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Micromagnetics with eddy currents

R Iyer, J Millhollon and K Long

Room 201, Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX
79409.

E-mail: ram.iyer@ttu.edu

Abstract. In this paper, we study the modified Landau-Lifshitz-Gilbert (LLG) equation for
of a conducting, magnetic body. The modified LLG equations include the magnetic field due to
eddy currents in the total effective magnetic field. We derive an expression for the magnetic field
due to eddy current losses and show that it is well defined. We then show that the work done
by the eddy currents in opposing the change of magnetization is a Rayleigh type dissipation
function, and derive the modified LLG equations using the calculus of variations. Finally, we
show that the modified LLG equations lead to a decrease in the Gibbs energy. This implies that
the LLG equations describes a dynamic process proceeding spontaneously forward in time.

1. Introduction
Core losses in a magnetic material are typically considered to be due to three sources: hysteresis
losses, classical eddy current losses, and excess losses. For obvious reasons, eddy and excess
losses are important in induction motors [1], magnetostrictive actuators [2], amorphous magnetic
ribbons, guided spin wave devices [3]. The frequency ranges at which the eddy and excess losses
have been measured is about 0 - 1 MHz [2, 4, 5]. An interesting question is whether the theory
of micromagnetics can explain the observed excess losses. Below microwave frequencies, the
classical LLG equations could be used to study the excess losses (at microwave frequencies,
the LLG equation needs to be modified [6]). However, the magnetic field due to eddy currents
needs to be accounted for in the LLG equations, which is not done in the vast majority of the
literature on micromagnetics [7, 8, 9, 10, 11, 12, 13]. The only references that do include the
eddy currents [14, 15, 16] simply state them without derivation. As eddy current losses are a
form of dissipation, one anticipates that a Rayleigh type dissipation function could be found,
and the classical LLG equations modified to include eddy currents. That is the contribution of
this paper. The key result that is used is Corollary 2.1, where it is shown that the eddy current
field at a point in the magnetic body does not depend on the rate of change of magnetization
at that point.

1.1. The Landau-Lifshitz equation
In 1935, Landau and Lifshitz [17] proposed a new theory with which they were able to
compute the thickness of walls between magnetic domains, and also explain domain formation
in ferromagnetic materials. This theory which now goes by the name of micromagnetics [8]
has been instrumental in the understanding and development of magnetic memories. Landau
and Lifshitz considered the Gibbs energy G of a magnetic material to be composed of three
terms – exchange, anisotropy and Zeeman energies (due to the external magnetic field) [17], and
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postulated that the observed magnetization per unit volume M field would correspond to a local
minimum of the Gibbs energy. Later researchers added other terms to G such as magnetoelastic
energy and demagnetization energy [7, 11]. They also derived the Landau-Lifshitz (LL) equation
using physical arguments (but not using the calculus of variations):

Ṁ = γ0M×Heff − α0

M2
s

M× (M×Heff ), (1)

where γ0 = e
m c with m the electronic mass, e the electronic charge, c the speed of light; α0 is

a positive constant, ∥M∥ = Ms is assumed to be constant over the material. The effective field
Heff = − ∂G

∂M is the negative gradient of the Gibbs energy with respect to the magnetization,
and can be expressed as: Heff = H0+Hdemag +Hanis+Hexch+Hme where H0 is the external
magnetic field, Hdemag is the demagnetization field, Hanis is the field due to the anisotropy
of the sample, Hexch is the field due to exchange interactions, and Hme is the field due to
magnetoelastic interactions.

1.2. The Landau-Lifshitz-Gilbert equation and variational formulation
Equation (1) was modified by Gilbert [7] who derived the equation:

Ṁ = γ0M× (Heff − η Ṁ), (2)

where η > 0, and which showed a better match with certain experimental results [18]. He also
showed that the equation:

Ṁ = γ′M×Heff − α′

M2
s

M× (M×Heff ), (3)

can be obtained from the LLG equation (2), if one chose γ′ = γ0
1+γ2

0 η2 M2
s
and α′ =

η γ2
0 M2

s

1+η2 γ2
0 M2

s
.

Gilbert also showed that the second term on the right hand side of (2) could be obtained from
a Rayleigh dissipation function:

RG(Ṁ) =
η

2

∫
Ω
Ṁ · Ṁ,

if one interpreted (2) as Euler-Lagrange equations with a Lagrangian of the type: Kinetic energy
minus Potential energy. His contribution were limited by two issues: (i) the kinetic energy was
not described, and (ii) eddy currents were neglected. The magnetic field due to eddy currents
Heddy is missing as eddy currents were neglected. It should be noted that as the eddy currents
do not contribute to the Gibbs energy, it is not straight forward to see how they could be added
to the total magnetic field Heff described earlier.

