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Abstract. We prove the closed loop stability of a PD controller for certain systems with
saturating, non-monotone hysteresis and frequency dependent power losses. Most controllers
use inverse compensators to cancel out actuator hysteresis nonlinearity. We show that we can
achieve stability of the closed-loop system without an explicit inverse computation (using least
squares minimization or otherwise).

1. Introduction
Magnetic and smart actuators are smaller and more energy efficient than conventional actuators,
and are useful in number of precision control applications [1, 2, 3, 4, 5]. However, they are difficult
to control to achieve a given objective due to the occurrence of hysteresis loops, memory effects,
and saturation, as well as rate dependent power losses. Motivated by such hysteretic systems,
in this paper, we discuss how to develop a proportional derivative (PD) control for saturating,
non–monotone hysteretic systems with nonlinear power losses.

The controller strategy discussed in this paper is derived for tracking control, that is,
for forcing the system output to follow a specific trajectory. However, we only discuss the
stabilization problem in this paper. The system has two measured feedbacks that can be used
for control: the error output, which we want to minimize, and another measured output. In the
case of magnetic and smart actuators, the other output is the induced voltage (electro-motive
force) of the actuator windings. Induced voltage of the actuator windings can be obtained from
the input current and voltage (shown in [6, 7]), and the error output is derived from the actuator
tip displacement. The use of two feedbacks makes the control design entirely different from those
used in the literature for control of hysteretic systems.

Tracking control of hysteretic systems has received wide attention in recent years. Tracking
control methods presented in the literature include inverse compensation of hysteresis [9, 10, 11],
adaptive control [12, 13, 14], integral control [15, 16, 17], passivity–based control [18, 19],
monotonicity-based control [20, 21], and hybrid control, most of which are model–dependent
[22, 23].

The most common control method discussed in literature is inverse hysteresis compensation,
where an approximate inverse of the hysteresis is employed to suppress the hysteresis nonlinearity
in the system [8, 9, 11, 24, 25]. These controllers are model–based and applicable for hysteretic
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systems at low frequencies [9]. Another widely investigated strategy is integral, proportional, and
derivative (PID) control [15, 17], derived from the output error. These controllers have received
much attention because of the simplicity and availability of PID modules. A key condition
that aids in the development of these controllers is that hysteresis is piecewise monotonic. In
literature, these controllers are employed for systems in which hysteresis is the only nonlinearity,
or the PID controllers are combined with model–based controllers [22, 23]. Adaptive control is
another common method for controlling hysteretic systems. Some adaptive controllers are based
on inverse hysteresis compensation [12, 26], while others are robust adaptive control schemes
without the hysteresis inverse [14, 27]. They are primarily utilized for non–saturating hysteresis
operators without minor–loop closure behavior.

1.1. Novelty of the proposed stabilizing controller
None of the aforementioned control schemes are suitable for non-monotone hysteretic systems
showing minor-loop closure and saturation. Magnetic and magnetostrictive actuators exhibit
such complex hysteresis with minor-loop closure, as well as other nonlinearities such as eddy
current and residual losses, which increase with the operating frequency. These actuators become
saturated and some actuators relate the output of the hysteresis to the system output via a square
map, such that the system is not monotone. These behaviors limit the usefulness of conventional
control schemes. Due to the limitations of both the models and the control schemes, tracking
control is limited to low frequency ranges (less than 200 Hz [9]) and low amplitude signals, which
prevents the actuators from becoming saturated. Hence, to control these systems in their full
frequency and amplitude ranges, a new scheme is required to achieve tracking control.

Existing control schemes for hysteretic systems use only the error output, to be minimized, to
derive the control signal. For example, existing control schemes for magnetostrictive actuators
use only the actuator tip displacement measurements as input for the control scheme [24].
However, when a current is applied to a magnetostrictive actuator, measurements can be taken
for the voltage induced by the actuator, as well as for the displacement of the tip. To achieve
precision control of these complex systems, it is important to include all measurements that
can easily be obtained and that reflect properties of the hysteretic system. Hence, we use two
feedbacks for control. In the following analysis, we show that, given any ε > 0, the output y(t)
is ultimately bounded by ε (that is, lim supt→∞ |y(t)| ≤ ε), in the absence of disturbance.

