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Abstract—Hysteresis poses a challenge for control of smart used lately to model the hysteresis phenomenon in piezo-
actuators. A fundamental approach to hysteresis control is inverse electric [5], magnetostrictive materials [6], [7], shape-memory
compensation. For practical implementation, it is desirable for alloys [8], [9] and electro-active polymers [7]. The Preisach

the input function generated via inversion to have regularity tor i del of th h logical t Alth h
properties stronger than continuity. In this paper we consider OP€ratoris.a modei of the pnenomenological type. oug

the problem of constructing right inverses for the Preisach model in general, the Preisach operator does not provide physical
for hysteresis. Under mild conditions on the density function, insight into the problem, it is capable of producing behaviors
we show the existence and weak-star continuity of the right- similar to those of physical systems [4]. It is of great interest
inverse, when the Preisach operator is considered to act on i, the smart structures and controls community because of its

Holder continuous functions. Next, we introduce the concept of tility in develoning | d dels that b d f
regularization to study the properties of approximate inverse utility In developing low order models that can be used for

schemes for the Preisach operator. Then, we present the Fixed designing real-timg cont_rollers: . o

Point and Closest-Match algorithms for approximately inverting A fundamental idea in coping with hysteresis is inverse
the Preisach operator. The convergence ar_1d con_tinuity properties compensation (see, e.g., [5], [10], [11], [12]), as illustrated
of these two numerical schemes are studied. Finally, we present;, Fig. 1. If one can construct an approximate right inverse
the results of an open-loop trajectory tracking experiment for a W1 of the hysteresis operatd¥’, then the outputy of 1V

magnetostrictive actuator. . . -
. . . . will approximately equal the reference trajectagy ;.
Index Terms—Hysteresis, Approximate inversion, Regular-

ization, Smart actuators, Preisach operator, Magnetostriction, y
Piezoelectricity, Shape memory alloys, Electro-active polymers, 4 V/‘\/_l u W y
Fixed Point iteration algorithm, Closest-Match algorithm.

Fig. 1. lllustration of inverse compensation.
. INTRODUCTION

This paper deals with approximate inversion of the Preisach

SMART materials, e.g., magnetostrictiv_es_, piezoceram?caperatorri where v is required to be a blder continuous
and shape memory alloys (SMAs), exhibit strong coupli nction. It contains five contributions: a) the proof of weak-

between applied electromagnetic/thermal fields and strains t ?&r continuity of the inverse acting on the space @lder

can bg exploited for actuation an_d s.e_nsing. Hysteresis_ in SM&htinuous functions, under a mild and easily verifiable con-
ma:er!a:s, kt\ovx:ever, Foses”ghs]lgr:lflc?nttchal'l\ingel mf SM8ffion on the Preisach density function; b) the formulation of
material actuators (also ca art actua o_r}s odels for egzularization for the inversion problem; c) the development
hysteresis in smart materials can be classified into those t Al Fixed Point iteration algorithm and its convergence
are p_hysics—based and those _tha_t are phenomenology—.bagﬁ lysis; d) the development of tlidosest-Matchalgorithm
Phyglcs-basgd _models_use .pr|nC|pIes of the_rmodynamlcsatlg?d its convergence analysis; and e) Experimental validation
obtain consitutive relationships between conjugate Va”abl%?“theCIosest—MatcraIgorithm. These contributions are briefly
Such examples include the Jiles-Atherton model [1] and “&‘?scussed next

ferro_magnetic hy_steresis m_od_el [21. 13, where hysteresis 'SBrokate and Sprekels [13] prove the existence and continu-
considered to arise from pinning of domain walls on defe of the inverse of the Preisach operator when the domain is

sites. _The most popular hy;teress mode| used for magnefs space of continuous functions, under very mild conditions
materials has been the Preisach operator [4], and it has bSﬁnthe density function. Visintin [14] proves a theorem on
the weak-star continuity of the inverse, when the domain is
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spacesof Holder continuous functions that only depends oimverse problem. Consideration of Lipschitz functions is also
the density conditions close to the diagonal on the Preisatiotivated by constraints on implementation of control signals
plane. Such a theorem would be in the same spirit as Corollarfgen encountered in practice.
2.11.21 of Brokate and Sprekels [13] for the continuity of the Our theorem (see Theorem 2.2) shows that the inverse maps
inverse operator acting on the space of continuous functiogeneric functions in the space oblder continuous functions
We present a theorem in Section Il that concludes the resuwts|0, 7' denoted byC%*2[0, T to the spac€®*1 [0, T] where
of Visintin’s theorem under mild conditions on the densitylg < % This result implies that in general, even if the desired
function (these conditions are still stronger than Brokate amditput function is differentiable, the input function need not
Sprekels’ conditions, as expected). The utility of this theorebe a Lipschitz continuous function. For engineering reasons,
to control engineers is that the conditions can be easifyone wishes to obtain a Lipschitz continuous function as
verified. the (approximate) inverse of aditler continuous function, an

In our earlier work [15], we showed that the approximateperation callednollification [20] has to be carried out. The
inverse to anincrementally strictly increasinglSI) Preisach natural question that arises then is the following: if the desired
operator can be computed numerically. kQt ue € C[0,7], output function is changed by a small amount either due to
consider the ordering; > wu, if and only if u;(t) > ux(¢t) noise or by design, then how “close” is the resulting mollified
for all ¢ € [0,7]. Then the Preisach operator is said tsolution to the original mollified solution (and in what sense)?
be incrementally strictly increasing [16] (ISI) if there exisfThis is a question of enormous engineering importance, and
constantsk;, ke > 0 such thatk; (u; — ug) < T[u;] — to discuss it, we develop the notion oégularization for
Tfuz] < ko (u1 — ug). This definition is different from the solving the inversion problem in Section Ill. Two approxi-
piecewise strictly increasingperator (PSI) defined by Brokatemate inversion algorithms for the Preisach operator are then
and Sprekels. A Preisach operator is said to be piecewideveloped. Both algorithms use the PSI property of a Preisach
strictly increasing if(T'[u](T") — T'[«](0))(u(T) — w(0)) > 0 operator. In Section IV, we present the Fixed Point algorithm
for a monotone input. € C[0,T]. Under the mild condition to approximately invert the Preisach operator, and study its
that the density function is integrable and non-zero almasbnvergence and continuity properties under the PSI condition.
everywhere on a strip of positive width along the diagonal ddext, the Closest-Match Algorithm is developed and analyzed
the Preisach plane, it is easy to show that the correspondingsection V. The latter algorithm is applied to tracking control
Preisach operator is PSI. The ISI condition requires vepf a magnetostrictive actuator, and experimental results are
stringent conditions on the density function. For example, iiéported to demonstrate its efficacy.
the density function took a constant positive value on the
setamin < 0 < a < ang in the Preisach plane, then it

is ISI. We have shown in earlier work [15], [17], that the To fix the notation and the problem setup, the Preisach
Fixed Point iterationz,, 1 = u, + = (y — I'(u,)) corverges operatorI" and some known results are reviewed first in
2

to a functionu* that satisfiesI'[u*] = y via a contraction. Subsection II-A. Subsection 1I-B then studies the weak-star
Leang and Devasia [18] apply this result to the positioning &entinuity of '~ in the space of Elder continuous functions
piezoelectric actuators. In this paper, under the (significantiyfider the weak condition. Létbe a closed interval; € (0, 1],
milder condition of PSI Preisach operators, we show ttfd 7T > 0. The following notation will be used to denote
convergence of the same scheme without using a contractffifierent function spaces:
argument. » C[0,T]: space of continuous functions é&, T;

