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Abstract— Hysteresis poses a challenge for control of smart
actuators. A fundamental approach to hysteresis control is inverse
compensation. For practical implementation, it is desirable for
the input function generated via inversion to have regularity
properties stronger than continuity. In this paper we consider
the problem of constructing right inverses for the Preisach model
for hysteresis. Under mild conditions on the density function,
we show the existence and weak-star continuity of the right-
inverse, when the Preisach operator is considered to act on
Hölder continuous functions. Next, we introduce the concept of
regularization to study the properties of approximate inverse
schemes for the Preisach operator. Then, we present the Fixed
Point and Closest-Match algorithms for approximately inverting
the Preisach operator. The convergence and continuity properties
of these two numerical schemes are studied. Finally, we present
the results of an open-loop trajectory tracking experiment for a
magnetostrictive actuator.

Index Terms— Hysteresis, Approximate inversion, Regular-
ization, Smart actuators, Preisach operator, Magnetostriction,
Piezoelectricity, Shape memory alloys, Electro-active polymers,
Fixed Point iteration algorithm, Closest-Match algorithm.

I. I NTRODUCTION

SMART materials, e.g., magnetostrictives, piezoceramics,
and shape memory alloys (SMAs), exhibit strong coupling

between applied electromagnetic/thermal fields and strains that
can be exploited for actuation and sensing. Hysteresis in smart
materials, however, poses a significant challenge in smart
material actuators (also calledsmart actuators). Models for
hysteresis in smart materials can be classified into those that
are physics-based and those that are phenomenology-based.
Physics-based models use principles of thermodynamics to
obtain constitutive relationships between conjugate variables.
Such examples include the Jiles-Atherton model [1] and the
ferromagnetic hysteresis model [2], [3], where hysteresis is
considered to arise from pinning of domain walls on defect
sites. The most popular hysteresis model used for magnetic
materials has been the Preisach operator [4], and it has been
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used lately to model the hysteresis phenomenon in piezo-
electric [5], magnetostrictive materials [6], [7], shape-memory
alloys [8], [9] and electro-active polymers [7]. The Preisach
operator is a model of the phenomenological type. Although
in general, the Preisach operator does not provide physical
insight into the problem, it is capable of producing behaviors
similar to those of physical systems [4]. It is of great interest
to the smart structures and controls community because of its
utility in developing low order models that can be used for
designing real-time controllers.

A fundamental idea in coping with hysteresis is inverse
compensation (see, e.g., [5], [10], [11], [12]), as illustrated
in Fig. 1. If one can construct an approximate right inverse
Ŵ−1 of the hysteresis operatorW , then the outputy of W
will approximately equal the reference trajectoryyref .
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Fig. 1. Illustration of inverse compensation.

This paper deals with approximate inversion of the Preisach
operatorΓ, where u is required to be a Ḧolder continuous
function. It contains five contributions: a) the proof of weak-
star continuity of the inverse acting on the space of Hölder
continuous functions, under a mild and easily verifiable con-
dition on the Preisach density function; b) the formulation of
regularization for the inversion problem; c) the development
of a Fixed Point iteration algorithm and its convergence
analysis; d) the development of theClosest-Matchalgorithm
and its convergence analysis; and e) Experimental validation
of theClosest-Matchalgorithm. These contributions are briefly
discussed next.

Brokate and Sprekels [13] prove the existence and continu-
ity of the inverse of the Preisach operator when the domain is
the space of continuous functions, under very mild conditions
on the density function. Visintin [14] proves a theorem on
the weak-star continuity of the inverse, when the domain is
the space of Ḧolder continuous functions, under very strong
sufficient conditions on the density function that are not easily
verifiable. Figure 7 shows an identified (in a non-parametric
manner) density function for a magnetostrictive actuator [7].
The density function has a value zero on a large area of
the Preisach domain and this implies that Visintin’s condition
will not be satisfied for this actuator. We need a theorem
for the weak-star continuity of the inverse operator acting on
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spacesof Hölder continuous functions that only depends on
the density conditions close to the diagonal on the Preisach
plane. Such a theorem would be in the same spirit as Corollary
2.11.21 of Brokate and Sprekels [13] for the continuity of the
inverse operator acting on the space of continuous functions.
We present a theorem in Section II that concludes the results
of Visintin’s theorem under mild conditions on the density
function (these conditions are still stronger than Brokate and
Sprekels’ conditions, as expected). The utility of this theorem
to control engineers is that the conditions can be easily
verified.