2. System with Hysteresis
In this paper, we consider hysteretic systems modelled for almost every t ∈ [0,∞) by nonlinear
functional differential equations of the form [28]

ẏ(t) + αy(t) = aM2(t) + bM(t) + ∆(t) (1)

d

dt
[u+M ](t) = γx(t) (2)

θ(x)(t) + βu(t) = û(t) (3)

M(t) = Γ[u ; ψ−1](t) (4)

y(0) = y0, u(0) = u0, (5)

where û(t) is the system input, x(t) is an output and y(t) is the output to be regulated. Functions
u(t) and M(t) represent two internal states. The system of equations (1-5) may be used to model
a magnetostrictive actuator with inertia ignored (set m = 0 in the model of [28]). In this case,
x(t) corresponds to the induced voltage, M represents the average magnetization along the
axis, y corresponds to the displacement of the actuator tip, u corresponds to the axial average
magnetic field, and û corresponds to the applied voltage. Equation (2) is equivalent to Faraday’s
Law. Operator Γ[· ; ψ−1] is the hysteresis operator with initial memory state ψ−1. The function

6th International Workshop on Multi-Rate Processes and Hysteresis (MURPHYS2012) IOP Publishing
Journal of Physics: Conference Series 585 (2015) 012006 doi:10.1088/1742-6596/585/1/012006

2



∆ represents a actuator disturbance signal, while θ is a nonlinear function which represents eddy
current and excess losses for magnetic systems.

We assume hysteresis can be represented by an operator of Preisach type. In the literature,
Presach operator has been shown to be a well–suited approximation for magnetic and smart
actuators [29, 30, 31]. The following definition of Preisach operator may be found in Brokate
and Sprekels [32]. Suppose Ψ0 is the space of admissible memory curves:

Ψ0 := {ψ | ψ : R+ → R, |ψ(r)− ψ(r̄)| ≤ |r − r̄| ∀r, r̄ ≥ 0, Rsupp(ψ) <∞} ,

where Rsupp(ψ) := sup{r | r ≥ 0, ψ(r) 6= 0}. The Preisach operator Γ[u ;ψ−1](t), with the initial
memory curve ψ−1, is defined with an output map Q : Ψ0 → R of the form:

Q(ψ) =

∫ ∞
0

q(r, ψ(r))dr + w00, where q(r, s) = 2

∫ s

0
ω(r, σ)dσ, (6)

with w00 =
∫∞

0

∫ 0
−∞ ω(r, s)dsdr +

∫∞
0

∫∞
0 ω(r, s)dsdr. Here, ω ∈ L1

loc(R+ × R) is the Preisach
density function. For piecewise monotone functions u, the Preisach operator is defined to be:

Γ[u;ψ−1(t)
4
= Q(ψ(t)(r)), where ψ(t)(r) = Fr[u(t);ψ−1(r)] and Fr is the Play operator with

parameter r [32].

3. Statement of the problem
The objective is to design a controller such that all the internal signals u, x, y of the system (1-5)
are bounded for all t ≥ 0 even in the presence of the disturbance ∆. Furthermore, all signals must
be uniquely specified. Finally, when the disturbance ∆ = 0, for arbitrary ε > 0, the controller
must have the property that |y(t)| is ultimately bounded by ε (that is, lim supt→∞ |y(t)| < ε)
by proper choice of parameters. We introduce the following assumptions.

H1: The Preisach operator Γ[· ;ψ−1] is output-rate dissipative (counter-
clockwise dissipative), piecewise monotone, and Lipschitz continuous
on C[0, T ] and W 1,1(0, T ) where T > 0 is any positive real number.

H2: There exist real numbers Γsat1, Γsat2 > 0 such that −Γsat1 =
infψ∈Ψ0 Q(ψ) and Γsat2 = supψ∈Ψ0

Q(ψ).
H3: θ(·) is continuous and strictly monotone increasing; θ(0) = 0.
H4: a ≥ 0, while b, α, β, and γ are positive. The disturbance signal

satisfies ∆ ∈ L∞[0,∞). Furthermore, ‖∆‖∞ ≤ η, and η < b2

4a . The
initial value parameter y0 lies in a known bounded set.