We are led to the space of Lipschitz continuous functionss Cm[0,7]: space of monotone, continuous functions on
as we would like the solution of the inverse problem, to have [0, 77;
regularity properties stronger than just continuity. For example,» Cpm[0,7]: space of piecewise monotone, continuous
in the case of inductors or transformers with a ferromagnetic functions on[0, 77;
core, the Preisach operator is usually considered to map the C1[0,77]: space of continuous functions taking values in
axial magnetic fieldH (¢) function to the axial magnetization 1, i.e., u(t) € I, Yu € C;[0,T], vt € [0,T7;

Il. THE PREISACH OPERATOR AND ITSINVERSE

M (t) (see Mayergoyz [4]) o Cpm,1[0,T]: Cppn[0, T N C1[0,T7;
o C%7[0,T): space of Hlder continuous functions on
LIH](t) = M(2). @) 0,77, i.e.,Yu € COv[0,T], Vi1, t5 € [0,T],
The electro-motive force across the terminals of the inductor is lu(ts) — u(ty)]

sup ——————— <(Cy,

then proportional to the time-derivative &(t) = uo (H(t) + o<t to<T  |ta—t]

M(t)), where g is the permittivity of free-space. Therefore, for some constan€y.

it is desirable forH (¢) which is the solution to Equation (1) Other spaces such é§"’[0 7] are defined analogously to the

to be a differentiable function of time. Similar considerationg ,.~... . .
apply to other situations where one uses the Preisach opera?vcégnr:g?r?]gf;é [Or;eTa]vfirlgrEsi[gj T}. In this paper, the following

for example, piezoelectricity. Now, Rademacher's Theorem

states that a function that is Lipschitz on an open subset of [/ 0o = sup |u(t)|,Vu € C[0,T], and

R"™ is almost everywhere differentiable on that subset in the 0<t<T

sense of the Lebesgue measure [19], and so it is reasonable lu(ta) — u(ty)]
o : . - lullo. Jullc + sup — =,

to seek Lipschitz continuous functions as solutions to the 0<ty ia<T  |t2 —t1]”



for u € C|[0, T).

A. The Preisach Operator

A detailed treatment on the Preisach operator can be fo
in [4], [14], [13]. For a pair of threshold&8, «) with 5 < «,
consider a delayed relays [, -] (called a Preisachysteron),
as illustrated in Fig. 2. Fonn € C[0,T) and an initial
configuration¢ € {—1,1}, v = Ag,a[u, (] is defined as, for
t € 0,77,

-1 if u(t)<p
v(t) 2 { 1 if u(t)>a ,
v(tT) if B<ut) <a

wherev(0~) = ¢ and¢~ 2 lim t-e
€>0,e—0

+1

Fig. 2. lllustration of an elementary Preisach hysteron.

Define the Preisach plane?, 2 {(B,a) € R? : 3 < a},
where (8, ) € P, is identified with4g . Foru € C[0,T]
and a Borel measurable configuratignof all hysterons( :
Py — {—1,1}, the output of the Preisach operaiois defined
as

Plu, Go)() = /P 1(B, @)ip.alt. (B, )| (D) dBda, ()

for some Borel measurable functign called thePreisach
density function. It is assumed in this paper tpat- 0; u

u

plane. Using the transform: = 252 ands = *£2 onecan

describe the memory curve as a functiet)(r)) defined on
a compact regior0, r,,..]. The set ofadmissible memory
%lgvescan then be defined as [13]

Wy £ {9l6: Re = R[6(r) —6(r) < Ir—7l, Y720,

Roupp(9p) < +oo}, where

Roupp(®) 2 sup{r|r > 0,6(r) #0}.

The memory curve)_; att = 0 is called theinitial memory
curve and hereafter it will be put as the second argument of
the Preisach operator. Note that(0) equals the last input
value of". The Preisach density will be denotedas, -) in
the (r, s) coordinates. In this paper both coordinate systems,
(8,«) and (r, s), are used depending on whichever is more
convenient; similarly, both:(3, o) and w(r, s) will be used
for the Preisach density.

Let the input signal take values = [uin, Umaz)], that is,
u(t) € I, vt € [0,T]. Define the functiony(-) on [0, umaz —

um,in]

xi(@) £ inf{|Tlu, v 1 )(T) = T, 1[0 :
Y1 € Ug,u € Cpp[0, T, |u(T) — u(0)| = z}.

The functiony(-) is continuous and monotonically increasing
under our basic hypothesis qn It is easy to check that if
x(x) > 0 for all z > 0, thenT is PSI. LetJ be the smallest
interval that contains the output valueslofvhen the inputu
takes values if. It can be shown that if;(x) > 0, Vz > 0,
thenT'[-,4_1] : C[[0,T] — Cy[0,T] is invertible and the
inverse operator is also continuous [14], [13]. Furthermore,
Visintin [14] shows that if Vz € [0, umaz — Umin),

xi(z) > Ca, @)

for 0 < vy, e <1, then the inverse of |-, _4] mapsCf}"’2
into """ and it is weak-star continuous.

B. A Milder Condition for the Weak-Star Continuity of the
Inverse

The condition (4) is strong since it needs to hold for all

has a compact suppoR; and is an integrable function, that, < [0, Umaz — Umin]. It is hard to verify directly also, as

is u e LY(P).

For eacht € [0, 7], P can be divided into two regions:
P_(t) 2 {(B,a) € P| output of 45, att is— 1},
Pi(t) 2 {(B,a) € P| output ofys, att is+ 1},

so thatP = P_(t) UP,(¢). Eq. (2) can be rewritten as:

Tlu, Co)(t) = /P INZCREETS / $(B, a)dfda.

