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Abstract

Models for magnetostrictive actuators need to include rate-independent hysteresis

phenomena, magneto-elastic coupling, and eddy current losses that vary nonlinearly

with the frequency of the input. In this paper, we study a low dimensional model

for magnetostrictive rod actuators that describes the physical phenomena which are

most prominent in the frequency range 0-800Hz. We show that the solution of the

system is asymptotically periodic for bounded, continuous and periodic voltage in-

puts and with general conditions on a Preisach operator modeling rate-independent

hysteresis. The results of this paper are crucial for developing a parameter identifi-

cation methodology for the model that is addressed in [9].
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1 Introduction

Magnetostrictive actuators have two primary applications: precision position-

ing and vibration suppression. The objective in the second application is to

cancel vibrations of a specific frequency in a host structure using magnetostric-

tive actuators. This is possible, as experiments show that for continuous, pe-

riodic voltage inputs in the frequency range 0 - 1 KHz and constant loading,

the displacement of the tip of a magnetostrictive actuator is asymptotically a

periodic function (see [1,2]). It is therefore necessary that any model for mag-

netostrictive actuators used for vibration suppression reproduce this behavior.

Most “low-dimensional models” 1 do not account for the metallic character

of the magnetostrictive material in the sense that their electric conductivity

is not incorporated in the model [4–6]. This means that important sources of

power loss, namely eddy and excess losses, in the magnetostrictive material,

the magnetic circuit and the electrical winding that produces the magnetic

field, are not accounted for. These losses become significant when the frequency

of the excitation increases beyond just 10 Hz [1,2], and hence their inclusion

in the model is very important. A model which includes excess losses was

studied in [8], following the work on soft ferromagnets in [7]. Existence and

uniqueness of solutions were shown under general conditions on the Preisach

operator that was used to model hysteresis. Here, we prove analytically that

the average strain in the actuator model proposed in [8] is asymptotically a

periodic function for continuous, periodic voltage inputs and constant loads.

This analytically justifies the use of RMS quantities to identify parameters

corresponding to excess losses and to obtain results on the frequency range

1 Low dimensional models are so called because they are not PDE models

2



for which the model in [9] is valid.

2 The model

We summarize the low dimensional model for magnetostriction proposed in

[1,8]. Figure 1(a) shows a three branch circuit. It models a magnetostrictive

actuator connected to a voltage supply v(·), with a lead resistor R. The hys-

teretic inductor shown in one branch accounts only for rate-independent hys-

teresis losses. In the other branch, classical eddy current and excess losses are

modeled using resistors Rclassical and Rexcess respectively. Current im is propor-

tional to the average magnetic field H in the axial direction for actuators and

can be expressed as im = k H. Magnetic field H is related to the axial magne-

tization M via a rate-independent Preisach operator as M(·) = Γ[H(·), ψ−1],

where H(·), M(·) ∈ C[0, T ], and ψ−1 is the initial memory curve [3]. Voltage e

across the inductor in Figure 1(a) depends on H and M via Lenz’s law, as in

Equation (2) below. Figure 1(b) models transduction from the magnetization

to the strain in the axial direction for the actuator. The quantity bM2 is a

mechanical force F that, combined with external load Fext, acts as input to the

linear mechanical system yielding the strain of the magnetostrictive actuator.

As observed earlier, inclusion of eddy current and excess losses are crucial for

producing models accurate over larger frequency ranges, such as 0-1kHz. Eddy

current power loss per cycle is given by the classical expression: Peddy = C0 f .

Our experiments (the results of which are in [9]) show that the excess power

loss per cycle could be approximated by the functional relation: Pexcess(f) =

∑N
i=1 Ci f

αi , where 1
2
≤ αi < 1 for i = 1, . . . , N . These losses are represented

by nonlinear resistors Ri(e) = Ci |e(t)|
1−αi ; i = 1, · · · , N in parallel. These re-
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(a) A magnetostrictive actuator con-

nected to a power supply.

(b) Model of the transduction of the

magnetic field H(·) to the actuator

displacement y(·).

Fig. 1. A low dimensional model for magnetostrictive actuators that accounts for

eddy current and excess losses.

sistors are shown in Figure 1(a) by the equivalent resistor Rexcess. The resistor

Rclassical has a constant value. The current φ(e) in Figure 1(a) is then given

by: φ(e) = R
Rclassical

e+ R sign(e(t))
N∑

i=1

|e(t)|αi

Ci
. This formula shows that φ(·) is

strictly monotone increasing with φ(0) = 0.