Hypothesis H1 is a typical condition which guarantees the thermodynamic consistency of
hysteresis operators. In particular, it reflects the fundamental energy dissipation properties
of hysteresis. Hypotheses H2 states that the hysteresis operators in this study are allowed to
saturate. The next hypothesis, H3, describes the behavior of function θ. The monotonicity
represents the increase of power losses as the magnitude of x increases. This hypothesis is the
result of modeling frequency dependent excess losses in magnetic systems [6, 28].

4. Feedback Stabilization

The following result is an extension of Corollary 2.4.12 in Brokate and Sprekels [32]. It
establishes the Lipschitz continuity of the operator Γ ◦ (I + Γ)−1 : W 1,1(0, T ) → W 1,1(0, T ).
It is useful to prove the existence and uniqueness of solutions to (1-5). If I is an interval in R,
CI [0, T ] = {u ∈ C[0, T ] |u(t) ∈ I; t ∈ [0, T ]}. We assume that for ψ−1 ∈ Ψ0, if u ∈ CI [0, T ], then
Γ[u;ψ−1] ∈ CJ [0, T ].
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Lemma 4.1 Suppose Γ[u;ψ1] is a Preisach operator generated by a nonnegative bounded density
function ω(r, s) with compact support, where ψ−1 ∈ Ψ0. Furthermore, suppose that ∂

∂sω(r, s) is
measurable and bounded on bounded subsets of R+ × R. Then, for any T > 0, the following
assertions hold:

(a) Γ[·;ψ−1] is Lipschitz continuous on C[0, T ] and on bounded subsets of W 1,1(0, T ).

(b) (I + Γ)[·;ψ−1] : CI [0, T ] → CJ [0, T ] is invertible. (I + Γ)−1[·;ψ−1] is Lipschitz continuous
on CJ [0, T ] and on bounded subsets of W 1,1(0, T ).

(c) Γ◦(I+Γ)−1[·;ψ−1] is Lipschitz continuous on CJ [0, T ] and on bounded subsets of W 1,1(0, T ).

The proof of the above result may be shown using the results proved in [32].

The stabilizing control signal can be derived either using a PI controller or a PD controller.
In this paper, we restrict our attention only to the PD controller configuration. Control input
û(t) is derived from signals y and x:

û(t) = −k̂Px− kP y − kDẏ. (7)

Next we obtain the closed loop system as follows. Equation (2) can be expressed in integral
form as

u+ Γ[u ;ψ−1] = f(x), (8)

where, f(x) := γ
∫ t

0 xdτ + u0 + Γ0. By the invertibility of I + Γ, u = (I + Γ)−1f(x). Hence

Γ[u ;ψ−1] can be rewritten in terms of x as W [f(x) ;ψ−1] := Γ
[
(I + Γ)−1f(x) ;ψ−1

]
. From

Equation (8),

u = γ

∫ t

0
xdτ −W [f(x) ;ψ−1] + u0 + Γ0. (9)

Then, Equation (9) combined with system of equations (1-5) yields the closed loop system:

ẏ + αy = g (W [f(x) ;ψ−1]) + ∆(t) (10)

ϕ(x(t)) + βγ

∫ t

0
x(τ)dτ = (kDα− kP )y(t) +G(t0;x)(t), (11)

where

ϕ(x) = k̂Px+ θ(x),

g(·) = a(·)2 + b(·), and

G(t0;x)(t) = βW [f(x) ;ψ−1](t)− kDg (W [f(x) ;ψ−1](t))− β(u0 + Γ0)− kD ∆(t).

Due the semi-group property satisfied by Γ, we also have for any 0 ≤ t1 ≤ t,

ϕ(x) + βγ

∫ t

t1

x(τ)dτ = (kDα− kP )y +G(t1;x)(t),

G(t1;x)(t) = βW [f(x);ψ−1](t)− kDg (W [f(x);ψ−1])− β(u(t1) + Γ[u;ψ−1](t1))− kD ∆(t).