P_(t)
(3)
It can be easily shown [4], [13] that each Bf. and P, is a

it is posed in terms ofy;(z). In this subsection, a weaker
condition in terms of the Preisach density functiof, -) is
shown to lead to the weak-star continuity of the inverse.
Before proceeding, we sketch the construction of the weak-
star topology onC®¥[0,T], 0 < v < 1. A function f in
the spaceC?(R), 0 < v < 1, can be expanded using a
Faber-Schauder basis as described in Wojtaszczyk [21] (page
40). Thus we have a ma@ : C%”[0,7] — [ given
by ®(f) = {amn}. Its adjoint ®* maps elements ir’
that describe the weak-star topology &1 to the dual of
C%v[0,T]. These functional®*(z), z € I}, define the weak-

connected set, and that the output of the Preisach operattar topology ofC®¥[0,T]. In Section Ill, we will define a

is determined by the boundary betwe#h and P,. The

distance metric for the weak-star topology@t” [0, 7] based

boundary is also called theemory curve, since it provideson this construction. It is well known that this topology is

information about the state @f. Thus the initial state function

coarser than the norm topology a@if-¥[0,T] defined using

(o can instead be replaced by a memory curve in the Preisdgto . .



The following three lemmas will be used in proving theresults in Brokate and Sprekels [13], and Visintin [14] under
main result of this section. a common condition on the density function. These are the
Lemma 2.1:Let £ > 0,¢ > 0. If the Preisach density same conditions needed anfor our main result. It must be
w(r,s) > Cré, for someC > 0, for almost every(r,s) € noted that these conditions are slightly stronger than those
R = [0, €] X [Umin — € Umaz + €], thenx;(z) > Kz¢+2 for  of Proposition 2.4.11 and Corollary 2.11.21 of Brokate and

0 <z < 2e for someK > O Sprekels [13], and weaker than Theorem 3.9 of Visintin [14].
Proof. Let 7 = £. For z € | Theorem 2.1:Let I'[-,¢)_;] be a Preisach operator with
so+ *—r) domainl = [umin, Umaz), Wherew_; € ¥y. Assume that the
xr(z) = / / (r,8)dsdr density functionw(r, s) has compact support; is integrable; is
‘506 “mm’“mfn] (3-7) non-negative; andv(r,s) > Cr¢ for almost every(r,s) €
R. =10, €] X [Umin — €, Umaz + €], WwhereC >0, £ > 0, and
o E € ) mwn ) max )
2 2/0 (& —2r)Crdr e > 0. Then:
_ c 642 1) T[-,¢_1]: C1[0,T] — C,[0,T] is Lipschitz continuous;
(1+9)(2+¢&)2¢ ’ 2) T[,9_4]: CP7[0,T] — Cﬂ”’[O,T] is weak-star contin-
0 uous, wherd) < v < 1;
Lemma 2.2:(Visintin [14]) Let X, Y, S1, S» be metric 3 Ll+¢-1l = Ci[0,T] — Cy[0,T] is invertible, and
spaces such thaf;, c X and Sy C Y with continuous its inverse can be extended to a continuous operator

injections. Letf : X — Y be continuous and such that it T4 9pa] €50, T] — Cr[0, 7).

maps relatively compact subsets ¥ into relatively compact ~ Proof. By the conditions on the density, the Preisach oper-

subsets ofS, (with respect to the topologies «f;, and S;). atorI'[-,¢_4] : C;[0,T] — C;[0,T] is PSI and is Lipschitz

Thenf : S; — S, is continuous with respect to the topologiesontinuous (by Theorem 2.4.11 in Brokate and Sprekels [13]).

of S; and S,. They also show thaf’ maps norm-bounded sets@‘? [0,T]

Lemma23let0 =Ty < Th < -+ < Iy =T b to norm-bounded sets |ﬂ70"[0 T]. As these sets are com-

uniform partition of [0, 7] such thatA; = [T;-1,T;]; pact in the weak-star topology, Lemma 2.2 yields the weak-
, N, has lengths. Let f; € C°¥(A;), 0 <v <1, i = star continuity of. To show the last statement, note that
SN, with || fillo,, < K and f;(T;) = fit1(T3)- Then xz(z) > 0 by Lemma 2.1 forz € (0,2¢]. As x;(x) is a

the function obtained by concatenatign= )", f; Ia,, where continuous, increasing function afand soy;(z) > 0 for all

I, is the indicator function of\;, belongs inC%¥[0,7] and =z € (0,b — a), the proof of Theorem 2.11.20 in Brokate and

I fllo, <1+ N'"Y)K. Sprekels [13] applies herél
Proof. As || fillo,, < K, we have|f;(t)] < K and|f;(t) — Under the same conditions an as in the above theorem,
fi(t)] < K|t —t'|” for t,t' € A;. This implies|f(t)] < K, we would like to show the existence and continuity of the
Vt € [0,T]. Next, fort € Ay andt’ € Ay, inverse for the Preisach operator acting between spaces of
, Holder continuous functions. The following theorem is our
|£(8) = f(#)] main result
< @) = f(T))+ [f(Th) = f(T2)] Theorem 2.2:Assume that the Preisach density function
+o | f(Tvog = f(E)] w(r,s) has compact support; > 0, andw(r,s) > Cr for
< Kt—T" + -+ K|Tn_y —t'|". almost every(r, s) € R. = [0, €] X [Umin — €, Umaz + €], Where

. . _ C>0,£>0,e>0. Then for anyy_; € Wg, D71 4p_4] is

We wish to find a constant such that the sum + a5 + \yeak-star continuous from'%*2[0, 7] to €V [0, T}, where

—+a% < L(a+---+an)” whereaq,--- ,any > 0and0 < vy € (0,1] and vy = 2.

v < 1. Dividing by (a1 +---+ax)” one obtains the following Proof. Let y € Cff’:; [0, T] with ||ly|lo.., < K. By Theo-
. H v v . ) V2 — :

fu;cnon on the Ieft>he(1)nd S(;d@(pl’ _’pjlv)_l_hplr t+pN rem 2.1,T'[-,4»_4] is invertible and there exists € C;[0, T]

WNETeps, -« , PN an Z =1Pi IS UNCUON' 1S oy thatl'[u,¥_1] = y. We shall show that: belongs in

maximized byp; = ﬁ for all 7 and the maximum value is O [0, 7]
1 _ 1—v T _ 1—v I ’ .
N (§z) = N'7". Thus L = N'™ and Partition [0, 7] uniformly such that0 = T, < Ty --- <
If(t)— f)| < N'"VK |t -t T = T andT; — T;_; < 6 wherei = 1,---,N. The

choice ofé will be described shortly. Restrigtto the intervals
= [T;-1,T;); @« = 1,---,N, and obtain the functions
y, Similarly restrictingu to A; one obtainsu;. Define the

For ¢t andt’ in other intervalsA;, one can proceed S|m|IarIy
and arrive at the same inequality. Therefore,

|f(t) — f(¥) function:
Ilow = Wl sup  HEIZHD
/; L, ’ s A
osquv; |a,b]) = t) — t
< K{1+N"). q; [a, b]) Joax v(t) — min v(t),
O for v € C[0,7] anda, b] C [0, 7.