The system of equations describing Figure 1(a) is given by:

θ(e) + βH = v (1)

Ḃ= γe (2)

B(·) =µ0 (H + Γ[H(·);ϕ−1]) = P [H(·);ϕ−1] (3)

H(0) = H0, B(0) = B0. (4)

where H0 and B0 = H0 + Γ[H;ϕ−1](0) are initial conditions. Parameters α,

β, and γ are positive constants which depend on the given actuator. The

continuous function θ(e) and operator P [H(·);ψ−1] are defined by: θ(e) =

e+αφ(e) and P [H(·);ϕ−1] = µ0 (I+Γ)[H(·);ϕ−1] respectively, where I is the

identity operator. The mechanical part of the model is given by [8]:

mẍ+ c ẋ+ k x = bM2 + Fext. (5)

Brokate and Sprekels [3] show that a Preisach operator has an output map
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Q : Ψ0 → R of the form (where Ψ0 is the space of admissible memory curves):

Q(ϕ) =
∫ ∞

0
q(r, ϕ(r))dr + w00, q(r, s) = 2

∫ s

0
ω(r, σ)dσ,

with w00 =
∫∞
0

∫ 0
−∞ ω(r, s)dsdr +

∫∞
0

∫∞
0 ω(r, s)dsdr. Here, ω ∈ L1

loc(IR+ × IR)

is the Preisach density function. This representation will be used in the paper.

2.1 Global solution

The existence, stability and uniqueness of weak local solutions for (1)-(4) for

v ∈ L2(0, T ) for the case Pexcess = C1 f
1

2 can be found in [8] and the proof

for the general case Pexcess(f) =
∑N

i=1 Ci f
αi can be found in [13]. We use the

following general hypotheses:

(H1): φ(e) is continuous and strictly monotone increasing with φ(0) = 0.

(H2): The Preisach operator Γ[· ;ψ−1] is continuous and piecewise monotone

increasing on C[0, T ].

(H3): The Preisach density function has compact support.

(H4): There exists real numbers C∗, C∗ > 0 such that −C∗ ≤ Q(ϕ) ≤ C∗ for

all ϕ ∈ Ψ0. Furthermore, there exist ϕ∗, ϕ∗ ∈ Ψ0 such that Q(ϕ∗) = C∗ and

Q(ϕ∗) = −C∗.

Note that, under these hypotheses, θ(·) is continuous and strictly monotone

increasing with θ(0) = 0. Also P is continuous and piecewise strictly mono-

tone increasing. Hypotheses H1 - H3 are needed for the local existence and

uniqueness of weak solutions while H4 is a sufficient condition needed for the

global existence. We will next prove that (e(t), H(t), B(t)) is bounded for a

bounded v(t) and, hence, the above unique solution is global.

Lemma 2.1 Let H1 - H4 hold. Suppose v(t) is continuous and bounded for all
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t ≥ 0. Let the initial conditions for H(t) and B(t) be H0 and B0, respectively.

Then there exists an interval [H∗, H
∗] such that if H(t) ∈ R \ [H∗, H

∗] for

t ∈ [0, T ] then |e(t)| ≤ |g(t)| on the same interval, where

g(t) = v(t) − β

[
γ

∫ t

0
λ(τ)g(τ)dτ +B0

]
,

and λ(·) is a continuous function on [0, T ] satisfying 0 < λ(t) ≤ 1.

Proof: From H4 there exists H̄∗ such that if H(t) > H̄∗ for some t ∈ [0, T ],

then B(t) = H(t) + C∗ and θ(e)(t) = v(t) − β
[
γ
∫ t
0 edτ +B0 − C∗

]
(from

Equations (1)-(3)). From the boundedness of v(t) and Equation (1), for any

given δ > 0, there exists an interval I = (Ĥ∗
δ ,∞) such that θ(e) < −δ if

H ∈ I. Then from H1 and the definition of θ(e), there exists ǫ1 > 0 such that

e < −ǫ1. Let (H∗
δ ,∞) = (Ĥ∗

δ ,∞) ∩ (H̄∗,∞). If H(t) ∈ (H∗
δ ,∞) then:

−ǫ1 > e(t) ≥ θ(e)(t) = v(t) − β

[
γ

∫ t

0
e dτ +B0 − C∗

]

≥ v(t) − β

[
γ

∫ t

0
e dτ +B0

]
.

Similarly, there exists ǫ2 > 0 and an interval J = (−∞, H
δ∗) such that θ(e) > δ

and e > ǫ2 when H ∈ J . Then:

ǫ2 < e(t) ≤ θ(e)(t) = v(t) − β

[
γ

∫ t

0
e dτ +B0 + C∗

]

≤ v(t) − β

[
γ

∫ t

0
e dτ +B0

]
.

