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QR VERSUS CHOLESKY: A PROBABILISTIC ANALYSIS
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Abstract. Least squares solutions of linear equations Az = b are very important for parameter
estimation in engineering, applied mathematics, and statistics. There are several methods for
their solution including QR decomposition, Cholesky decomposition, singular value decomposition
(SVD), and Krylov subspace methods. The latter methods were developed for sparse A matrices
that appear in the solution of partial differential equations. The QR (and its variant the RRQR)
and the SVD methods are commonly used for dense A matrices that appear in engineering and
statistics. The Cholesky decomposition is hardly used in practice even though it is backward
stable and known to be the fastest of all. In this article, we take a fresh look at least squares
problems for dense A matrices with full column rank using numerical experiments guided by recent
results from the theory of random matrices. Contrary to currently accepted belief, comparisons of
the sensitivity of the Cholesky and QR solutions to random parameter perturbations for various
condition numbers, find no significant difference to within machine precision. Experiments for
matrices with artificially high condition numbers, reveal that the relative difference in the two
solutions is on average only of the order of 10~%. Finally, Cholesky is found to be markedly
computationally faster than QR, the mean value for QR is between two and four times greater
than Cholesky, and the standard deviation in computation times using Cholesky is about a third
of that of QR.
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trix, statistics

1. Introduction

The solution of linear equations of the type Ax = b, where A € R™*" is fun-
damental to problems in science, engineering, applied mathematics and statistics.
However, depending on the area, the problems have different features. For instance,
linear PDEs in applied mathematics are characterized by a sparse matrix A with a
large value of n (typically in the thousands), whereas classical parameter estimation
problems in engineering and statistics are characterized by a dense matrix A with
moderately large value for n (in the tens or hundreds). Furthermore, problems in
engineering tend to be minimum norm and least squares if there is periodicity in
the data, or have m > n and rank(A) = n. In recent years, the area of smart
materials and structures have yielded linear compact operator equations, which
upon discretization result in least squares problems of moderately sized A matrix
[1, 2, 3, 4].

Methods for the solution of linear equations include QR decomposition, Cholesky
decomposition, singular value decomposition (SVD), Krylov subspace and Multi-
grid methods. Krylov subspace methods such as the generalized minimal residual
method (GMRES) [5, 6] and the Lanczos method were developed for sparse A ma-
trices that appear in the solution of partial differential equations [7]. The multigrid
method is useful in solving discretized differential equations [7]. The QR method of
Francis [8, 9] and the singular value decomposition (SVD) methods are commonly
used for dense A matrices that appear in engineering and statistics [3]. Although
the Cholesky decomposition is backward stable [10], it is hardly used in practice.
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Assuming rank(A) = n, the Cholesky method for the solution of Az = b involves
the formulation of the normal equations A7 Az = AT b, decomposing AT A =L LT
where L is a lower triangular matrix, and then solving for x using forward and
backward substitutions. The basic QR method involves the solution of Rz = Q7 b.

A second class of applications where the Cholesky method might find favor are
the minimum norm — least square problems. Consider a linear system Az — b,
where A € R™*™ and rank(A) = p < min{m,n}. We assume that p is unknown.
A variant of the QR — the rank revealing QR (RRQR) [11, 12, 13] — may be used
to find p and obtain a thin QR decomposition of A. Suppose A = @Q R where
is a m X p matrix with orthonormal columns and R is an upper-triangular p x n
matrix. The normal equation then reduces to (R RT)v = QT b and z = RT v.

(i) One method for solving for x, which we refer to as QRC, computes a
Cholesky factorization of the reduced normal equations. The matrix R RT
is a non-singular p X p matrix. Therefore, we may compute a Cholesky
factorization L LT = R RT and proceed to solve for v using forward and
backward substitutions. Once v is found, = is computed.

(ii) Another procedure to solve for z is the complete orthogonal factorization
method (COF) [14], in which a QR factorization of R is computed. Sup-
pose RT = U S, where U is a n x p matrix with orthonormal columns and
S is a nonsingular and upper-triangular p x p matrix. Then z = U Sv and
the normal equation yields ST Sv = QT b. We may solve for z = Sv from
ST 2= Q" b and then find z = U 2.