Before presenting our main theorembn', we summarize  Note that
the continuity properties of the operatdr under certain
conditions onw. The utility of this Theorem is that it combines xr(osc(uy; [t,t'])) < osc(y [t t']), V[t,t'] C A (5)



by Lemma 2.11.18 in [13]. Adly|lo,., < K, for ¢,t' € A;, by the definition ofU. SoT : (U,7) — (Cf}’”2 [0,T],7) is
continuous, by the definition of,. (J

! nz v
ly(t) —y(t)] < K Jt — ] < Ko™, ©) Thus the composition
and hence . O 0.0
Osqy; Az) < ‘K'éVz7 (7) I'oll : (CJ’ [O,T},Tg) — (Cj [O,T],Tl>
which by (5) implies is continuous, as; is finer thanr;. Note that we cannot infer a
o similar statement had we considered the composifiohoT.
xr(0sc(u; A)) < K8 (8)  Thus we are naturally led to the conceptright inversesof
From Lemma 2.1, Preisach operators and fortunately, that is what is needed in
applications.
xi(z) > Catt2  2€[0,2¢]. 9)
Now choose) > 0 small enough so that: I1l. REGULARIZATION
K62 < O (26)572, The objective of this section is to study approximate solution

. . . . methods for the operator equation:
This together with (8), (9), and the monotone increasing

property ofx;(-), implies Llu,y_1] =y, 13)

osqu;; A;)) < 2. where y € C[0,T]. Since the conditiony;(z) > 0 for

x > 0 guarantees the existence of a continuous inverse for
[, 4_1]: C[[0,T] — C;[0,T], theoretically there is no need
for any regularization if one is looking for just a continuous

Note that the choice of fixes the number of partitiond’.
Next, for¢,t' € A;; i =1--- N, Eq. (5) and (9) yield:

C lui(t) — g ()52 input function. However, for implementation of the inverse in
= ulosclw [66)) Ut Goncrated via miersion has certain regulary properies
< o inpu J via inversion h [ ularity ies,
< osdy; [t/’ty]) (by (5)) (10) for example, Lipschitz continuity. The two algorithms to be
< Kft=t”  (@s|ylow. < K), (11)  discussed later in this paper result in Lipschitz continuous

which leads to functionsu as approximate solutions to (13) fgre C[0,T7.
On the other hand, the proof of Theorem 2.2 shows that a
|ui(t) — u(t')] piecewise strictly increasing Preisach operator has an inverse
K\ &2 v K\ &2 . that maps generic functions i6:92[0,7] to functions in
< (C) |t —¢'|&2 = (C) t—=t]".(12) P10, T] with 4 < 1, which rules out the possibility of

getting a Lipschitz continuous in general. This raises the
Finally, using Lemma 2.3 one gethiljo,,, < K1 for some issue of how to evaluate an approximate inversion scheme in
Ky > 0. This implies thatl'~'[-,4»_;] maps norm-bounded terms of the convergence to the exact inverse. For this purpose,
sets inC"2[0, T to norm-bounded sets i6]""*[0,7]. As it is useful to define a norm on approximate inverses by the
these sets are compact in the respective weak-star topologigewing procedure.
of C%¥[0,T],i = 1,2, we apply Leng)rlrlla 2.2 td~" with As C%¥[0,T], 0 < v < 1, is isomorphic tal>, the weak-
X = Cy[0,T]; Y = C[0,T]; Sy = C;7[0,T]; and S2 = star topology onC%*[0, T] is defined by a countable family
Cyp"'[0, ], to obtain the weak-star continuity &f'. O of semi-norms. On the other hand?:[0, T is isomorphic
Let0 < 1 < 1y < 1. As C%*2[0,T] € C*"[0,T], the o L and so its weak-star topology is also defined by a
linear functionals orC%*1[0, T are also linear functionals on countable family of semi-norms [21]. Using these semi-norms,
C%2[0,T]. As aresult, the weak-star topology 6f2[0, 7]  one can define equivalent metrics 68[0,7], 0 < v < 1
(denoted byr,) is finer than the topology (denoted by) such that convergence in any of the metrics is equivalent to
inherited from the weak-star topology @®*1[0,T]. This convergence in the weak-star topology (Zimmer [23], page
implies that weak-star compact sets 6f-*2[0, 7] remain 14). Denote any one of the metrics so obtained 81 [0, T,
compact in the topology; [22]. Denote the weak-star topol-ywhere; = 1,2and0 < v; < vy < 1, by di(-,-). A key
ogy of C%"[0,T] by . observation is that these metrics &mr@nslation invariant that
Corollary 2.1: Suppose that" is a Preisach operator withjg di(z + ¢,y + ¢) = di(x,y) since they are defined using
a density function that satisfies the conditions of Theoreggmi-norms.
22. LetU = T'1CH™ ¢ 4] and 2 = ¢ +2. Then the  One would like to define an (induced) norm fbr! in
mapsT'—! : (CS’W [0,T],72) — (U,7), andT : (U,7) — studying the convergence of approximation schemes. Putting
the inverse operator and various approximate inverses in a
vector space would facilitate the use of tools available to vector
Proof. By Theorem 2.2]'~! : (C}"*(0,T],72) — (U,7) is spaces. This can be achieved by appropriately shifting the
continuous, as§/ C C?"’l [0, T']. To show the second statementjnput and the output of. To be specific, considering that the
observe that the map : (U, 1) — (03”’1 [0,T1],7) is continu- inputs must have the initial conditiom(0) = v _;(0) and the
ous by Theorem 2.1. But we must halle U — C%*2[0,7] outputs must have the same initial valug = T[u;_1](0),

(03’”2 [O,T],n) are continuous maps.



we define the setd = {v —¢_1(0)|v € I}, and J = This lemma shows that (18) is weaker than norm-