In our earlier work [15], we showed that the approximate
inverse to anincrementally strictly increasing(ISI) Preisach
operator can be computed numerically. Foru1, u2 ∈ C[0, T ],
consider the orderingu1 ≥ u2 if and only if u1(t) ≥ u2(t)
for all t ∈ [0, T ]. Then the Preisach operator is said to
be incrementally strictly increasing [16] (ISI) if there exist
constantsk1, k2 > 0 such thatk1 (u1 − u2) ≤ Γ[u1] −
Γ[u2] ≤ k2 (u1 − u2). This definition is different from the
piecewise strictly increasingoperator (PSI) defined by Brokate
and Sprekels. A Preisach operator is said to be piecewise
strictly increasing if(Γ[u](T ) − Γ[u](0))(u(T ) − u(0)) ≥ 0
for a monotone inputu ∈ C[0, T ]. Under the mild condition
that the density function is integrable and non-zero almost
everywhere on a strip of positive width along the diagonal on
the Preisach plane, it is easy to show that the corresponding
Preisach operator is PSI. The ISI condition requires very
stringent conditions on the density function. For example, if
the density function took a constant positive value on the
set αmin ≤ β ≤ α ≤ αmax in the Preisach plane, then it
is ISI. We have shown in earlier work [15], [17], that the
Fixed Point iteration:un+1 = un + 1

k2
(y − Γ(un)) converges

to a functionu∗ that satisfiesΓ[u∗] = y via a contraction.
Leang and Devasia [18] apply this result to the positioning of
piezoelectric actuators. In this paper, under the (significantly)
milder condition of PSI Preisach operators, we show the
convergence of the same scheme without using a contraction
argument.

We are led to the space of Lipschitz continuous functions
as we would like the solution of the inverse problem, to have
regularity properties stronger than just continuity. For example,
in the case of inductors or transformers with a ferromagnetic
core, the Preisach operator is usually considered to map the
axial magnetic fieldH(t) function to the axial magnetization
M(t) (see Mayergoyz [4])

Γ[H](t) = M(t). (1)

The electro-motive force across the terminals of the inductor is
then proportional to the time-derivative ofB(t) = µ0 (H(t)+
M(t)), whereµ0 is the permittivity of free-space. Therefore,
it is desirable forH(t) which is the solution to Equation (1)
to be a differentiable function of time. Similar considerations
apply to other situations where one uses the Preisach operator,
for example, piezoelectricity. Now, Rademacher’s Theorem
states that a function that is Lipschitz on an open subset of
IRn is almost everywhere differentiable on that subset in the
sense of the Lebesgue measure [19], and so it is reasonable
to seek Lipschitz continuous functions as solutions to the

inverse problem. Consideration of Lipschitz functions is also
motivated by constraints on implementation of control signals
often encountered in practice.

Our theorem (see Theorem 2.2) shows that the inverse maps
generic functions in the space of Hölder continuous functions
on [0, T ] denoted byC0,ν2 [0, T ] to the spaceC0,ν1 [0, T ] where
ν1
ν2
≤ 1

2 . This result implies that in general, even if the desired
output function is differentiable, the input function need not
be a Lipschitz continuous function. For engineering reasons,
if one wishes to obtain a Lipschitz continuous function as
the (approximate) inverse of a Hölder continuous function, an
operation calledmollification [20] has to be carried out. The
natural question that arises then is the following: if the desired
output function is changed by a small amount either due to
noise or by design, then how “close” is the resulting mollified
solution to the original mollified solution (and in what sense)?
This is a question of enormous engineering importance, and
to discuss it, we develop the notion ofregularization for
solving the inversion problem in Section III. Two approxi-
mate inversion algorithms for the Preisach operator are then
developed. Both algorithms use the PSI property of a Preisach
operator. In Section IV, we present the Fixed Point algorithm
to approximately invert the Preisach operator, and study its
convergence and continuity properties under the PSI condition.
Next, the Closest-Match Algorithm is developed and analyzed
in Section V. The latter algorithm is applied to tracking control
of a magnetostrictive actuator, and experimental results are
reported to demonstrate its efficacy.