Brown [8] showed the existence of a kinetic energy - a limiting form of the classical rigid body
kinetic energy - which along with the Gibbs energy G, and Gilbert’s damping function RG(Ṁ)
could be used to derive the LLG equation (2). Brown did not include eddy currents in his theory
either.

1.3. The LLG equations with eddy currents
A suggestion to add a magnetic field term Heddy to Heff is found in Bertotti [14], though a
derivation was not presented. Following [14], Torres et al. [15] included the eddy current field
in their computations, but ignored it in their numerical computations. Serpico, Mayergoyz and
Bertotti [16] include the eddy current field in their study of a thin magnetic film, again without
providing the justification for modifying the LLG equation.
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In this paper, we derive an expression for the magnetic field due to eddy current losses and
show that it is well defined. We then show that the modified LLG equations lead to a decrease in
the Gibbs energy. This implies that the LLG equations describes a dynamic process proceeding
spontaneously forward in time. Finally, we show that the work done by the eddy currents in
opposing the change of magnetization is a Rayleigh type dissipation function, and derive the
modified LLG equations using the calculus of variations.

2. Eddy Currents in a conducting magnetic material
Consider a magnetic material with magnetization per unit volume M, occupying a compact,
connected set Ω in IR3, with a Lipschitz continuous boundary. We assume that an external
magnetic field H0 is imposed by an external source. The free charge in the material is assumed
to be zero.

Maxwell’s equations are given by (neglecting ∂D
∂t ) :

∇ ·B = 0
∇×H = J

∇×E = −∂B
∂t

∇ ·D = 0,

B+
n −B−

n = 0
H+

t −H−
t = Js × n

E+
t −E−

t = 0
D+

n −D−
n = 0,

(4)

The relation between the fields are: B = µ0 (H + M), D = ϵ0E, J = σE, where σ is the
conductivity of the material. σ is required to be a measurable and bounded function. To make
physical sense, it is also required to be non-negative.

The (change in the) magnetization M has to be related to the applied field using the Landau-
Lifshitz theory of micromagnetics [17, 8]. To this end, let G be the Gibbs free energy given by:

G = Edemag + Eanis + Eexch + Eme −
∫
Ω
H0 ·M dv,

where Edemag is the demagnetization energy, Eexch is the exchange energy, Eanis is the anisotropy
energy, and Eme is the magnetoelastic energy. The expressions for these energies can be found
in Brown [8] (page 38).

In what follows, we employ CGS units as in Brown [8]. Consider Figure 1. Let P be a
point in Ω. Suppose ϵ > 0 is any given number sufficiently small, and consider a small (relative)
neighborhood S that is removed from Ω. S is contained in a small ball of radius ϵ with center at
P , that is, S ⊂ Bϵ(P ). Consider an infinitesimal tube of surface area dA and length dl located
at the point Q in Ω ∩ Sc (Sc is the complement set of S with Sc containing points in space
that are not in S), such that the current J(Q) dA(Q) in the tube is along the axis of the tube.
Let rPQ be the vector centered at Q and Then, the work done by the current J(Q) dA(Q) in
opposing the change in the magnetization M(P ) at the point P is given by [8] (page 27):

dR

dt
(P ;S) =

∫
Ω\S

µ0

4π

J(Q) dv(Q) ·
(
Ṁ(P )× rPQ

)
∥rQP ∥3

=

∫
Ω\S

µ0

4π

(rPQ × J(Q))

∥rPQ∥3
dv(Q) · Ṁ(P ),

(5)
where dv(Q) = dAdl is the volume of the infinitesimal tube located at the point Q.

Definition 2.1 (Absolute convergence of the eddy current integral)
Let P ∈ Ω. If the last integral in (5) exists for all ϵ > 0 and S ⊂ Bϵ(P ), converges absolutely

as ϵ → 0, and if the limit is independent of the shape of S, then we say that the eddy current
field Heddy exists at P , and
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Figure 1. Computation of the loss due to eddy currents.