{w — 2o |w € J}, and the maps: convergence. SincE—! : C%*2[0, T] — C%*1[0,T] is weak-
_ o O star continuous, one would like the approximating family to
NI 0,7 — Cy [0, 7] (4)  have a similar property. The next lemma studies the weak-star
o — YL+ 1p_1(0),v_1](t) — 2o, continuity properties of the familyR.}.
T ] : c920,7] — €90, (15) Lemma 3.2:Let |I'~'||s be bounded andR.} be a reg-
G =T g+ 20,0-1] — ¥_1(0). ularization strategy fof". Then givene, > 0 and a bounded

set M, there exists are > 0 and § > 0 such that: if
By translation invariance af;, one hasi; (u; —v%_1(0),us— 0 < € < & 1,92 € M; and da(y1,%2) < 6, then
$-1(0)) = di(u1,u2), andda(y1 — 20, y2 — 20) = da(y1,y2).  d1(Re[ir, 1], Re[l2, ¥-1]) < €0
It can be verified thaf"~![-,+_;] belongs in the vector Proof. Let M = {7 | d2(y,0) < M}. Then giveney > 0,
spaceS (with field R) of mapsS : C%¥2[0,T] — C%"1[0,T] there existse > 0 such that for all0 < ¢ < & we have
that satisfyS[0,](t) = 61 V t € [0, T], whered; are the zero- di(Rc[y,v—1],T [, ¢—1]) < 2 for all § € M. Therefore,
functions inC%¥:[0,T]; i = 1,2. The zero elemen® on S for i1, j» € M,

is simply the element that maps gllc C°2[0,T] to #;. On
S, we can define the norm:

dq1(S[y1], S|y
[S]ls = sup M
Y1,¥2€C%v2[0,T)] d2(y1,y2)
Y172

(16)

IN

dl(Re[gla 77[)—1]7 RE[QQ, 7/1—1])
di(Re[gr, 1], T g, ¢-1])
+dy (T g1, 1], T g2, 1)
+d1(Re[y2, 1), T g2, 1))

Convergence of approximate inverse schemes can be discussed < 2 %0 +dy (T g1, 0 -1]), T g2, 1))
using this norm. €0 -1 o
Definition 3.1: Let I' be defined by (14). Aegularization < 2 3 + I s da(91, 92)
strategyfor T" is a family of operators < €, for dao(fh,92) <5,
Rel, 9] : C5[0,T] — C?m 0,71, e>0, whered > 0 is chosen a$ = 57— [
such that: This lemma shows that verifying the boundedn&ss' is
)V g e C;0,T), suff|C|e_nt tp ensure weak-star continuity-like properties of the
regularization strategy. It also shows that one should not try
lim Co R [y,v_1] = %; (17) to prove the weak-star continuity @®. for any fixede > 0,
0 but rather consider the familyR.} as a whole.
2)
lim (Relg, 1], T g, v—1]) =0, (18) IV. FIXED-POINT ITERATION-BASED APPROXIMATE
INVERSION

uniformly on bounded sets (If%” [0,T7.

In other words, one requires point-wise convergence;far
C'7]0,T) and weak-star convergence fpre C%”Q [0,T]. Ob-
viously, R. with domain restricted to functions i6*:*2[0, T']
is in S. The following elementary lemmas hold for the famil

Lemma 3.1:If |[R. — T'[s — 0, ase — 0, then
hn’(l) di(Rc[y,%—_1],T7[y,%_1]) = 0 uniformly on bounded

In this section, an approximate inversion algorithm is pro-
posed based on successive iteration. The point-wise conver-
gence condition for a regularization strategy (17) is proved
under the same conditions on the density function as in
Theorems 2.1 and 2.2. The second condition (18) is much
Ymore difficult to prove, and we will consider it in future
(e} research.

First consider the case that the desired output function
is monotone. LetC,,+ ;[0,7] denote the space of non-

sets ofCS-’”2 [0,T7. decreasing, continuous functions @ 7] taking values in
Proof. Consider the bounded sétt = {7 | d2(y,0) < M}. J, and CS@&AJ[O,T] denote those functions i@, + ;0,7
Now: that are Lipschitz continuous. We consider the equation

dl (RE [?]7 '(/)—1]7 f_l [:ga '(/)—1])

Ilu,v_1] = y wherey_, € ¥y andy € C,,+ 4[0,7] (and

_ y € Cy ;[0,T]) in Proposition 4.1. Analogous results are
< A (B =T7)[g,0-1],0) true if C,,,— (0, 77) and %1 ([0,7]) (the space of non-
(by the translation invariance af) increasing functions) are considered.
< ||Rc —T7Y|s da(7,0) (by the definition of|| - || s) Proposition 4.1: Assume that the Preisach density function
< M|R.—T7Ys. w(r, s) has compact support; is integrable; is non-negative;

andw(r,s) > Cr¢ for almost every(r,s) € R. = [0,¢] x
So given aney > 0, there exists arg > 0 such that: if0 < [umin — € Umaz + €], WhereC' > 0, £ > 0, ande > 0. Let ko
e < ethend; (R.[y,v_1], T g,%_1]) < € for all y € M. denote the Lipschitz constant fér. Let 1y_; € ¥, with the
O corresponding outpujy. Fory € C,,,+ 5[0, T] with y(0) = yo,



considerthe following algorithm:

Then:

1) For anyn > 0, u™ € C,+[0,7]; and if y €
Co S[0,T), u™ e € 1[0, T;

2) As n — oo, ul™ converges pointwise ta.* €
Cm+_’][0,T] with F[U*,¢_1] =1,

3) Fore > 0, let N, be the smallest integer satisfying >
k2 (Umaz —Uumin) Thep

€

) — () y—F[u(’f),wfl}’ n>0

O = 51 (0) k2 (29)

IT (N, 9p-1) =yl < &

4) Asn — oo, we haveu™ — v* uniformly on [0, T7.

Proof. 1. Under the hypothesis on the density function,
is clear from Theorem 2.1 that : C;[0,7] — C;[0,T] is
Lipschitz continuous. We will first show™ € C,,+ /0,77,
Vn. Then we will show thatu(™ is Lipschitz continuous
providedy € C%% [0, 7).

mt,J

The Lipschitz continuity of the operatdr[-,¢_;] implies:
Plu®, o] = P, 1] < ey (u®™ —u®7Y). (23)

Subtracting (22) from (21), and using (23), we gétt!) >
u™. Note thatu(™(t) > w1 (t) if and only if y(t) >
L[u™=1 +_1](t) by (19). For eacht € [0,7], as {u(™(t)}
is a monotone increasing sequence boundeduly., the
sequence™ (t) — u*(t) asn — oo. Hence{u(™} converges
pointwise to someu*. By the continuity of T'[-,¢_4], the
sequenceT'[u™ ¢_1]} — Tu*,_1]. By (19), u* = u* +
%’;w*l] which implies T'[u*,4¥_1] = y. Now we have
u* € Cr[0,T] due to the condition on the density function
and Item 3 of Theorem 2.1, ana* € C,,+ ;0,7 because
eachu(™ is monotone and the set,,+ ;[0,7] is a closed
subspace o0, T7.

it 3. If for somet € [0, T, |y(t) — T[ul™, +_1](t)| > ¢, then
u () — u™ (1) > £ Since[y(t) — Tu™,4](t)] is
non-increasing withe, and «(™ () — +_,(0) is bounded by
Umaz — Umin, ONE concludes that aftéy. iterations,|y(t) —
Clu™ ¢_1](t)| < € for everyt.