II. T HE PREISACH OPERATOR AND ITSINVERSE

To fix the notation and the problem setup, the Preisach
operator Γ and some known results are reviewed first in
Subsection II-A. Subsection II-B then studies the weak-star
continuity ofΓ−1 in the space of Ḧolder continuous functions
under the weak condition. LetI be a closed interval,ν ∈ (0, 1],
and T > 0. The following notation will be used to denote
different function spaces:
• C[0, T ]: space of continuous functions on[0, T ];
• Cm[0, T ]: space of monotone, continuous functions on

[0, T ];
• Cpm[0, T ]: space of piecewise monotone, continuous

functions on[0, T ];
• CI [0, T ]: space of continuous functions taking values in

I, i.e., u(t) ∈ I, ∀u ∈ CI [0, T ], ∀t ∈ [0, T ];
• Cpm,I [0, T ]: Cpm[0, T ] ∩ CI [0, T ];
• C0,ν [0, T ]: space of Ḧolder continuous functions on

[0, T ], i.e., ∀u ∈ C0,ν [0, T ], ∀t1, t2 ∈ [0, T ],

sup
0≤t1,t2≤T

|u(t2)− u(t1)|
|t2 − t1|ν ≤ C0,

for some constantC0.
Other spaces such asC0,ν

I [0, T ] are defined analogously to the
definition ofCI [0, T ] from C[0, T ]. In this paper, the following
two norms are heavily used:

‖u‖∞ 4
= sup

0≤t≤T
|u(t)|, ∀u ∈ C[0, T ], and

‖u‖0,ν
4
= ‖u‖∞ + sup

0≤t1,t2≤T

|u(t2)− u(t1)|
|t2 − t1|ν ,
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for u ∈ C0,ν [0, T ].

A. The Preisach Operator

A detailed treatment on the Preisach operator can be found
in [4], [14], [13]. For a pair of thresholds(β, α) with β ≤ α,
consider a delayed relaŷγβ,α[·, ·] (called a Preisachhysteron),
as illustrated in Fig. 2. Foru ∈ C[0, T ) and an initial
configurationζ ∈ {−1, 1}, v = γ̂β,α[u, ζ] is defined as, for
t ∈ [0, T ],

v(t)
4
=




−1 if u(t) < β
1 if u(t) > α
v(t−) if β ≤ u(t) ≤ α

,

wherev(0−) = ζ and t−
4
= lim

ε>0,ε→0
t− ε.

αβ

+1

−1

u

v

Fig. 2. Illustration of an elementary Preisach hysteron.

Define the Preisach planeP0
4
= {(β, α) ∈ R2 : β ≤ α},

where (β, α) ∈ P0 is identified with γ̂β,α. For u ∈ C[0, T ]
and a Borel measurable configurationζ0 of all hysterons,ζ0 :
P0 → {−1, 1}, the output of the Preisach operatorΓ is defined
as

Γ[u, ζ0](t) =
∫

P0

µ(β, α)γ̂β,α[u, ζ0(β, α)](t)dβdα, (2)

for some Borel measurable functionµ, called thePreisach
density function. It is assumed in this paper thatµ ≥ 0; µ
has a compact supportP; and is an integrable function, that
is µ ∈ L1(P).

For eacht ∈ [0, T ], P can be divided into two regions:

P−(t)
4
= {(β, α) ∈ P| output of γ̂β,α at t is− 1},

P+(t)
4
= {(β, α) ∈ P| output ofγ̂β,α at t is + 1},

so thatP = P−(t) ∪ P+(t). Eq. (2) can be rewritten as:

Γ[u, ζ0](t) =
∫

P+(t)

µ(β, α)dβdα−
∫

P−(t)

µ(β, α)dβdα.