This observation is useful in Section 4.1.
Next we need to show that the above system possesses a solution such that y ∈ W 1,∞[0,∞)

satisfies the differential equation almost everywhere. Further, all the states must remain bounded
for all t ∈ [0,∞). The next section establishes existence, uniqueness and stability of a solution
to Equations (10)-(11). We then show that for the disturbance-free case ∆ = 0, given any ε > 0,

we can make |y(t)| ultimately bounded by ε by careful choice of parameters k̂P , kP , kD.
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4.1. Existence and uniqueness results
First, we determine the specific properties required of function ϕ(x). Proof of the following
lemma is a direct consequence of the inverse function theorem.

Lemma 4.2 For each x ∈ R, the function ϕ := k̂Px+ θ(x) is strictly monotone. Further, ϕ−1

is well–defined, strictly monotone, and Lipschitz continuous with Lipschitz constant
1

k̂P
.

This lemma shows that by selecting k̂P > 0, we obtain the Lipschitz continuity of ϕ, which is
important to prove existence and uniqueness of the closed-loop system.

Since function g(M(t)) = aM2(t) + bM(t) is non-monotone (Figure 1), two values of M(t)
achieve the same value of g(M(t)) and, hence, the same output y(t). However, to avoid ambiguity
in the control design, the value of M(t) must be restricted to an interval such that a unique value
of M corresponds to each value of g(M). If b = 0, then g(M) can only take on non-negative
values and it can quickly be seen that (1) cannot be stabilized, that is lim supt→∞ |y(t)| cannot
be made to be less than any given ε > 0. If a = 0, then the graph of g(M) is monotone on
[−Γsat1,Γsat2]. If a > 0 and b > 0, then the initial value of M , that is, Γ0 must be away from
the turning point − b

2a in order that we have local uniqueness.

Figure 1. Function g(M)

Theorem 4.1 (Local Existence and Uniqueness) Suppose hypotheses H1 - H4 hold for all
T > 0. Further suppose that Γ0 ∈ (max{− b

2a ,−Γsat1},Γsat2]. There exists τ > 0 such that
the system (1) - (5) and (7) has a unique solution (B, y) ∈ W 1,∞(0, τ) × W 1,∞(0, τ), where
B = u+M.

Proof With B = u + M , ϕ(x) = k̂P x + θ(x), V = (I + Γ)−1[·;ψ−1] and g(x) = ax2 + bx, we
have u = V (B). The combined system (1) - (5) and (7) is:

Ḃ = γ ϕ−1 (−β V (B)− (kP − kDα)y − kD g((Γ ◦ V )(B))− kD ∆(t))

ẏ = −αy + g((Γ ◦ V )(B)) + ∆(t).

The above equations are in the form ẇ = F (t, w, V [S(w)],W [S(w)]) where w = (B, y) ∈ R2,
S[w] = B is a projection operator, and W = Γ ◦ V . Note that F is Lipschitz continuous as
function of the last three arguments, and measurable as a function of t. As V and Γ ◦ V are
Lipschitz continuous from W 1,1(0, T ) to W 1,1(0, T ) by Lemma 4.1, the claim follows from the
same argument as in Theorem 3.1.1 in [32]. 2
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Theorem 4.1 concludes the existence of a local solution on a sufficiently small interval [0, τ).
Our goal is to show existence and uniqueness on [0,∞). However, extension of the solution
presents a problem because M(t) might pass through the turning point − b

2a after which multiple
solutions might exist. The following two lemmas together show that this cannot happen by
proper choice of parameters kP and kD.

Lemma 4.3 Suppose that the conditions of Theorem 4.1 hold. Let a unique solution to (10) -
(11) exist on the interval [0, τ). Then, there exists bounds independent of parameters kP and kD
for both y and x on [0, τ).