Heddy(P ) =

∫
Ω

µ0

4π

(rPQ × J(Q))

∥rPQ∥3
dv(Q) = lim

ϵ→0

∫
Ω\S

µ0

4π

(rPQ × J(Q))

∥rPQ∥3
dv(Q). (6)

Remark: In the SI system, the left hand side would be called Beddy the effective magnetic
flux density, and Heddy is defined according to: Beddy = µ0Heddy. 2

We can define:

dR

dt
(P ) = lim

ϵ→0

dR

dt
(P ;S) = lim

ϵ→0

∫
Ω\S

µ0

4π

(rPQ × J(Q))

∥rPQ∥3
dv(Q) · Ṁ(P ), (7)

and the work done by the eddy current field J in opposing the change in the magnetization in
the material is given by: ∫

Ω

dR

dt
(P ) dv(P ) =

∫
Ω
Heddy · Ṁ dv. (8)

This is work done by the “system” consisting of the magnetic material on its environment, and
hence it is non-positive. Hence, the Rayleigh dissipation function RE defined by:

RE = −
∫
Ω
Heddy · Ṁ dv ≥ 0, (9)

and it represents the work done by the battery in overcoming the demagnetizing effect of eddy
currents.

Remark: In the SI system, we have RE = −µ0

∫
ΩHeddy · Ṁ dv 2

Below is the main lemma of this paper.

Lemma 2.1 The limit in (6) converges absolutely irrespective of the shape of the open set S,
which is assumed to contain P and be a subset of Bϵ(P ).

Proof: Consider the integral:

I =

∫
S

µ0

4π

(rPQ × J(Q))

∥rPQ∥3
dv(Q)

where S is a small neighborhood ⊂ Bϵ(P ) that is a subset of Ω.
The proof of absolute convergence of I as ϵ → 0, depends on showing the boundedness of J,

which is implied by the boundedness of E over all of Ω. As the material is without polarization
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(that is, P = 0), we have D = ϵ0E, and the boundedness of E is equivalent to that of D. From
the Maxwell’s equation: ∫

V
∇ ·D dv =

∫
∂V

D · n dS = 0,

where V ⊂ D is any region with a Lipschitz continuous boundary. IfD is unbounded or undefined
at any point on ∂V , then the third equality in the above equation cannot hold. Hence, D must
be defined everywhere on the boundary of an arbitrary region V ⊂ Ω, which implies that D is
defined everywhere on Ω. As Ω is a compact set, D is bounded everywhere on Ω, and there
exists C > 0 such that ∥D∥ ≤ C on Ω.

The rest of the proof is an adaptation of a method in Leathem [19] (page 15). Let T be a
point on the boundary of S that is at the shortest distance from P . As the boundary of S is a
compact set, there exists at least one such point. Let ∥rPT ∥ = η. By construction, η < ϵ, and:

|I| ≤ µ0

4π

∫
S

∣∣∣(rPQ × J(Q))

∥rPQ∥3
∣∣∣ dv(Q)

≤ µ0

4π

∫
S

∥J(Q)∥
∥rPQ∥2

dv(Q)

≤ µ0

4π

∫ ϵ

η

σmaxC

r2
4π ϵ0 r

2 dr

=
µ0

ϵ0
C σmax (ϵ− η)

≤ C σmax Z
2
0 ϵ,

where σmax is the maximum value of the conductivity σ on Ω, and Z0 =
√

µ0

ϵ0
is the

characteristic impedance of free space. The inequality above shows that irrespective of S, we

have limϵ→0 |I| = 0. Now,
∫
Ω\S

∣∣∣(rPQ×J(Q))
∥rPQ∥3

∣∣∣ dv(Q) is finite because J is bounded on Ω, and the

denominator never approaches 0. Hence, we have:

µ0

4π

∫
Ω

(rPQ × J(Q))

∥rPQ∥3
dv(Q) =

µ0

4π

∫
Ω\S

(rPQ × J(Q))

∥rPQ∥3
dv(Q) +

µ0

4π

∫
S

(rPQ × J(Q))

∥rPQ∥3
dv(Q),

as both the integrals on the right side exist. At this point, the left hand side seems to be function
of S. However,∣∣∣µ0

4π

∫
Ω

(rPQ × J(Q))

∥rPQ∥3
dv(Q)− µ0

4π

∫
Ω\S

(rPQ × J(Q))

∥rPQ∥3
dv(Q)

∣∣∣ ≤ C σmax Z
2
0 ϵ, (10)

which shows that Heddy(P ) does not depend on S. 2

Corollary 2.1 Let P ∈ Ω. The eddy current magnetic field Heddy(P ) does not depend on

Ṁ(P ), and ∂RE

∂Ṁ
(P ) = Heddy(P ).

Proof: The claim follows from the fact that µ0

4π

∫
Ω\S

(rPQ×J(Q))
∥rPQ∥3 dv(Q) converges absolutely to

Heddy, and the contribution of µ0

4π

∫
S

(rPQ×J(Q))
∥rPQ∥3 dv(Q) to Heddy can be made as small as desired.