(3)
It can be easily shown [4], [13] that each ofP− andP+ is a
connected set, and that the output of the Preisach operator
is determined by the boundary betweenP− and P+. The
boundary is also called thememory curve, since it provides
information about the state ofΓ. Thus the initial state function
ζ0 can instead be replaced by a memory curve in the Preisach

plane. Using the transform:r = α−β
2 and s = α+β

2 one can
describe the memory curve as a function(r, ψ(r)) defined on
a compact region[0, rmax]. The set ofadmissible memory
curvescan then be defined as [13]

Ψ0
4
= {φ|φ : IR+ → IR, |φ(r)− φ(r̄)| ≤ |r − r̄|, ∀r, r̄ ≥ 0,

Rsupp(φ) < +∞}, where

Rsupp(φ)
4
= sup{r|r ≥ 0, φ(r) 6= 0}.

The memory curveψ−1 at t = 0 is called theinitial memory
curve and hereafter it will be put as the second argument of
the Preisach operator. Note thatψ−1(0) equals the last input
value ofΓ. The Preisach density will be denoted asω(·, ·) in
the (r, s) coordinates. In this paper both coordinate systems,
(β, α) and (r, s), are used depending on whichever is more
convenient; similarly, bothµ(β, α) and ω(r, s) will be used
for the Preisach density.

Let the input signal take values inI = [umin, umax], that is,
u(t) ∈ I, ∀t ∈ [0, T ]. Define the functionχ(·) on [0, umax −
umin]:

χI(x)
4
= inf{|Γ[u, ψ−1](T )− Γ[u, ψ−1][0]| :

ψ−1 ∈ Ψ0, u ∈ Cm[0, T ], |u(T )− u(0)| = x}.
The functionχ(·) is continuous and monotonically increasing
under our basic hypothesis onµ. It is easy to check that if
χ(x) > 0 for all x > 0, thenΓ is PSI. LetJ be the smallest
interval that contains the output values ofΓ when the inputu
takes values inI. It can be shown that ifχI(x) > 0, ∀x > 0,
then Γ[·, ψ−1] : CI [0, T ] → CJ [0, T ] is invertible and the
inverse operator is also continuous [14], [13]. Furthermore,
Visintin [14] shows that if,∀x ∈ [0, umax − umin],

χI(x) ≥ Cx
ν2
ν1 , (4)

for 0 < ν1, ν2 ≤ 1, then the inverse ofΓ[·, ψ−1] mapsC0,ν2
J

into C0,ν1
I and it is weak-star continuous.

B. A Milder Condition for the Weak-Star Continuity of the
Inverse

The condition (4) is strong since it needs to hold for all
x ∈ [0, umax − umin]. It is hard to verify directly also, as
it is posed in terms ofχI(x). In this subsection, a weaker
condition in terms of the Preisach density functionω(·, ·) is
shown to lead to the weak-star continuity of the inverse.

Before proceeding, we sketch the construction of the weak-
star topology onC0,ν [0, T ], 0 < ν < 1. A function f in
the spaceC0,ν(IR), 0 < ν < 1, can be expanded using a
Faber-Schauder basis as described in Wojtaszczyk [21] (page
40). Thus we have a mapΦ : C0,ν [0, T ] → l∞ given
by Φ(f) = {am,n}. Its adjoint Φ∗ maps elements inl1

that describe the weak-star topology onl∞ to the dual of
C0,ν [0, T ]. These functionalsΦ∗(z), z ∈ l1, define the weak-
star topology ofC0,ν [0, T ]. In Section III, we will define a
distance metric for the weak-star topology ofC0,ν [0, T ] based
on this construction. It is well known that this topology is
coarser than the norm topology onC0,ν [0, T ] defined using
‖f‖0,ν .
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The following three lemmas will be used in proving the
main result of this section.

Lemma 2.1:Let ξ ≥ 0, ε > 0. If the Preisach density
ω(r, s) ≥ Crξ, for someC > 0, for almost every(r, s) ∈
Rε = [0, ε]× [umin − ε, umax + ε], thenχI(x) ≥ Kxξ+2 for
0 ≤ x ≤ 2ε, for someK > 0.