Proof By Theorem 4.1, there exists a solution on a sufficiently small interval [0, τ). From
Equation (10), for t ∈ [0, τ):

ẏ(t) + αy(t) = g(W [f(x)])(t) + ∆(t)

=⇒ y(t) = e−αt
[∫ t

0
eατg(W [f(x)])(τ)dτ +

∫ t

0
eατ∆(τ)dτ + y0

]
.

Since W is saturating (by Hypothesis H2) and ∆ is essentially bounded on [0,∞) (by Hypothesis
H4),

|y(t)| ≤ e−αt
∫ t

0
Neατdτ + e−αt|y0|,

for some constant N . Hence,

∀ t ∈ [0, τ), |y(t)| ≤ N/α+ |y0|. (12)

With z = ϕ(x), (11) becomes:

z(t) = G
(
0;ϕ−1(z)

)
(t)− βγ

∫ t

0
ϕ−1(z(τ))dτ + (kDα− kp)y(t), t ∈ [0, τ). (13)

Due to Hypotheses H2 and H4, there exists L > 0 such that ∀ t ∈ [0, τ), |G(0;ϕ−1(z))(t)| < L .
Since y is bounded (by Claim 1), there exists M such that |(kDα−kP )y(t)| < M for all t ∈ [0, τ).
By (11), z(0) < L+M .

We claim that |z(t)| < L + M for all t ∈ [0, τ). Suppose that this is not the case. Then
there exists t∗ ∈ [0, τ) such that |z(t∗)| ≥ L + M . Consider the case z(t∗) ≥ L + M . Suppose
z(t) > 0 for all t ∈ (t∗∗, t∗], where z(t∗∗) = 0. Since ϕ−1(0) = 0 and ϕ−1 is strictly monotone
increasing, x(t) = ϕ−1(z)(t) > 0 for t ∈ (t∗∗, t∗]. By the semi-group property of Γ (see the
comment following (11)),

L+M ≤ z(t∗) = G
(
t∗∗;ϕ−1(z)

)
(t∗)− βγ

∫ t∗

t∗∗
ϕ−1(z(τ))dτ + (kDα− kP )y(t∗)

< L+M,

which is a contradiction. By a similar argument, we can obtain z(t) > −L−M , concluding the
proof of the claim. Hence,

∀ t ∈ [0, τ), |x(t)| ≤ ϕ−1(L+M).2 (14)

For the case, a > 0 and b > 0, we may assume b/2a < Γsat1, since otherwise [−Γsat1,Γsat2] ⊂
[−b/2a,Γsat2] and M(t) is uniquely determined as desired.

Denote π = [−b/2a,Γsat2]. Lemma 4.4 establishes that appropriate choices for the gain
parameters force the controller to maintain M(t) ∈ [−b/2a,Γsat2].
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Lemma 4.4 Suppose that the conditions of Theorem 4.1 hold. Let a unique solution to (10) -
(11) exist on the maximal interval [0, τ). Then ∀ k0 > 0 ∃ kP0 > 0 3 if kP , kD satisfy kP ≥ kP0

and kD ∈ [
kP
α
, k0 +

kP
α

], then M(t) ∈ π for all t ∈ [0, τ ]. Furthermore, if M(τ) = − b
2a then

Ṁ(τ) ≥ 0.

Proof By the conditions of Theorem 4.1, M(0) ∈ Interior(π). Given k0 > 0, pick kP0 =
α(βd1 + k0d2)

b2

4a − η
. Suppose kD satisfies 0 ≤ kD − kP

α ≤ k0.

As [0, τ) is the maximal interval of existence and uniqueness, we have either a loss of existence
(solution becomes unbounded) or loss of uniqueness as t→ τ . Lemma 4.3 shows that all signals
exist at t = τ. Hence, the only possibility is that there is a loss of uniqueness for t > τ. This
may happen if M(τ) = − b

2a . If Ṁ(τ) does not exist, then M is increasing at τ . Suppose Ṁ(τ)

exists. We only need to show that we can find parameters kP and kD such that Ṁ(τ) ≥ 0.
From (3) and (7),

β u(t) = −k̂Px(t)− θ(x)(t)− kP y(t)− kDẏ(t).