As Heddy(P ) is independent of Ṁ(P ), we get from (9), the second claim in the corollary. 2

Remark: In SI units, the corollary above reads ∂RE

∂Ṁ
(P ) = µ0Heddy(P ). 2
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3. The modified Landau-Lifshitz-Gilbert equation with eddy currents
Brown [8] (pages 31 - 43) showed the existence of a Routhian function T such that with the
Lagrangian L = T − G such that:(

d

dt

∂L
∂Ṁ

− ∂L
∂M

)
· δM =

∂RG

∂Ṁ
· δM, (11)

where δM = M×w is a virtual variation, with w an arbitrary vector field on Ω, which is 0 at
the initial and final times, yields the LLG equation (2):

1

γ0
Ṁ−M×Heff = η (Ṁ×M). (12)

We consider the dissipation function R = RG +RE where RE is given by (9), which leads
to the Euler-Lagrange equations:(

d

dt

∂L
∂Ṁ

− ∂L
∂M

)
· δM =

∂RG

∂Ṁ
· δM+

∂RE

∂Ṁ
· δM. (13)

By Corollary 2.1, we get:

1

γ0
Ṁ−M×Heff = η (Ṁ×M)−Heddy ×M.

Therefore, modified LLG equation is given by:

Ṁ = γ0M×Htotal − γ0 ηM× Ṁ = γ0M× (Htotal − η Ṁ), (14)

where η > 0 and γ0 =
e

m c < 0. The total magnetic field is given by:

Htotal = Heff +Heddy

= H0 +Hdemag +Hanis +Hexch +Hme +Heddy

= H+Hanis +Hexch +Hme,

as the magnetic field H in Maxwell’s equations is given by:

H = H0 +Hdemag +Heddy.

From (14),
Ṁ · (Htotal − η Ṁ) = 0,

which implies:
Ṁ ·Heff = ηṀ · Ṁ− Ṁ ·Heddy. (15)

Now,
dG

dt
(M,H0)dt =

∫
Ω

∂G

∂M
Ṁ+

∂G

∂H0
Ḣ0 dv =

∫
Ω
(−Heff · Ṁ−M · Ḣ0) dv. (16)

Using the reciprocity relation for magnetostatics (page 37, [8]),∫
Ω
M · Ḣ0 dv =

∫
Ω
Ṁ ·H0 dv,

we get,

dG

dt
(M,H0)dt =

∫
Ω
(−Heff · Ṁ− Ṁ ·H0) dv (17)

=

∫
Ω
(−η Ṁ · Ṁ+ Ṁ ·Heddy − Ṁ ·H0) dv. (18)

Each of the three terms on the right hand side is non-negative. The second term is negative
as it is work done by the magnetic material on its environment, while the term

∫
ΩṀ ·H0 dv is

positive as it is the work done by the battery on changing the magnetization of the material.
Hence, Equation (14) describes a physically valid, irreversible phenomenon.
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4. Conclusion
In this paper, we studied the modified Landau-Lifshitz-Gilbert (LLG) equation for of a
conducting, magnetic body. The modified LLG equations include the magnetic field due to
eddy currents in the total effective magnetic field. We derived an expression for the magnetic
field due to eddy current losses and show that it is well defined. We showed that the work done
by the eddy currents in opposing the change of magnetization is a Rayleigh type dissipation
function, and derive the modified LLG equations using the calculus of variations. Finally, we
showed that the modified LLG equations lead to a decrease in the Gibbs energy. This implies
that the LLG equations describes a dynamic process proceeding spontaneously forward in time.

References
[1] Diaz G, Arboleya P, Gonzalez-Moran C and Gomez-Aleixandre J 2007 IET Electr. Power Appl. 1 75
[2] Ekanayake D, Iyer R and Dayawansa W 2007 Proc. American Control Conf. (July 2007 New York) 4321
[3] Hertel R 2007 Guided Spin Waves Handbook of Magnetism and Advanced Magnetic Materials vol 2, ed

Kronmüller H and Parkin S (Wiley) pp 1003-20
[4] Willard M, Francavilla T and Harris V 2005 J. Appl. Phys. 97 10F502 001
[5] Fiorillo F and Novikov A 1990 IEEE Trans. Mag. 26 2904
[6] Thomas L and Parkin S 2007 Current Induced Domain-wall Motion in Magnetic Nanowires, Handbook of

Magnetism and Advanced Magnetic Materials vol 2, ed Kronmüller H and Parkin S (Wiley) 942
[7] Gilbert T L 2004 IEEE Trans. Mag. 40 3443
[8] Brown Jr W F 1962 Micromagnetics (New York: John Wiley & Sons)
[9] D’Aquino M (Dissertation: Dept. of Electrical Engineering Universitá degli Studi Di Napoli “Federico II”,
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