Proof. Let r̄ = x
2 . For x ∈ [0, 2ε],

χI(x) = 2 inf
s0∈[umin,umax]

∫ r̄

0

∫ s0+( x
2−r)

s0−( x
2−r)

ω(r, s)dsdr

≥ 2
∫ r̄

0

(x− 2r)Crξ dr

=
C

(1 + ξ)(2 + ξ)2ξ
xξ+2.

¤
Lemma 2.2:(Visintin [14]) Let X, Y, S1, S2 be metric

spaces such thatS1 ⊂ X and S2 ⊂ Y with continuous
injections. Letf : X → Y be continuous and such that it
maps relatively compact subsets ofS1 into relatively compact
subsets ofS2 (with respect to the topologies ofS1 and S2).
Thenf : S1 → S2 is continuous with respect to the topologies
of S1 andS2.

Lemma 2.3:Let 0 = T0 < T1 < · · · < TN = T be a
uniform partition of [0, T ] such that∆i = [Ti−1, Ti]; i =
1, · · · , N , has lengthδ. Let fi ∈ C0,ν(∆i), 0 < ν ≤ 1, i =
1, · · · , N , with ‖fi‖0,ν ≤ K and fi(Ti) = fi+1(Ti). Then
the function obtained by concatenationf =

∑
i fi I∆i , where

I∆i is the indicator function of∆i, belongs inC0,ν [0, T ] and
‖f‖0,ν ≤ (1 + N1−ν)K.

Proof. As ‖fi‖0,ν ≤ K, we have|fi(t)| ≤ K and |fi(t) −
fi(t′)| ≤ K|t − t′|ν for t, t′ ∈ ∆i. This implies |f(t)| ≤ K,
∀t ∈ [0, T ]. Next, for t ∈ ∆1 and t′ ∈ ∆N ,

|f(t)− f(t′)|
≤ |f(t)− f(T1)|+ |f(T1)− f(T2)|

+ · · ·+ |f(TN−1 − f(t′)|
≤ K |t− T1|ν + · · ·+ K |TN−1 − t′|ν .

We wish to find a constant̄L such that the sumaν
1 + aν

2 +
· · ·+aν

N ≤ L̄(a1 + · · ·+aN )ν wherea1, · · · , aN ≥ 0 and0 <
ν ≤ 1. Dividing by (a1+ · · ·+aN )ν one obtains the following
function on the left hand side:g(p1, · · · , pN ) = pν

1 + · · ·+pν
N

where p1, · · · , pN ≥ 0 and
∑N

i=1 pi = 1. This function is
maximized bypi = 1

N for all i and the maximum value is
N

(
1

Nν

)
= N1−ν . Thus L̄ = N1−ν and

|f(t)− f(t′)| ≤ N1−ν K |t− t′|ν .

For t and t′ in other intervals∆i, one can proceed similarly
and arrive at the same inequality. Therefore,

‖f‖0,ν = ‖f‖∞ + sup
t6=t′; t,t′∈[0,T ]

|f(t)− f(t′)|
|t− t′|ν

≤ K (1 + N1−ν).

¤
Before presenting our main theorem onΓ−1, we summarize

the continuity properties of the operatorΓ under certain
conditions onω. The utility of this Theorem is that it combines

results in Brokate and Sprekels [13], and Visintin [14] under
a common condition on the density function. These are the
same conditions needed onω for our main result. It must be
noted that these conditions are slightly stronger than those
of Proposition 2.4.11 and Corollary 2.11.21 of Brokate and
Sprekels [13], and weaker than Theorem 3.9 of Visintin [14].

Theorem 2.1:Let Γ[·, ψ−1] be a Preisach operator with
domainI = [umin, umax], whereψ−1 ∈ Ψ0. Assume that the
density functionω(r, s) has compact support; is integrable; is
non-negative; andω(r, s) ≥ Crξ for almost every(r, s) ∈
Rε = [0, ε]× [umin − ε, umax + ε], whereC > 0, ξ ≥ 0, and
ε > 0. Then:

1) Γ[·, ψ−1] : CI [0, T ] → CJ [0, T ] is Lipschitz continuous;
2) Γ[·, ψ−1] : C0,ν

I [0, T ] → C0,ν
J [0, T ] is weak-star contin-

uous, where0 < ν ≤ 1;
3) Γ[·, ψ−1] : CI [0, T ] → CJ [0, T ] is invertible, and

its inverse can be extended to a continuous operator
Γ−1[·, ψ−1] : CJ [0, T ] → CI [0, T ].