In [14, 15] one finds a sensitivity analysis of the normal equation method, com-
puting the sensitivity of the system to perturbations. The analysis looks at the
upper bounds, which are not indicative of the behavior of the Normal method for
low to moderate conditioned systems. A perturbation analysis for the QR decom-
position can be found in [16]. A related analysis is found in [17]. An error analysis
of the Cholesky method is done in [18] and for positive semidefinite matrices in [10].
In Trefethen and Bau [15], an artificial example is constructed to show that the QR
method should be considered to be superior to the normal equation method. The
argument presented is that the normal equation method is susceptible to larger
errors in the solution if the condition number x5 is at least as large as 1/+/€, where
€ is the machine precision. Golub and Van Loan [14] state that the Normal equa-
tion method is less accurate than a stable QR approach, though when the systems
are ill-conditioned with large residuals, both methods are apt to produce com-
parable inaccurate results, which is a somewhat different statement than that of
Trefethen. On the other hand, Higham[10] states that the Cholesky decomposition
is one of the most numerically stable of all matrix algorithms, but the normal equa-
tion method is guaranteed to be backward stable only for well-conditioned matrices
[19]. Trefethen [15] asserts that the SVD method is the only fully stable algorithm
for solving rank-deficient problems. For high condition number systems (that is,
1/y/€ < k(A) < 1/e), it is possible for the solution of the normal equations to
be highly erroneous for some vectors b. An example verifying this is presented in
Trefethen [15].

From the above discussion, it may be gathered that the authors were very con-
cerned about backward stability for all matrices, and one can categorically say
that for condition numbers greater than ﬁ, the QR method is preferable to the
Cholesky method. However, for low to moderate condition numbers for the matrix
A, there are no results that show one method to be superior over the other in terms
of accuracy. Moreover, these references did not have the benefit of insights gained
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from recent developments in the theory of random matrices. The main point from
this more recently developed theory [20] is that the probability of a matrix such as
the one presented in Trefethen [15] (page 137) appearing in applications is much
less than machine precision (to be precise, it is less than 2.5026 x 10~44). In the
example, 100 data points were fit with a 15-th degree polynomial. Such high or-
der polynomials are known to produce very high variance fits in regression theory.
Therefore, statisticians would trade-off variance and use much lower order polyno-
mials that have slightly higher bias [21]. In other words, the example chosen to
illustrate the superiority of the QR method in [15] is not likely to occur in real-world
applications. Our conclusion in this article is that for low to moderate condition
numbers the normal equation method with Cholesky decomposition is preferable
to QR.

To resolve the QR versus Cholesky issue, we take recourse to probability and
statistics. The theory of random matrices provides an answer to the question “how
likely are very high condition number matrices to arise in engineering practice?”.
According to Theorem 6.1 of [22], the probability density function of k(A)/n for an
n x n matrix with independent and identically distributed (IID) Gaussian random
entries converges in distribution to (2/2? + 4/2%) exp{—2/2 — 2/2?}. Elementary
computations therefore lead to the following tail probability approximation for the
condition number of a large square matrix of dimension n,

(1) P(K:(A)>y)%1—exp{—2;—2n2}.

The IEEE double precision, as used by MatLab®, e = 2.2204 x 10~!6, and so
1/\/€ = 6.7109 x 107. Hence, for n = 820, we find that P(k(A) > 1/\/z) =~
2.44 x 107°. However, nearly every A matrix that appears in classical parame-
ter estimation problems is not square and has more rows than columns (there is
more data than parameters). The probability distribution of the condition number
of a Gaussian random n x m matrix A satisfies [20]:

1 Cn [n—m|+1

. P> < 7 (o)

where 5.3 < C < 6.414. For m = 820 and n = 516, numbers from an application
problem in [3], P(k(A) > 1/\/e) ~ 1071830, It is the exponent |n — m| + 1 in
Inequality (2) that works in our favor. For example, for an A matrix with m = 820
and n = 818, P(k(A) > 1/y/e) ~ 7.1 x 10713, which for such a small change
in n compares dramatically with the value of 2.44 x 107 for a 820 x 820 matrix.
Although problems with condition numbers as high as 1/4/€ are extremely rare, they
can nevertheless be solved at least twice as fast by using Cholesky factorization,
while retaining the same error probability as the QR method, as will be shown
later in this article. The Cholesky factorization method performs even better for
problems with smaller condition numbers than 1/4/e.

