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Abstract

Functions in L
p
loc[0,∞) where 1 ≤ p ≤ ∞ can be considered as inputs to linear

systems. However, hysteresis operators of Preisach type have only been defined on

much smaller space of regulated (or Baire) functions. In this paper, we re-define Play

operators so that they are well defined for real valued measurable functions. We show

that this definition coincides with the older definition for continuous and regulated

functions on an interval. Domain extension of hysteresis operators of Preisach type

to real, Lebesgue measurable functions is then obtained in the standard manner

using the re-defined Play operators.
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1 Introduction

The following notation will be used to denote some unusual function spaces:

• Cu[0, T ] (Cl[0, T ]): space of upper (lower) semi-continuous functions on

[0, T ].

• R[0, T ] is the space of regulated functions on [0, T ].

• Ψ0 is the space of Preisach memory curves ([1], page 52).

Recently, there has been a lot of interest in studying systems with hysteresis

operators (typically Preisach operators) and differential equations, with the

output of the hysteresis operators typically acting as inputs to the differen-

tial equations. Thus there is a need to clarify the domain of definition for the

hysteresis operators. The largest domain of definition for hysteresis operators

so far is the space of regulated functions R[0, T ] [2] which is a closed subset

of L∞[0, T ]. Hence a density argument will not work for extension to L∞[0, T ]

(this was noted originally by Krejci and Laurencot [3]). Krejci and Laurencot

use approximation by functions of bounded variation to define the output of a

Play operator – with parameter values greater than a certain critical value –

for functions in L∞[0, T ]. The difficulty with this approach is that the critical

value mentioned above depends on the input function, and it is not possible to

reduce it to 0. A standard approach for the extension problem is to approxi-

mate a function in Lp[0, T ] (where 1 ≤ p < ∞) by smooth functions – by using

convolution with a smooth function with compact support. However, this does

not work for hysteresis operators because we are also interested in a continuous

extension to the space L∞[0, T ], and the above mentioned approximation fails

for L∞[0, T ] ([4], pages 10 – 12). Our idea is to use the facts that (i) the essen-
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tial upper (lower) envelope of a real valued measurable function is an upper

(lower) continuous function; (ii) upper (lower) semi-continuous functions can

be represented by the infimum (supremum) of a subset of elements in C[0, T ].

(iii) the Play operator maps continuous functions to continuous functions. By

(ii) above, it would map upper (lower) semi-continuous functions to functions

of the same type. These steps allow us to define the play operator for real

Lebesgue measurable functions. Whether this extension is continuous remains

to be seen.

2 Definition of the Play operator for bounded Lebesgue measur-

able functions

To define the Play operator for essentially bounded Lebesgue measurable func-

tions on [0, T ], let us first examine the nature of discontinuities of a measurable

function f with domain [0, T ]. There are four types of discontinuities for f in

the interior of [0, T ]:

(1) D1 – the set of points where f has limits that exist from the left and the

right at all points. This type is the most benign and is typically referred

to in the literature in various ways discontinuities of the first-kind. When

the right and left limits are identical, the discontinuities are referred to

as removable. Functions in R[0, T ] only have this kind of discontinuity.

(2) D2 – the set of points where f only has a limit from the left.

(3) D3 – the set of points where f only has a limit from the right.

(4) D4 – the set of points where f does not possess limits from either the left

or from the right.
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If f has a discontinuity at 0 then it is in the set D2, while if T is a point of

discontinuity then it is in D3. The set of points D2 ∪D3 ∪D4 are also referred

to variously as discontinuities of the second kind or essential discontinuities.

It is easy to show that the set of discontinuities D1∪D2∪D3 is countable and

nowhere dense (see [10] for an easy proof), but D4 may be the entire set E or

a subset of the first or second categories. We give some examples of functions

with discontinuities in D2 ∪ D3 ∪ D4.

Example 1 (1) Let f : [0, T ] → R be given by: f(x) = (−1)n+1; x ∈ [1 −

1
n
, 1− 1

n+1
) for n ∈ N; f(1) = 0. It has discontinuities in D1 at the points

1 − 1
n

for n ≥ 2; n ∈ N and in D3 at 1.

(2) Let g : [0, T ] → R be given by: g(x) = sin
(

1
x−T

2

)

. Then g has a discon-

tinuity in D4 at x = T
2
.

(3) The Thomae function t(x) = 1
q
; if x = p

q
∈ Q ∩ [0, T ], and t(x) = 0; x ∈

Qc ∩ [0, T ], has D4 = Q ∩ [0, T ].

(4) The Dirichlet function d(x) = 1; x ∈ Q ∩ [0, T ], and d(x) = 0; x ∈

Qc ∩ [0, T ], has D4 = [0, T ].

(5) The indicator function for the Cantor middle-thirds ternary set f(x) = 1C

(C denotes the Cantor ternary set) has D4 = C.

As the set D4 could be of the second category for a general measurable func-

tion f , we consider the essential upper and lower envelopes of f which are

known to be upper and lower semicontinuous respectively ([5], page 183).

