (Quveas Vb))
the camera and is parallel to the image plane. The FOx(1 4+ — Qyay—Qzz.  (13)

origin for the3 dimensional coordinate systeiY, Y, Z)

(henceforth referred to as the camera-centered codrhe approximations would be correct%i ~ [0 0 0]7.
dinate system) is at the focus of the camera. As iBlenceforth we will assume this approximation because
customary in the machine vision literature, it is assumethe distance from the center of mass of the aircraft to
that theZ axis is normal to the focal plane. The originthe focus of the camera should be much smaller than
for the coordinate systerfiz, ) on the image plane is the distance from the focus to external objects close the
located at the poinf0, 0, —f) in (X,Y, Z) coordinates, axis of the cameraNote that there might be objects with
where f is focal length of the camera. The poiRtwith  very small Z value on the periphery of the image, but



theseobjects are not of much interest as they are ndahe arguments such that:
obstacles the aircraft needs to avoid.

Q*, V) = argmin  J(Q,V,)
Let V;, = [Vi1 Vie Vis]T. For the special orientation (Q, V)
of the camera given by (9), we get (assumivig > 0 Vi >0; V|| =V
which means that the air vehicle has a positive speed M
along the nose of the air vehicle): JQ,V,) = Z ™ Py (2, V)2 (19)
m=1
i= ‘?(H Kb?’)jLQXxy_QYQ + 23 +Qzy (14) Thus we are faced with a minimization p.robl'em with
b1 constraintV,; > 0, and ||V,|| = V' > 0 which is the

. Vi Vo 2 speed of the MAV. The idea is to maKké,, (2, V})|
=—\y—— | +Qx(1 —-Q —Qzx.(15 ; miSh Vb
V=7 (y Vb1>+ x (L") = Syay—Qz2.(15) as small as possible weighted by the reliability of
(@™, ™).
?ﬂ erroneotlsf form q:‘hthesg_ﬁequailonstﬁpgea; n [1f1]' Let us now consider the existence of solutions for this
€ correc 120rm with a diflerent method ot proo optimization problem. The matri¥i(z,y) in Equation
appears in [12]. (16) has eigenvalues:

0, ! (1+w2j: VAT 222 —4(1 1 22)y2 —4y4) .
A. Motion Parameter Computation 2
The right eigenvector corresponding to theigenvalue
We will consider two different methods for motion is vr(z,y) = [z y 1]”, while the left eigenvector is
computation. The time intervd, 7] is partitioned into  vi(z,y) = [-1 —y z]. It can also be easily checked
0=Ty<---<Tp<-<Ty=T. One assumes that thatv(z,y) - B(x,y) = [0 0].
linear velocity at timef},_; is known in the body frame  The physical meaning otT (z,y) and v,(z,y) is
and the angular velocity value at tifi¢ _, is computed a5 follows. Substituting these vectors fgy and 2 in
at time 7}, using the images at time, , andT;. In  Equations (14-15) we geit = 0 andy = 0. Therefore at
the second method, both linear and angular velocities a&ery point(m7 y) there is an amb|gu|ty in the estimation
computed simultaneously for timé;._,. As discussed of the linear velocity in the direction? (z,y) and
in [1], the image is partitioned into structure and nonthe angular velocity in the direction,(z,y). However,
structure blocksB™, 1 < m < P, and the optical this ambiguity can be partially resolved by knowledge
motion vector (™, ¢™) is computed for the structure gf (™ ™) at several pointsn = 1, ---, M where
blocks located atz™,y™) with say,m = 1,---, M. Ay > 5. In the equation:P(,V}) = 0, we still have
Let] : R*>xR, — R denote the image functioe will  the issue that if, # 0 is a solution, then anyxV,
make the standing assumption thafifdenotes the time s a solution fora # 0. This is resolved by the two
instants¢ such that there exists in the groupSE(2)  constraints on the optimization problem, so that we have
with I(-,-,t) = I(g(-,-),t) thenT has measure zero. 3 ynpique solution.
Hereg(-, -) is the standard action of the grouf)='(2) on ) i ) »
R2. This assumption ensures that the aperture problem We need the following non-singularity condition for
happens only on a set of measure zero in time. the structure blocks.
The variableZ can be eliminated in Equations (14) Pefinition 3.1 (Non-singularity condition)The ~ set
and (15) we getP(2, V) = 0, where: of structure blocks tpget.her with the estimated motion
VectOI’S{((l'm,ym), (xm’ym)’,ym); m=1,--, M}
. where the reliability indices™ > 0, are said to form a
P(Q, V) =V <A(az,y) Q+ B(z,y) { Z D , (16) non-singular seff for each¢ € R? the set of vectors:

o2 Laemamersanom | )

where (Y
m=1,---, M}
[ - —y  a?+y? .
A,y —ay 14 22 —y . (17) contains at least one non-zero vector.
| —(1+y?)  ay x It is clear that this is a necessary condition for the
[y oz solution of the problem, because otherwigé, V;)
B(z,y=| 1 0 (18) would be zero for some spurious value of angular
0o 1 velocity.

Theorem 3.1:Assume that the axis of the camera
To solve for the motion paramete(§*,V,*), we find is pointed along the nose of the aircraft, and that the



distanceof the external objects from the camera is much Next suppose tha® = ;... Then we have:
greater than the distance of the focus of the camera 1

from the center of mass of the aircraft. Suppose that P(Q,Vp) = - Vo o i X Vi true,

the true linear speefilV;, ;.|| is known at some instant L . . .

of time T},. Suppose that the component of the inertialVhich is zero for any generic poiritz,y) if and only
velocity along theZ axis of the camera in Figure 3 If Vo = @ Vbirue, Wherea € R. Due to the constraint
is positive, that isVj: ;rue > 0. Furthermore, suppose ||Voll = [IVo,crucll, we must haveV, = £V}, 4e. Now
that the number of structure blockg > 5, and that the the Second constrair,, > 0 combined with the given
set of structure blocks form a non-singular set for thgonditionV,i¢ue > 0 implies thatVy, =V, trye.-
reliability based motion analysis. Denote the true veloc- The easieronly if part only requires the ob-
ities of the air vehicle at instaily, by (Qrue, Vb, true).  servation that if (2, V) = (Qrues Votrue), then
Then, there exists a unique solutig*, V") to the (i,9) = (@4rue, Yrrue) DY Equations (14-15). Further-
optimization problem (19)at timé},, and this solution more, knowledge of} ;.. implies the knowledge of
coincides with the true solutiof, ., Vs true) If and  the speed/. O

only if (i) the speedV is known at timeT}; (ii) the

vectors(&™, ¢™) for the structure blockéz™,y™) are B. Range Estimation

estimated correctly and coincide with the true values ) )

(&7, gm. ) at time Ty, Once the camera motidif?, ;) is computed through
o _ either of the Methods | or Il, we can determine the

Proof: The hard_er part of the claim is thié part_ range (or depth)Z for each block in the scene. As

that we prove first. Observe that the cost functionyiscssed earlier and detailed in [1], the image is

in (19) is quadratic as a function off2,V;) and  anitioned into blocks,B", 1 < n < P. If the

that J(Qerue, Vo,irue) = 0 88 P(Qirues Votrue) = ﬁx'm,ym); m = 1,---, M are the motion vectors

0. This means that in the absen(_:e of noisg, the aomputed for the structure block:™,y™) using the
gorithm will converge to a point in the equivalence

< reliability based estimation scheme [1], then the range

class {(€2,V3) | J(2,V,) = 0}. We need t0 Show 7m fo these blocks can be determined by least mean
that this equivalence class consists of only one po”}}quared error estimation:

(Qtrue7 ‘/;),true)-

The reason fo/ > 5 is that there aré parameters to
be estimated (3or 2 and2 for the direction of the unit +[™ — gla™,y™, Z2))% (20)
vectoru%z)and so we need at leastequations for the '
structure blocks. Another preliminary observation is that/here:
the set of pointd (2,0); 2 € R*} lead toP(9,0) = 0. 2!

Zm = agminli™ — f(a",y", Z))*

Vi3

= —)+Q — (1422 +Q
However, these points are eliminated by the constraint / Z (+ Vbl) +oxy (1427 +8zy,
= . Vi Vi
IVell = V>0 :7; (y*TZ?)JFQX(lJrl/z)*le’y*QZI,

If (Qrue, Vb,true) IS the true solution, and the result of
the reliability-based motion estimation (see [1]) is errorwhere we have suppressed the arguments on the LHS
free (thatis(i™,y™); m =1, --- , M exactly satisfies for brevity.