Hence, if H(t) ∈ R \ [Hδ∗, H
∗
δ ], then |e(t)| > min{ǫ1, ǫ2} and |e(t)| ≤ |g(t)|,

where g(t) := v(t)−β
[
γ
∫ t
0e dτ +B0

]
. Picking λ(t) such that ǫ < λ(t) ≤ 1, we

get e(t) = λ(t)g(t), where ǫ > 0. The continuity of λ(t) follows from Equation

(1) and the continuity of v(t) and H(t). 2

Theorem 1 Let H1 − H4 hold. Suppose v(t) is continuous and bounded for
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all t > 0. Then e(t) is bounded for all t > 0.

Proof: Let f(t) = v(t)−βB0. Then g(t) = f(t)−ν
∫ t
0λ(τ)g(τ) dτ . The solution

of g(t) is given by g(t) = f(t) − ν
∫ t
0λ(τ)f(τ)e−

∫
t

τ
νλ(s) ds dτ . Hence:

|g(t)| ≤ ‖f‖∞,[0,t] + ν‖f‖∞

∣∣∣∣
∫ t

0
e−
∫

t

τ
νλ(s) ds dτ

∣∣∣∣

= |f‖∞

[
1 +

1 − e−νǫt

ǫ

]
<∞ for every ǫ > 0. (6)

Now, limǫ→0 |g(t)| ≤ ‖f‖∞ (1 + ν t) which is still bounded on every bounded

interval in R+. Hence g(t) is bounded for every t ∈ R+. Then from Lemma

2.1, e(t) is bounded even if H(t) ∈ R \ [H∗, H
∗] on some interval [0, T ]. But

then H(t) is bounded from Equation (1). From this we can conclude that e(t)

and H(t) remain bounded for all t. 2

3 Existence of a periodic solution

We show that, under periodic forcing, system (1)-(4) admits a periodic solu-

tion. We first need invertibility of θ.

Lemma 3.1 Function θ−1 is well-defined and strictly monotone on R. Fur-

thermore, it is Lipschitz continuous with Lipschitz constant 1.

The proof is a direct consequence of the Inverse Function Theorem and hy-

pothesis H1. Hilpert’s Inequality ([3], page 134) plays a key role in the proof

of the asymptotic periodicity of the solution; however, we need a slightly dif-

ferent right hand side. The Heaviside function H is defined by: H(v) = 1 if

v > 0 and H(v) = 0 if v ≤ 0. Given a continuous function v(·), define:

HRL(v)(t)
△
= lim

δց0
H(v(t+ δ)). (7)
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It can be checked easily that Hilpert’s inequality remains valid when the

function H(v)(t) is replaced by HRL(v)(t). The “signum” function is defined

by: sign (v) = −1 if v < 0, sign (v) = +1 if v > 0, and sign (v) = 0

if v = 0. The Heaviside function and the signum function are related by:

sign (v) = H(v) − H(−v), v ∈ R. So, given a continuous function v(·), we

can define the modified “signum” function:

S(v)(t)
△
= HRL(v)(t) −HRL(−v)(t). (8)

Then we have the following lemma whose proof is almost obvious.

Lemma 3.2 Let u ∈ W 1,1(IR+). Then for almost every t ∈ IR+, we have:

d
dt
|u|(t) = du

dt
(t) S(u)(t).

The following lemma is used in the proof of the asymptotic periodicity of the

solution in the next section.

Lemma 3.3 Let u1, u2 ∈ W 1,1(R+) and ϕ−1,1, ϕ−1,2 ∈ Ψ0. Then

d

dt
|u1(t) − u2(t)| +

d

dt

∫ ∞

0
|q(r,Fr[u1(·);ϕ−1,1]) − q(r,Fr[u2(·);ϕ−1,2])|(t)dr

≤

(
d

dt
(P [u1(·);ϕ−1,1]−P[u2(·);ϕ−1,2]) (t)

)
S(u1−u2)(t).

The proof is straightforward and follows from Hilpert’s Inequality. Finally,

we prove the asymptotic behavior of the solution for continuous and periodic

voltage inputs.

Theorem 2 Let H1 − H4 hold. Let v be bounded and continuous. Suppose

there exists a T such that v(t+ T ) = v(t). Then there exists unique functions

ê and Ĥ such that
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i. ê(t+T ) = ê(t) and Ĥ(t+T ) = Ĥ(t) for all t ≥ 0, with limt→∞ |e(t) − ê(t)| =

0 and limt→∞

∣∣∣H(t) − Ĥ(t)
∣∣∣ = 0.

ii. For every initial memory curve ψ−1 ∈ Ψ0, there exists ψ̂−1 ∈ Ψ0 depending

only on v and ψ−1, such that lim
t→∞

∣∣∣B(t) − P[Ĥ(·), ψ̂−1](t)
∣∣∣ = 0.