It was shown in the proof of Lemma 4.3 that x(τ), y(τ) are bounded and the bounds are

independent of parameters k̂P , kP and kD. It follows that ∀ t ∈ [0, τ ], |u(t)| ≤ d1 for some
constant d1 that is independent of gain parameters.

Now, ∀ t ∈ [0, τ ], M(t) ∈ π, which implies that |ẏ(t)| < d2 for some constant d2 that is

independent of parameters k̂P , kP and kD. As M(τ) = −b/2a,

ẏ(τ) + αy(τ) = −b2/4a+ ∆(τ).

Denote as before, ϕ(x)(τ) = k̂Px(τ) + θ(x)(τ).

We rewrite (3) and (7) at time τ by adding and subtracting −kP
α ẏ(τ) to the right hand side,

and collecting similar terms:

ϕ(x)(τ) = −β u(τ)− kP
α
ẏ(τ)− kP y(τ)− kDẏ(τ) +

kP
α
ẏ(τ)

= −β u(τ)− kP
α

(ẏ(τ) + αy(τ)) +

(
−kD +

kP
α

)
ẏ(τ) (15)

≥ −β d1 +
kP
α

(
b2

4a
− η
)
−
(
kD −

kP
α

)
d2.

≥ −β d1 +
kP
α

(
b2

4a
− η
)
− k0 d2 (16)

=
1

α

(
b2

4a
− η
)

(kP − kP0) ≥ 0 (17)

By Hypothesis H3, x(τ) ≥ 0. By Hypothesis H1 and Equation (2), Ṁ(τ) ≥ 0. 2

Having shown that M is uniquely determined even if it reaches the boundary of π, we can
now prove the following theorem.

Theorem 4.2 (Global Existence and Uniqueness) Suppose hypotheses H1-H4 hold for all
T > 0 and Γ0 ∈ (max{−b2a ,−Γsat1},Γsat2]. Suppose the parameters k0, kP and kD satisfy
the conditions specified in Lemma 4.4. Then, for any T > 0, (10), and (11) have a unique
solution (B, y) ∈ W 1,∞(0, T ) ×W 1,∞(0, T ), where B = u + M. Furthermore, x ∈ BC[0,∞),
y ∈ W 1,∞(0,∞) and ‖y‖∞ + ‖ẏ‖∞ ≤ K for some K < ∞ independent of parameters kP , kD,

and k̂P .
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Proof Suppose [0, τ) is the maximal interval of existence and uniqueness of the solution to (10)
and (11), where τ <∞. We will prove a contradiction.

By Lemma 4.3 y(t) and x(t) are uniformly bounded on [0, τ).
Therefore, (8) yields,

∀ t ∈ [0, τ), |B(t)| ≤ τ γ ϕ−1(L+M) + |u0 + Γ0|. (18)

Using Theorem 4.1, we see that the solution may be extended to an interval larger than [0, τ),
and the extension is unique by Lemma 4.4. This contradicts the maximality of that interval
[0, τ). Hence, the solution exists on the half-line [0,∞). We also see that for any T > 0,
(B, y) ∈W 1,∞(0, T )×W 1,∞(0, T ).

The claim that x ∈ BC[0,∞) follows from the proof of Lemma 4.3. The claim that
y ∈W 1,∞[0,∞) follows immediately from Equation (10) by observing that,

‖ẏ‖∞ ≤ N + α|y0|+ amax{Γ2
sat1,Γ

2
sat2}+ bmax{Γsat1,Γsat2}+ η.

Select

K = (
1

α
+ 1) (N + α|y0|) + amax{Γ2

sat1,Γ
2
sat2}+ bmax{Γsat1,Γsat2}+ η}.

2

4.2. Proof of Stabilization
The next objective is to show that the control signal given by Equation (7) achieves stabilization.

In the previous subsection, we saw that by selecting k̂P > 0, we can prove existence and
uniqueness of solutions to the closed loop system. In this subsection, we derive the necessary
conditions on gain parameters kD and kP so that given ε > 0 and ∆ = 0, we obtain
lim supt→∞ |y(t)| ≤ ε.