Equations_ (1_4 -_15)_), then we will show that the result Let A» = {(",4")|1 < j < L"} be the top
of the optimization is(Q*, V;*) = (Qrue, Vi true)- BY J0 o]
rewriting (16) we get:

candidate motion vectors for the-th non-structure
motion block Recall that the non-structure blocks are
not used in the computation d¢f2,V,) and hence we
may have multiple vectors for a non-structure block. If
the block that corresponds to an object in the scene is
stationary, the true motion vector must satisfy Egs. (14-
15). Observe that the function§z,y,-) and g(x,y, )

are affine functions 0% for eachz andy. For each
dndidate motion vectofz}, y;) for the non-structure
block (z™, y™), we can compute the corresponding range
by orthogonal projection (see Figure 4):

1
P(Q, %) = E VE) : (Ul X%,true+A(x7y) (Q_Qtrue))~

Clearly, if (97%) = (Qtruea%,true) then P(Qavb) =

0. Now supposeP(2,V;,) = 0 for some fixed($2, V;)
values. IfQ # Q... then the second term inside the
parentheses in the equation above is non-zero for
generic point(z,y). It is also a quadratic function of
(x,y) by the definition ofA(z,y). The first term inside
the parentheses is a linear function(af y) for a given
vectorV; ... Hence for a generic poiritr, y) the term 77 = arg min[z7 — f(z",y", Z)]2+[y§’—g(x", y", 7)]2.
inside the parentheses is not zero and is a quadratic z

function of (z,y). As V, is a constantP (12, V;,) cannot
be zero for a generic poirntr,y), which implies that

our assumption of) # Q... is false. E} = [&] — f(a™,y" Z]) + [} — g(=" 4™, Z])]?.

The corresponding fitting error is denoted by



IV. CONCLUSION

In this paper, we have considered the problem of
velocity and range estimation for a UAV using a camera

and the knowledge of the linear speed of the UAV.
Together with [1], we have shown that the ego-motion
problem can be solved by using a reliability-based
motion computation, followed the solution of a well-

posed constrained optimization problem. Theorem 3.1
complements the well known classical eight-point algo-

Fig. 4. Range Estimation for non-structure blocks

rithm found in the literature and is numerically simpler

to implement. Once the velocities have been found, the

We choose the motion vector in the collectiafi to be
the one with the least fitting error:

*

= (21)

1 n
arg min E.

j=1,-, L™ R
Summer Faculty Fellowships during the summer of
2005. Discussions with Prof. M. Pachter of AFIT, and
Prof. D. Chichka of GWU are acknowledged.

The range of the block is given by’", and the
associated motion vector {g7.,y7.).

C. Orientation Estimation

One of the important uses of vision-based estimatiory
is the possibility of computing the orientation of the
vehicle with little additional information than that used
in Method Il. If at some instant of tim&),; 0 < k < N,
one had accurate knowledge of the inertial velocity
Vitrue(Tx) through a GPS device; and in addition [
the conditions of Theorem 3.1 are satisfied so that
Vb true (T1) 1s known, then it is possible to compute the
orientation@;, (7). This computation does not rely on
earlier estimates af;;(T%). Vi true iS related toV}, ¢y
according to:

(2]

(4]

v%,true = Qib Vi),tru(r [5]

Consider V; 4. and V;, ;... as vectors in the same 6]
coordinate system. Then by Euler’'s theorem [13], there
exists a unit vectow such that:

(22)

[7]
Vi,true = EXP(@ 9) ‘/b,truev (8]
where Exp denotes the matrix exponential, ahdle-
notes the skew-symmetric matrix derived framthat
satisfiesv r = w x r for any vectorr. The angled isthe  [9]
angle of rotation fromV;, ;ue 10 V; 1rue. The direction
of rotationw is perpendicular to both, ¢y, aNAV; 47 ye, [10]
and hence:
‘/b,true X V;,true [11]
w = .
H%,true X V;q,trueH
. [12]
Now, || Ve truell = |[Vitruell = V' > 0 is the speed of
the MAV, and we have the equations: 13
%,true : V;,true = V2 COs 07
H‘/b,true X ‘/i,t'rue” - V2 sin 6. [14]

These two equations can be used to computgthout
ambiguity, and we ge®;, = Exp(w).

range of the objects can be computed easily.
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