Clearly u(™ e C;[0,T], Vn. We use induction to show 4. By Lemma 2.1 and the assumption ofr, s), we have
u™ € C,,+ ;0,T]. Sinceu® is a constant function, it is xr(x) > Ka**? for 0 < z < 2¢, for someK > 0. Hence

non-decreasing. Now suppose that for some> 0, u(") is
non-decreasing. This, together with the Lipschitz continuity
of T, implies, for0 < t; <ty <T,

D™ 1) (t2) —T[u™, _1](t1) < ko (u™ (t2) —u™ (t1)).
(20)
Using (19), we have
u(n+1)(t2) _ u(”+1)(t1)

M + w(™ (tQ) — ™ (t1)

ko
Tut™, ¢ 4](ts) — Tlu™, 9] (t)
ko
> UL oy (oo
> 0, (sinceye C,,+ 4[0,T])

and therefore.("*1) is non-decreasing.

Next we show thaw(™ is Lipschitz continuous for every
n, if y € C'} [0, 7], again by induction. Note that(®) is
Lipschitz continuous andl : C}>'[0, 7] — C'[0,T] by The-
orem 2.1. Henc&'[u(?),+_,] is Lipschitz continuous, and by
(19) vV is Lipschitz continuous. Furthermore, if we assume
u(™ to be Lipschitz continuous, the same arguments imply
that »(**1 is Lipschitz continuous. Thus(™ is Lipschitz
continuous for every:, by induction.

2. Consider the sequencéu(™}. As y > 1y
Tu®,¢_1](t), we haveu™ > 4 In the preceding, the
inequality f > ¢ is said to be true, if and only if (¢t) > g(t)
for all ¢ € [0,7]. Supposeu™ > u("~1 for somen > 1.

ly(t) = Pl pa](0)] = K [ut™ () —u* ()52 (24)

From item 3 abovelly — T[u(™,_1]|lcc — 0 asn — oo.

Eq. (24) then implies the uniform convergence {af™} to
u*

.0
Based on Proposition 4.1, the following algorithm (see

illustration in Fig. 3) can be used to generate an approxi-
mate inverseu, ¢ C}''[0,T] for y € C,([0,T]) such that
[IT[ue, ¥-1] = ylloo < e.

Fixed Point Algorithm:
Step 1. Picky’ € ¢!

pm,J

[0,T] such that|ly’ — ylleo <

e 5, andthe variation in each monotone section of

y' is at leaste’.

Let0=Ty<Ti <T3<---<Ton_1 <T2N+1:Tbe
the standard partition foy’. We will shortly define the
timeSTQ, Ty, -+, Ton.

Step 2. On[Ty, T1], run the algorithm (19) (at mosV..

times) until ||y’ — T[u(™,1_1]||o < €. Set

u(t) =u™(t) for te [Ty, T

Step 3. Letly > T3 be the smallest time instant such that
Yy (Ta) = T[ue, v—_1](Th). Tz is well defined considering
Step 1. Setu(t) = u(Ty) on (11, 1»);

Step 4. Run (19)N. times on [Ty, T3] with u(®) =
ue(T1), which definesu. on [T5, T3];

« Step 5. Continue Steps 3 and 4 until is defined up to
the final timeT'.

As in Section Ill, fort € [0, 7], define

From (19), Gt) 2 y(t) —y(0) and ac(t) 2 uc(t) —u(0). (25)
_ (n) .
Wt = Y Fﬁ;@ ﬂﬂfl]? (21) Define:
Tl Rl _1]: C500,T] — C¥'[0,T]
n _ n—1 Yy F[’U,( 1)7/‘#71] J I
u( ) = u( ) + ky . (22) 7y Ue, (26)



whereu, is the result of the Fixed Point algorithm. Lgt = of L}0,T]. Since||t. — @*|s — 0 ase — 0, we have:
['[ue, 1] and T'[-,9p_1], D71, +)_1] be defined as in (14)

T
and (15). <TG —T¢> = / (ac(t) — @ (1)) o (t) dt
< -l 16l
— 0 ase—0. (29)

U

The above result falls slightly short of showing thgt is a
regularization scheme. In order to sh@y is a regularization
scheme, (29) must hold for alh € CO” [0, T]. This is a
guestion that needs to be further |nvest|gated in the future.

V. DISCRETIZATION-BASED APPROXIMATE INVERSION

In this section a discretization-based approximate inver-
sion scheme is discussed. The discretization results in a
discretized Preisach operator, an approximate inverse of which
can be efficiently constructed by the so callddsest-match

One can establish the following regularization-type propesigorithm. Experimental results on trajectory tracking of a
ties for the scheme®, : magnetostrictive actuator based on this algorithm will also be

Theorem 4.1:Assume that the density function of thepresented.

Preisach operatdr satisfies the conditions of Proposition 4.1.

Fig. 3. lllustration of the fixed-point iteration-based inverse algorithm.

Let e > 0. Then: A. The Closest-Match Algorithm
1) V g € Cy0,T], There are two discretization steps involved, discretization of
~ the input rangd = [wmin, Umaz] @nd discretization of the time
gli% ToR[y,v_1] = 7; (27) interval [0, T]. Discretize[umin, Umaz] Uniformly into L + 1
levels and denote the resulting set of discrete input values as
2) andV¥ ¢ € L[0,T], Up ={a;,i=1,---,L+ 1}, where
hH(l) <R [ '(/) 1] - F_l[?;l/)—l]) ¢> 07 (28) Ui = tmin + (l B 1)Au’
- andA, = #mezzumin - As g consequence of input discretiza-
uniformly for 4 on bounded sets @%1[0771]_ tion, the Preisach plane is discretized into cells.

When restricted to inputs taking valuesih,, the Preisach
erator becomes a weighted combination of a finite number
of hysterons, where the weight of each hysteron equals the
integral of the original Preisach density function over the
orrespondlng grid (see Fig. 4 for illustration). Denote this
iscretized Preisach operator Bg and its set of memory
curves as¥ ;. Note that an element o, consists ofL
vertical or horizontal segments, each with lendth.

7 = Flloo = l1ve = Ylloo < Mve =¥ lloo + Iy — ¥'lloc <€ a

Proof. Given 5 € C;[0,7], choosey’ € C,,, ;[0,T]
according to Step 1. By Proposition 4.1, on the t|me |nterva
[Ton, Ton+1]) Wheren = 0,--- N, we have:|g.(t) — 7/(
lye(t) —y'(t)| < € = 5. Onthe time intervals{TQWH,TgnJrg]
wheren =0,--- N — 1 ue IS sSimply a constant, and by Step 3 d
of the Fixed Pomt aIgonthni:yE( V=7 ()] = |y () —y' ()] <
€. Thus: |Je — ¥'|lco = l|¥e — ¥ || 0o g ¢’, and then:

Hence the schemgR, } satisfies the first condition (17) for a
regularization strategy.