1.1. Flopcount analysis for minimum-norm, least squares problems. The
COF method involves two thin-QR decompositions (using either Householder or
Givens), and one forward substitution step. The asymptotic flop count for the
Householder QR decomposition is 2m p? — 2p*, while that for the Givens QR de-
composition is 3 m p? —p3. The total flop count including the matrix multiplications
and forward substitution is 2(2mp? — 2 p*)+2pn+ % p? ~ 4mp? — § p® for House-
holder QR, and 2(3m p? — p®) +2pn + p? ~ 6 mp* — 2p? for Givens QR.
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The QRC method involves 1 thin QR decomposition, 1 Cholesky factorization,
1 forward, and 1 backward substitution. The asymptotic flop count for the QRC
method using Householder QR decomposition is 2m p? — %p3 + % p® +p? +np =~
2mp? — ip®. The asymptotic flop count for the QRC method using Givens QR
decomposition is 3mp? — p3 + %p?’ +p2+npr3mp® — %p?’.

The asymptotic flop count for the COF method is at least as large as the QRC
method if p < 2m if the Householder QR is employed. If the Givens QR is em-
ployed, then the condition for the asymptotic flop count of COF method being at
least as large as that for the QRC method if p < % m. Both conditions are satisfied
because we have p < n < m.

This analysis shows that the benefit of faster computation times with Cholesky
is not dependent on the size of the matrix!

2. Methodology and Results

In the literature [14, 15] one finds examples comparing the QR and Cholesky
methods for high condition numbered systems. One also finds an upper bound for
the sensitivity under perturbations for the normal equation [14], but not for the
@R method. For low to moderately high condition numbered systems, the main
unanswered question is: are the two methods comparable in terms of sensitivity to
perturbations? A secondary question concerns the speed of computation of the two
solutions. We provide some answers to these questions in this section.

Consider the system of equations Az = b where A has full-column rank. Let
the solution obtained by using the normal equations and the Cholesky method be
denoted zc g, and that obtained by using the QR method be denoted zgr. To
compute the relative errors from the QR and Cholesky algorithms in this full-rank
case, we compute the solution for z in the system of equations Ax = b, and the
solution for x4+ § z in the perturbed system (A+0A)(z +dx) = b+ b. The relative
error for the Cholesky algorithm is then defined as ecy = ||dzcm||/||zcu|. The
relative error egpr for the QR algorithm is similarly defined. Specific numerical ex-
periments (Experiments 1 and 2 below) were then conducted using the commercial
software MatLab®.

Experiment 1. Matrices A with m = 100 rows and n = 90 columns were gen-
erated, with entries comprised of IID random draws from a standard normal dis-
tribution. Vectors b had IID entries drawn from U[0,1], a uniform distribution on
[0,1]. Perturbations 6A and §b were comprised of IID entries drawn from N(0,t),
a Gaussian distribution with mean zero and standard deviation t. For each of the
three Gaussian standard deviation values of t = 1,0.1,1071°, 1,000 trials were con-
ducted (3,000 trials in total). One pair of relative errors, ecy and eqr, were then
computed for each trial.

The results of Experiment 1 appear in Tables 1 and 2. For each value of ¢,
Table 1 shows a statistical five-number summary (minimum, 1st quartile, median,
3rd quartile, maximum) for the 1,000 differences in the pairs of relative errors,
ecH — egr- These summaries clearly show that the two relative errors, ecy and
egr, are practically identical to within machine precision (e ~ 107!6). Moreover,
this finding seems to be insensitive of the value of ¢, which controls the magnitude
of the perturbations in §A and db.

Table 1 therefore suggests that the QR and Cholesky methods are comparable
in terms of sensitivity to perturbations. Table 2 provides another facet of this
comparison, by sheding light on the speed of computation of each solution, x¢ g
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TABLE 1. Statistical summaries for the 1,000 differences in the
pairs of relative errors ecy — egr obtained from Experiment 1.
Three sets of 1,000 trials were conducted, each set corresponding
to a different value of ¢.

t Minimum 1st Quartile Median 3rd Quartile Maximum
1.0E-10 -9.4E-14 -6.3E-15 -6.0E-17 6.0E-15 1.4E-13
1.0E-01 -1.2E-13 -7.2E-15 4.9E-16 7.1E-15 8.7E-14
1.0E-00 -1.3E-13 -4.4E-15  -5.6E-17 4.5E-15 5.7E-14

and zgr. The table shows statistical summaries of measures of centrality (mean
and median) and of dispersion (standard deviation) for each set of 1,000 trials in
Experiment 1. The main message from this table is that Cholesky is about twice
as fast as QR, regardless of t. We also notice more variability in the QR solution
time; its standard deviation is approximately three times that of the corresponding
Cholesky time.

TABLE 2. Statistical summaries for the 1,000 compute times of
each pair of solutions, xcy and xgr, obtained from Experiment 1.
Three sets of 1,000 trials were conducted, each set corresponding
to a different value of ¢.