Proof. By the conditions on the density, the Preisach oper-
ator Γ[·, ψ−1] : CI [0, T ] → CJ [0, T ] is PSI and is Lipschitz
continuous (by Theorem 2.4.11 in Brokate and Sprekels [13]).
They also show thatΓ maps norm-bounded sets inC0,ν

I [0, T ]
to norm-bounded sets inC0,ν

J [0, T ]. As these sets are com-
pact in the weak-star topology, Lemma 2.2 yields the weak-
star continuity ofΓ. To show the last statement, note that
χI(x) > 0 by Lemma 2.1 forx ∈ (0, 2ε]. As χI(x) is a
continuous, increasing function ofx and soχI(x) > 0 for all
x ∈ (0, b − a), the proof of Theorem 2.11.20 in Brokate and
Sprekels [13] applies here.¤

Under the same conditions onω as in the above theorem,
we would like to show the existence and continuity of the
inverse for the Preisach operator acting between spaces of
Hölder continuous functions. The following theorem is our
main result.

Theorem 2.2:Assume that the Preisach density function
ω(r, s) has compact support,ω ≥ 0, and ω(r, s) ≥ Crξ for
almost every(r, s) ∈ Rε = [0, ε]× [umin−ε, umax +ε], where
C > 0, ξ ≥ 0, ε > 0. Then for anyψ−1 ∈ Ψ0, Γ−1[·, ψ−1] is
weak-star continuous fromC0,ν2

J [0, T ] to C0,ν1
I [0, T ], where

ν2 ∈ (0, 1] andν1 = ν2
ξ+2 .

Proof. Let y ∈ C0,ν2
J [0, T ] with ‖y‖0,ν2 ≤ K. By Theo-

rem 2.1,Γ[·, ψ−1] is invertible and there existsu ∈ CI [0, T ]
such thatΓ[u, ψ−1] = y. We shall show thatu belongs in
C0,ν1

I [0, T ].
Partition [0, T ] uniformly such that0 = T0 < T1 · · · <

TN = T and Ti − Ti−1 ≤ δ where i = 1, · · · , N. The
choice ofδ will be described shortly. Restricty to the intervals
∆i = [Ti−1, Ti]; i = 1, · · · , N, and obtain the functions
yi. Similarly restrictingu to ∆i one obtainsui. Define the
function:

osc(v; [a, b])
4
= max

t∈[a,b]
v(t)− min

t∈[a,b]
v(t),

for v ∈ C[0, T ] and [a, b] ⊂ [0, T ].
Note that

χI(osc(ui; [t, t′])) ≤ osc(y; [t, t′]), ∀[t, t′] ⊂ ∆i, (5)
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by Lemma 2.11.18 in [13]. As‖y‖0,ν2 ≤ K, for t, t′ ∈ ∆i,

|y(t)− y(t′)| ≤ K |t− t′|ν2 ≤ Kδν2 , (6)

and hence
osc(y;∆i) ≤ Kδν2 , (7)

which by (5) implies

χI(osc(ui;∆i)) ≤ Kδν2 . (8)

From Lemma 2.1,

χI(x) ≥ C xξ+2, x ∈ [0, 2 ε]. (9)

Now chooseδ > 0 small enough so that:

Kδν2 ≤ C (2ε)ξ+2.

This together with (8), (9), and the monotone increasing
property ofχI(·), implies

osc(ui; ∆i)) ≤ 2ε.