Next, lety < C9'[0,7], and 7 be given by (25). Let
Iyllo.s < M. Picky’ € Cb: ;[0,T] such thatly—y/|o.1 < 6. 0° |0 0 0O 8

Then ||y |lox < ||/ 01 + lylloa < M + 6. The finest . I

partition needed for all such functiogsé is one with intervals , 02

of length ;7. Thereforethe upper bound on the number '

of iterations needed for convergence (to withiiin the sup- e Uy

norm) is WHUTNs Thuswe have uniform convergence on

bounded sets ||G0 1 [0 T] Fig. 4. lllustration of the discretization schemg & 4), where weighting
By Theorem 2 21 . CS 1[0 C})yy[o’ 7] where masses are located at the centers of cells.

v = g5 This implies thatu* = I [71/)—1] belongs in  Discretization of time is performed similarly. Give¥i > 1,

C?"[0,T], even thoughu, € C? 0,7]. As C?"[0,T] C the time interval[0,T] is uniformly divided into N sub-

L°[0,T], we haveL1[0,T] C CO 0,77, whereco” ,[0,7] intervals with consecutlve end -points denoted fas} .,
denotes the weak-star dual 6‘? 0,T]. Let ¢ be an eIement wheret; = jA; with At



©

Let DY denotethe set of sequences of length+ 1 taking  « Step 3. If[y™) —g| < [y~ — g, letu# = u(™ # =
values inJ, i.e.,Vs € DY, s[j] € J, for j =0,1,--- | N. For (™, go to Step 4; otherwise# = (=1 y# = ¢
the discretized Preisach operatgr, an approximate inversion [restore the memory curve], go to Step 4;
problem can be formulated as follows: giveén; € ¥ and o Step 4. Exit.

sy € DY, find s}, € Dfj, (set of sequences taking values in |¢s not hard to see the above algorithm yield in at most
Uyr), such that L iterations.

280 ¥-1] = syllec = min [Tr(su, ¥-1) =8y [loc- (30)
EM UL

B. Approximate Inversion Based on the Closest-Match Algo-
Sincel';, : Df), — DY is not “onto”, only an approximate rithm
inverses is sought in (30). . . o
Dynamic programming can be used to solve the problemAn algorithm to z?lpprommately SOV&(u,y—1] = y i
X proposed as follows: pickV > 1, L > 1.
(30) [24]. However, asV and L get large, this approach be- ~
comes prohibitive in terms of computational and storage costs® Stép 1. Construcy, € ¥y, from ¢, € ¥, based

A sub-optimal scheme is tsequentiallygenerate an input on the input discretization rule§ (i.e., approximating the
sequence,, of length N so that at timej, [T'[s., ¥_1][j] — givend_, € ¥, by an element inb'.); _
s,1]| is minimized. This decomposes the original (approxi- * Step 2. Fory € C,([0,7]), constructs, € D} via
mate) inverse problem of length + 1 into NV + 1 successive sylg] = y(GA);
problems of length 1. To be precise, at each time instant, givers Step 3. Obtairs, € D}, by applying the Closest-Match
the current memory curve/(?) (from which the current input algorithm described aboveo;l
u© and outpuy/®) can be derived) and a desired output value * Step 4. Constructy, . € C77[0,T] using linear splines
9, find u# € Uy, such that based ors,, i.e.,

IPofw?, 9@ =3 = min [P, @] =gl (31) un () = 7suli] + (1= m)suli + 1],
Also the resulting memory curveé# should be returned for ift=0G+7)A,j=0,--,N—-1and0 <7 <1.
use at the next time instant. Analogous to (25) and (26), denotey 1, (t) = un,.(t) —

The following algorithm can be used to efficiently solve:y 1,(0), 5(t) = y(¢) — y(0), and define
the problem (31) (see Figure 5 for an illustration). As the o1
fixed-point algorithm, it is also based on the piecewise strictly Ry.plv-1]: C5[0,T] — C7[0,T]
increasing property of the Preisach operator, and it fully g — UN,L- (32)

utilizes the discrete structure of the problem. Consider the case | .
y(© < g (the other case(® > § is dealt with analogously). Similar to Proposition 4.1, foy € C,,+ ;[0,7T], we have the

Intuitively, in this algorithm we keep increasing the input b IIowing convergence results for the closest-match algorithm-
one level in each iteration, until either a) the input reach®@Sed inversion scheme:

the maximumay.,, or b) y(™ exceedsj. For case a), take _ Proposition 5.1:Assume that the density function of the
w# = dp4q; for case b), takeu# to be u™ or w1 Preisach operatdr satisfies the conditions of Proposition 4.1.

whichever yields smaller output error. In both case#, so Letk2 denote the Lipschitz constant fbr Then for anyy; &

obtained solves (31). Vo, y € Cmy g[0,T],
1) ForanyN,L > 1, un € Cg;i 10, 77;
(97 B ;//(”) a :,B y ;y(':; 2) As L, N — o0,
W I I, %1) = ylloo = 0, (33)
Q y Ly
4 3) AsN,L — oo, we haveuy,;, — u* uniformly on|0, 77,

T A — wherew* =TIy, ¢_4], andu* € C,,+ 1[0, T7].

' Proof. 1. As uy 1, is constructed using linear splines, it
is clear thatuy € CY'[0,T]. As y is monotone non-
decreasingy .1, is also monotone and non-decreasing by the
non-negativity condition on the density function.

2. Note that by the construction &f;, it is also Lipschitz
continuous with the same Lipschitz constantfor I'. Hence
if the input at any instant is increased (or decreased) Ly,
the output ofl";, at timet is increased (or decreased) by no
more thanks A,. From the Closest-Match algorithm,

Input trajectory Memory curve Output trajectory

Fig. 5. lllustration of the convergence of the Closest-Match Algorithm.