Some desirable properties of the envelopes are: (i) they can be represented by

the supremum or infimum of a subset of C[0, T ]; (ii) their points of continuity

form a residual set or a set of second category within [0, T ] ([11]). Such func-

tions are referred to as point-wise discontinuous by Hobson ([5], page 241);

(iii) The points of discontinuity of these functions forms a nowhere dense set

4



([5], page 317). However, this set need not have measure 0. (iv) the opera-

tor Qu : L∞[0, T ] → Cu[0, T ] (respectively Ql : L∞[0, T ] → Cl[0, T ] ) taking

a function to its essential upper (lower) envelope is a (nonlinear) projection

operator.

We describe the envelopes below when the domain is R. When the domain

is [0, T ] one simply has to ensure that the sequences lie within the set, with

obvious adjustments made for the end points. For t ∈ R, consider any strictly

monotone decreasing sequence {ǫn} converging to zero. Define:

un(t) = ess sup
τ∈(t−ǫn,t+ǫn)

f(τ), fu(t)
△
= inf

n
un(t), (1)

ln(t) = ess inf
τ∈(t−ǫn,t+ǫn)

f(τ), fl(t)
△
= sup

n
ln(t), (2)

The main difficulties in directly defining the output of the Play for an upper

semi-continuous function are discontinuities of type D3 and D4. As at these

points the function is not continuous from the right, it is difficult to attempt

a definition along the lines of what was done for a continuous, monotone

function. However, there is a way using the characterization of semi-continuous

functions using continuous functions, and then defining the Play using this

characterization.

Consider a parameter r > 0, initial value w−1 ∈ R, and a function f ∈

L∞[0, T ]. Let fu and fl be its upper and lower envelopes respectively. Then

there exists Ku, Kl ⊂ C[0, T ] ([8], page 16), such that ∀ x ∈ [0, T ], we have:

fu(x) = inf {gα(x) | gα ∈ Ku} and fl(x) = sup {hβ(x) |hβ ∈ Kl}. A concrete

representation is Ku = {g ∈ C[0, T ] | fu ≤ g} and Kl = {g ∈ C[0, T ] | g ≤ fl}

([9], page 28). Denote the Play operator on the space of continuous functions

by Fr[·; w−1] : C[0, T ] → C[0, T ]. Define:
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Fu
r [fu; w−1](x) = inf {F [gα; w−1](x) | gα ∈ Ku} (3)

F l
r[fl; w−1](x) = sup {F [hβ; w−1](x) |hβ ∈ Ku}. (4)

The functions Fu
r [fu; w−1] and F l

r[fl; w−1] are well defined, and upper, lower

semi-continuous respectively.

Definition 1 (Play operator) Let f be a real Lebesgue measurable function

on [0, T ] and w−1 ∈ R. Define: Pr[f ; w−1] = 1
2

(

Fu
r [fu; w−1] + F l

r[fl; w−1]
)

as

the output of the play operator with parameter r > 0.

Theorem 1 Let f ∈ C[0, T ]. Let r ≥ 0 and w−1 ∈ R. Then: Pr[f ; w−1] =

Fr[f ; w−1]. Furthermore, if f ∈ R[0, T ], then Pr[f ; w−1] = Fr[f ; w−1].

Proof. It is straight forward to see that the definition of the play operator

agrees with the earlier definition for continuous functions in [1]. As regulated

functions have discontinuities of type D1, it is clear that the new definition

yields identical outputs for such functions. Another way to see this, is to re-

alize that regulated functions are pointwise limits of continuous functions. 2

Example 2 For the Thomae function t in Example 1.1 (3), fu = 0, fl = 0;

w(0) = w−1 = 0 and y(0) = 0. Hence: Fr[t; w−1](x) = 0 for all x ∈ [0, 1].

Similar outputs can be found for the Dirichlet and the indicator function for

the Cantor set.

The above outputs are what we would expect from an engineering point of

view because the input functions mentioned have no “power”. It is straight-

forward to define the outputs of hysteresis operators of Preisach-type for real,

Lebesgue measurable functions on [0, T ].
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Definition 2 (Hysteresis operators of Preisach type (HOPT)) Suppose Q :

Ψ0 → R is an output mapping and let ψ−1 ∈ Ψ0. Let f be a real Lebesgue

measurable function on [0, T ]. For t ∈ [0, T ], define: W [f ; ψ−1](t) = Q ◦ ψ(t)

as the output of a hysteresis operator of Preisach type , where ψ(t)(r) =

Pr[f(t); ψ−1(r)].

Using Theorem 1 it is easy to see that the new definition of HOPT coincides

with the old one for C[0, T ] and R[0, T ].

3 Conclusion

In this paper, we have presented an extension of the domain of the Play

operator and hence hysteresis operators of Preisach type to real, Lebesgue

measurable functions. We have shown that this extension agrees with the

older definition for the space of continuous (C[0, T ]) and regulated functions

(R[0, T ]).
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