Lemma 4.5 Suppose the conditions in Lemma 4.4 are satisfied. Then∫ t

t0

(2aM(τ) + b)u(τ)
dM

dτ
dτ ≥ 0.

Proof Define g : π → R by g(M(t)) := aM2(t) + bM(t). As g is monotone increasing
and differentiable on π and the hysteresis operator is output-rate dissipative, we have∫ t

0 ug
′(M(t))dt ≥ 0, which proves the claim. 2

Finally, we show that stabilization can be achieved by proper choice of parameters in the absence
of disturbance ∆.

Theorem 4.3 Suppose that the conditions in Lemma 4.4 are satisfied, and ∆ = 0. Then,
for any ε > 0, there exists k̄P0 ≥ kP0 such that, if kP > k̄P0 and αkD − kP > 0, then
lim supt→∞ |y(t)| ≤ ε.

Proof We employ a Lyapunov stability argument using La Salle’s invariance principle. By
Theorem 4.2, B is absolutely continuous. By Theorem 4.1, the operator (I + Γ)−1[·;ψ−1] is
Lipschitz continuous on bounded subsets of W 1,1(0, T ). Hence, u is absolutely continuous on
(0, T ) for any T > 0. Then, by Equation (9), we see that W [f(x);ψ−1] is absolutely continuous
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on (0, T ) for any T > 0. Equation (10) implies that ẏ is locally absolutely continuous, that is,
for almost every t, ÿ(t) exists.

Consider Equation (15) at time t,

ϕ(x)(t) + βu(t) = −kP
α

(ẏ + αy) (t)−
(
kD −

kP
α

)
ẏ(t). (19)

By multiplying (19) with ÿ + αẏ, and collecting terms, we find:

kP
α

(ẏ + αy) (ÿ + αẏ) (t) +

(
kD −

kP
α

)
ÿ(t)ẏ(t)

=
(
−θ(x)− βu− k̂Px

)
(ÿ + αẏ) (t)− (αkD − kP ) ẏ2(t). (20)

Consider the Lyapunov function

V (t) =
kP
2α

(ẏ + αy)2 (t) +

(
kD −

kP
α

)
ẏ2(t)

2
+ β

∫ t

0
(2aM + b)u

dM

dτ
dτ, (21)

Then V (t) ≥ 0. By (20) and (21), for almost every t ∈ [0,∞),

V̇ (t) =
(
−θ(x)− βu− k̂Px

)
(ÿ + αẏ) (t)− (αkD − kP ) ẏ2(t) + β (2aM(t) + b)u(t)Ṁ(t). (22)

From Equation (1), for almost every t ∈ [0,∞),

(ÿ + αẏ) (t)βu(t) = (2aM(t) + b)βu(t)Ṁ(t),

and (ÿ + αẏ) (t)
(
θ(x)(t) + k̂Px(t)

)
= (2aM(t) + b) Ṁ(t)

(
θ(x)(t) + k̂Px(t)

)
.

From Equation(22)

V̇ (t) = − (2aM(t) + b) Ṁ(t)
(
θ(x) + k̂Px

)
(t)− (αkD − kP ) ẏ2(t).

From Lemma 4.4, 2aM(t)+b > 0 and, since Ṁ(t), x(t), and θ(x)(t) have the same sign, V̇ (t) ≤ 0.
Thus V̇ (t)→ 0 as t→∞ for almost every t.

The invariant set for V is the set (x, ẏ) = (0, 0). By Equation (7), the largest invariant subset
of this set is given by:

β u = −kP y.

Hence, for almost every t, |y(t)| ≤ β |u|
kP

, which shows that for any ε > 0 we may choose

kP ≥ k̄P := max{kP0,
β d1
ε }, where d1 is the bound on u discussed in Lemma 4.4. Then,

the largest invariant set for V will have the property: |y| < ε. 2

5. Conclusion
In this paper, a novel control strategy for hysteretic systems associated with magnetic and smart
actuators is proposed. The controller is a PD controller derived using two feedback signals. We
proved regularity, well-posedness, and stability of the controller and then found conditions on
the gain parameters for closed loop stability.
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