QR times CH times
t mean median  std. dev. mean median  std. dev.
1.0E-10 | 4.72E-04 4.37E-04 8.15E-05 | 2.41E-04 2.29E-04 2.76E-05
1.0E-01 | 4.83E-04 4.40E-04 8.71E-05 | 2.46E-04 2.29E-04 2.95E-05
1.0E-00 | 4.68E-04 4.35E-04 7.88E-05 | 2.40E-04 2.29E-04 2.64E-05

The condition numbers of the matrices were not controlled for in Experiment 1.
Equation (1) assures us that for a 100 x 90 Gaussian random matrix A, P(x(A) >
1/y/€) < 8.5 x 1078, Therefore, in order to investigate the statements by Golub
and Van Loan [14] and Trefethen [15] concerning the performance of Cholesky and
QR for extreme condition numbers, we conduct Experiment 2 where matrices A
are chosen with x(A) forced to be close to 1/4/e.

Experiment 2. Vectors b were generated fromU[0, 1] as in Experiment 1. Matrices
A of size 100 x n with singular values o, = k* + 1}, are constructed, where n €
{1,2,5,10,...,90}, v is a random number drawn from U[0,1], and k = 1,--- ,n.
This was achieved via the SVD of A = USV, where S is the diagonal matriz of
singular values, and the entries of U are IID from N(0,t). The columns of U are
then orthonormalized using Gram-Schmidt to a tolerance of 1071°. V is created
similarly. To gauge the size of the difference between the two solutions, xgr and
ron, for such high condition numbers, we compute the norm of the difference in
the two solutions relative to the norm of the QR solution,

d _ llzgr —zcH|

CHQR= —— 7 7
lzqrll

and 1,000 trials are run for each value of n (12,000 trials in total). Each set of
1,000 trials spanned a variety of values for the standard deviation of the Gaussian
entries in U, ranging over the set: t = 1071,1073,...,10715.
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It can be seen that for the matrices in Experiment 2, the condition numbers
are of the order of 107 (but because of the artificial construction the resulting
matrices cannot be viewed as being truly random). The resulting scatterplot of
logio(dcr,or) vs. logy, of condition number in Figure 1, shows that the difference
between zgr and zcp increases with condition number (and rank = n), but even
for condition numbers as large as 1/y/e = 10® the value of the relative difference
dom,qr is of the order of 1073, with a median value of approximately 4 x 1076.

FI1GURE 1. Log base 10 of the error of the CH solution relative to
QR solution, dcw,gr, as a function of log base 10 of the condition
number, for full-rank matrices with 100 rows and various column
sizes. The 12 groups of condition numbers are organized according
to the rank of the matrix, each group identified by a distinct letter.
Each of the 12 groups of points is based on 1,000 simulations. (A
total of 104 values with dog.gr = 0 were discarded.)
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The computation times for the two solutions, xcy and zggr, in Experiment 2
were also recorded. Figure 2 displays log;, of the ratio of computation times as a
function of log, of condition number and rank for a matrix A with 100 rows. Since
very few points fall below zero (horizontal line) for log,,(QR time/CH time), we
conclude that the CH method overwhelmingly enjoys smaller computation times
(about 4 times faster than QR on average) even in this extreme condition number
setting. Moreover, this ratio of compute times is fairly insensitive to condition
number and rank.

3. Conclusion

In this article, we compared the Cholesky and the QR decomposition meth-
ods for full-rank least squares problems using numerical experiments motivated by
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FIGURE 2. Log base 10 of ratio of computation times of the QR
vs. CH solutions as a function of log base 10 of the condition num-
ber, for full-rank matrices with 100 rows and various column sizes.
The 12 groups of condition numbers are organized according to the
rank of the matrix, each group identified by a distinct letter. Each
of the 12 groups of points is based on 1,000 simulations.
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probabilistic arguments. We compared the sensitivity of the solutions to param-
eter perturbations for generic matrices obtained by each of the Cholesky and QR
methods, and found no significant difference to within a tolerance specified by ma-
chine precision. Experiments for matrices with artificially high condition numbers,
revealed that the norm of the difference in the two solutions relative to QR is (on
average) of the order of 1075, with an upper bound of 10~3. Similar experiments
showed that the normal equation method using a Cholesky decomposition is be-
tween two and four times computationally faster than the QR method across a
broad spectrum of condition numbers, with the standard deviation of Cholesky
times being about a third of that of QR.
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