Proof: Define the time-shifted quantities: vn(t)
△
= v(t+nT ), Hn(t)

△
= H(t+

nT ), Bn(t)
△
= B(t+ nT ), and en(t)

△
= e(t+ nT ) for any n ∈ IN. Also define

time-shifted memory curves: ϕn(t)(r)
△
= ϕ(t+nT )(r). Next, for any i, j ∈ IN

with i 6= j, define the non-negative definite function:

V ij(t) = |H i −Hj|(t) +
∫ ∞

0

∣∣∣q(r,Fr[H
i;ϕi(0)])(t)−q(r,Fr[H

j;ϕj(0)](t)
∣∣∣ dr.

From Lemma 3.3 and Equations (1)-(3),

V̇ ij(t) ≤ (
d

dt
(P [H i;ϕi(0)]−P[Hj;ϕj(0)])(t))S(H i−Hj)(t)

= γ (θ−1[vi − βH i](t)−θ−1[vj − βHj](t))S(H i−Hj)(t).

Note that if H i(t) < Hj(t) then v(t) − βH i(t) > v(t) − βHj(t). This im-

plies θ−1[vi − βH i] − θ−1[vj − βHj] > 0. Similarly, if H i(t) > Hj(t), then

θ−1[vi − βH i](t) − θ−1[vj − βHj](t) < 0. Thus, if H i(t) 6= Hj(t) for any

t ∈ IR+ then V̇ ij(t) < 0. As V ij(t) is a monotone decreasing function that

is bounded below, V̇ ij(t) → 0 as t → ∞. Hence its upper bound must

also satisfy: limt→∞ θ−1[vi − βH i](t) − θ−1[vj − βHj](t) = 0. Then, by H1,

limt→∞[vi − βH i − vj + βHj](t) = 0, i.e. limt→∞[H i −Hj](t) = 0, uniformly

in t. For any t ∈ IR+ define: Ĥ(t)
△
= lim

n→∞
Hn(t). It is clear that the function

Ĥ is well defined. This function has the property Ĥ(t + T ) = Ĥ(t) by our

proof above. If we define: ê
△
= θ−1(v − β Ĥ), then this function satisfies:
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ê(t) = lim
n→∞

en(t). The uniqueness of Ĥ and ê follows from the uniqueness of

the solution.

To prove the second claim we will show that the sequence of memory curves

{ϕn(0)} converges to a single curve ψ̂−1 ∈ Ψ0. As this sequence forms a

bounded, equicontinuous set, the uniform convergence of a subsequence fol-

lows from the Arzela-Ascoli theorem. We use Lemma 2.4.8 in [3] to show that

the entire sequence is convergent. At time t = nT, the memory curve is given

by ϕn(0). If the input H(τ) from [(n − 1)T, nT ] is re-applied to the opera-

tor Γ[ · ;ϕn(0)] during the interval [nT, (n + 1)T ], then the resulting memory

curve at (n+1)T is again ϕn(0). Repeating the above process on every interval

[(n + p − 1)T, (n + p)T ], 1 ≤ p ≤ k with k ≥ 1, the corresponding memory

curve at (n+ k)T is ϕn(0). Denote the applied input by Hn−1
p,[0,T ]. We can com-

pare the resulting memory curve with the one that is obtained by applying

the function H(t) on [nT, (n+ k)T ]. By Lemma 2.4.8, of [3], we have:

‖ϕn+k(0) − ϕn(0)‖∞ ≤

max{‖H[nT,(n+k)T ] −Hn−1
p,[0,T ]‖∞, ‖ϕ

n(0) − ϕn(0)‖∞}

= max
1≤p≤k

‖Hn+p
[0,T ] −Hn−1

[0,T ]‖∞.

By the uniform convergence of Hn on the interval [0, T ] to Ĥ, we see that,

given any ǫ > 0, we can pick an N such that for all n, m > N , we have:

‖ϕm(0) − ϕn(0)‖∞ < ǫ. Hence, the sequence {ϕn} is Cauchy and it converges

to a function ψ̂−1 ∈ Ψ0.

Define: B̂(t) = Γ[Ĥ, ϕ̂](t); t ∈ [0, T ]. We have the following inequality from [3]

(Prop. 2.4.9, page 58) where the norms are computed on [0, T ]: ‖Bn − B̂‖∞ ≤
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max{‖Hn − Ĥ‖∞, ‖ϕ
n(0) − ψ̂‖∞}, which proves that Bn(·) converges to a

function B̂(·) on [0, T ] which has the initial memory curve ψ̂−1. Finally define

x̂ as the solution to (5) with input M̂ and constant Fext. Then the final claim

follows from the stability property of the ODE (5) due to the assumptions on

mc and k. 2

4 Conclusion

In this paper, we study a low dimensional model for magnetostrictive rod

actuators that describes the physical phenomena which are most prominent

in the frequency range 0-800Hz. We show that the solution of the system is

asymptotically periodic for bounded, continuous and periodic voltage inputs.

The results of this paper are crucial for developing a parameter identification

methodology for the model that is addressed elsewhere.
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