Closest-Match Algorithm.

o Step 0. Set n=0.

o Step 1. Iful™ = a7, letu# = u™ ¢# =) go to
Step 4; otherwise, ("™ = u(™ + A, ) = (M [backup
the memory curvelp = n + 1, go to Step 2;

« Step 2. Evaluatg(™ = I'[u(™), (=1, and (at the same
time) update the memory curve (™). Comparey("™)
with ¢: if y™) = g, let u# = u(™ # = (™ go to wheres, = T'L[s,,®_1]. By the construction ofp_y, it is
Step 4; ify™) < §, go to Step 1; otherwise go to Step 3within the A,-neighborhood of)_, (see Visintin[14], page

‘gy[.ﬂ _Sy[]” < k2 Auv .7: 01 7N7 (34)
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113, for the definition of neighborhood of a memory curve)C. Experimental Results on Tracking Control

and hence by the Lipschitz continuity of The above inversion algorithm is applied to tracking control

IT[un,z,¥-1] = Tlun,n, Y-1]lloc < k2Ay. (35) of a magnetostrictive actuator (made of Terfenol-D). Mag-

. netostriction is the phenomenon of strong coupling between
Noélnggﬂ[f"’,ui‘a][]] :]5[“N7L’w‘ﬂ(tj)' we get from (34) magnetic properties and mechanical properties of some fer-
and (35), forj = 0,---, NV, romagnetic materials: strains are generated in response to an

ITluwn,r, ¥—1](t;) — syli]l applied magnetic field, while conversely, mechanical stresses
< |Tun .1t UN L, in the materials produce measurable changes in magnetization.
< | [FN’L v ~1]( 7) = Tlun.c dj 1) By varying the current in the coil surrounding the Terfenol-D

HIun,z, ¥-1](t;) — sy [l rod, one can vary the magnetic field inside the rod and thus
= |Tluwn,p. ¥-1](t;) — Tlun,0, ¥-1](t;)| + |3,[5] — syls]l control the displacement output of the actuator. The actuator
< koA + ko Ay = 2k Ay, used in this study is an AA-050H series Terfenol-D actuator

manufactured by Etrema. The displacement of the actuator is
measured with a LVDT sensor (Schaevitz 025MHR). Fig. 6
shows the hysteretic relationship between the current input and
the displacement output.

Since both y and T'[un,,®_1] are monotone, non-
decreasing ont;,t;+1], for t € [t;,¢;41]; 5 = 0,--- , N, if
Tun.r,¥-1](t) <y(t), one has

IClun,, ¥-1](t) —y(®)| < |Tlun,z, Y-1](t;) — y(tj+1)]

< Tun,zs -1l(t5) — y(@E)| + ly(t;) — y(tj41)] ®°
< 2k Ay + py(Ay), (36) sol-
where p, (-) is the continuity modulus of. Same inequality =
can be obtained iF{uy, 1., ¥—1](t) > y(t). Therefore, for each = aof
t: 5
Jlim [Pl v-a)(0) = y(6)] = 0. é
As y € C;[0,T], y is uniformly continuous orf0, T]. Thus a .l
the right hand side of (36) is independenttofTherefore,
IT[un,L, 1] = Ylloo < 2k Ay + py(As).  (37) 10f
Eq. (33) follows, sincep,(A¢)) — 0 asA; — 0. ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
3. Letu* = I'Yy,v_4]. Thenwu* € C[[0,T] asT~! : %8 06 04 w2 o o0z o4 06 08 1

C;[0,T] — C[0,T]. The functionu* is also monotone, by Current inpt (4)

the non-negativity condition on the density function and b¥_ _ _
ig. 6. A typical hysteresis curve of the Terfenol-D actuator.

Yy e C’m+,.][07 T]
From Item 3 of Theorem 2.1, : C;[0,7] — C1[0,T] is

continuous, and hence we get from (33) that;, r, —u* || — When the input current is quasi-static, the hysteretic behav-

0asN.L — oo. [ ior of the magnetostrictive actuator can be modeled as [17]:
Again letT'[-,4_1] andT'~1[-,+_,] be defined by (14) and H=col
(15),_ aodgj defined by (25). Tho f_oIIowing theorem shows a M =T[H, 1] | (40)
continuity property of Ra, A, Similar to that for the Fixed — lrod)s ) p2
w Bt < M2

Point iteration method.
Theorem 5.1:Assume that the density function of thewhere H and M arethe magnetic field and the bulk magne-
Preisach operatdr satisfies the conditions of Proposition 4.1tization along the rod direction, respectivelyjs the current

Then: input, z is the displacement outputy is the coil factor/,..q is
1) Vg e Cy0,T), the rod length )\, is the saturation magnetostriction, amf] is
. the saturation magnetization. In (40) the magnetostrictive hys-
NILHEOO LoRa,a0,01] = ¥ (38)  teresis is essentially captured by the ferromagnetic hysteresis
2) Vo € L0, T, ?etweenM and H, which is modeled by the Preisach operator
th <Ra,.a,00,%-1] — Ty, _1],¢>=0, (39) For a discretization level of., the weighting masses for
b= I'y can be identified through a constrained least squares
uniformly for § on bounded sets dfg—’l[O,T]. algorithm [7], [25]. HereL has been chosen to be 25, and

Proof. The first item follows by simply repeating the proofA; = % = 10ms. Figure 7 shows the identified density

of Proposition 5.1. Other than the monotonicity.sf (defined function. As can be observed, the density function is non-zero
to beT~1[y,_1]), the rest of the proof applies to this casealong thes = « line, which is the same as the line= 0 in
The proof of the second statement is exactly analogous (to s) coordinates (recall that the variables, 3) and(r, s) are

that of Theorem 4.1, and utilizes the convergence injtHe, related according to = =2 ands = #). Therefore, the

2
norm of the functionsiy , to a*. O key condition of Theorem 2.2 and Proposition 4.1 is satisfied,
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andboth Theorems 4.1 and 5.1 can be applied to this actuat@mve some regularity properties. We first presented a weak
to find an approximate right-inverse. and easily verifiable condition that guarantees the weak-star
continuity of the inverse operator. Motivated by this result,
the notion of a regularization strategy was proposed for the
inversion problem.

In practice, exact inversion of the Preisach operator is
generally not possible due to numerical limitations. Two
inversion schemes were developed in this paper, both of which
fully utilized the piecewise strictly increasing property of
the Preisach operator (under some mild conditions on the

Fig. 7. The identified Preisach density function for a commercial magne-
tostrictive actuator.

density function). Both algorithms yield Lipschitz continuous
inputs. They were shown to satisfy the first condition for a
regularization strategy. Both schemes also enjoy a continuity
property that is similar to but weaker than that of a regu-
larization strategy. An interesting direction for future work
is to investigate whether the two schemes satisfy the second
condition (Eq. (18)) for a regularization strategy.
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is small (under 3um), which shows the inversion algorithm
is effective. An extension of this approach to the closed-loop
I* control of the magnetostrictive actuator oved a 200 Hz

range can be found in Tan and Baras [26]. (1]

[2]
VI. CONCLUSION
The Preisach operator is a popular tool for hysteresis
modeling in various smart materials. Inversion of the Preisach
operator plays a fundamental role in effective control of thesE!
materials. This paper dealt with approximately inverting the
Preisach operator, in such a way that the resulting functions
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Fig. 8.  Trajectory tracking of a magnetostrictive actuator based on the
approximate inversion.
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