Note that the choice ofδ fixes the number of partitionsN .
Next, for t, t′ ∈ ∆i; i = 1 · · · , N, Eq. (5) and (9) yield:

C |ui(t)− ui(t′)|ξ+2

≤ χI(osc(ui, [t, t′]))
≤ osc(y; [t, t′]) (by (5)) (10)

≤ K |t− t′|ν2 (as‖y‖0,ν2 ≤ K), (11)

which leads to

|ui(t)− ui(t′)|

≤
(

K

C

) 1
ξ+2

|t− t′| ν2
ξ+2 =

(
K

C

) 1
ξ+2

|t− t′|ν1 . (12)

Finally, using Lemma 2.3 one gets‖u‖0,ν1 ≤ K1 for some
K1 > 0. This implies thatΓ−1[·, ψ−1] maps norm-bounded
sets inC0,ν2

J [0, T ] to norm-bounded sets inC0,ν1
I [0, T ]. As

these sets are compact in the respective weak-star topologies
of C0,νi [0, T ], i = 1, 2, we apply Lemma 2.2 toΓ−1 with
X = CJ [0, T ]; Y = CI [0, T ]; S1 = C0,ν2

J [0, T ]; and S2 =
C0,ν1

I [0, T ], to obtain the weak-star continuity ofΓ−1. ¤
Let 0 < ν1 < ν2 ≤ 1. As C0,ν2 [0, T ] ⊂ C0,ν1 [0, T ], the

linear functionals onC0,ν1 [0, T ] are also linear functionals on
C0,ν2 [0, T ]. As a result, the weak-star topology onC0,ν2 [0, T ]
(denoted byτ2) is finer than the topology (denoted byτ1)
inherited from the weak-star topology ofC0,ν1 [0, T ]. This
implies that weak-star compact sets ofC0,ν2 [0, T ] remain
compact in the topologyτ1 [22]. Denote the weak-star topol-
ogy of C0,ν1 [0, T ] by τ.

Corollary 2.1: Suppose thatΓ is a Preisach operator with
a density function that satisfies the conditions of Theorem
2.2. Let U = Γ−1[C0,ν2

J , ψ−1] and ν2
ν1

= ξ + 2. Then the

mapsΓ−1 :
(
C0,ν2

J [0, T ], τ2

)
→ (U, τ) , and Γ : (U, τ) →(

C0,ν2
J [0, T ], τ1

)
are continuous maps.

Proof. By Theorem 2.2,Γ−1 : (C0,ν2
J [0, T ], τ2) → (U, τ) is

continuous, asU ⊂ C0,ν1
I [0, T ]. To show the second statement,

observe that the mapΓ : (U, τ) → (C0,ν1
J [0, T ], τ) is continu-

ous by Theorem 2.1. But we must haveΓ : U → C0,ν2
J [0, T ]

by the definition ofU. So Γ : (U, τ) → (C0,ν2
J [0, T ], τ1) is

continuous, by the definition ofτ1. ¤
Thus the composition

Γ ◦ Γ−1 :
(
C0,ν2

J [0, T ], τ2

)
→

(
C0,ν2

J [0, T ], τ1

)

is continuous, asτ2 is finer thanτ1. Note that we cannot infer a
similar statement had we considered the compositionΓ−1 ◦Γ.
Thus we are naturally led to the concept ofright inversesof
Preisach operators and fortunately, that is what is needed in
applications.

III. R EGULARIZATION

The objective of this section is to study approximate solution
methods for the operator equation:

Γ[u, ψ−1] = y, (13)

where y ∈ C[0, T ]. Since the conditionχI(x) > 0 for
x > 0 guarantees the existence of a continuous inverse for
Γ[·, ψ−1] : CI [0, T ] → CJ [0, T ], theoretically there is no need
for any regularization if one is looking for just a continuous
input function. However, for implementation of the inverse in
numerical and physical experiments, it is desirable that the
input generated via inversion has certain regularity properties,
for example, Lipschitz continuity. The two algorithms to be
discussed later in this paper result in Lipschitz continuous
functionsu as approximate solutions to (13) fory ∈ C[0, T ].
On the other hand, the proof of Theorem 2.2 shows that a
piecewise strictly increasing Preisach operator has an inverse
that maps generic functions inC0,ν2

J [0, T ] to functions in
C0,ν1

I [0, T ] with ν1
ν2
≤ 1

2 , which rules out the possibility of
getting a Lipschitz continuousu in general. This raises the
issue of how to evaluate an approximate inversion scheme in
terms of the convergence to the exact inverse. For this purpose,
it is useful to define a norm on approximate inverses by the
following procedure.

As C0,ν [0, T ], 0 < ν < 1, is isomorphic tol∞, the weak-
star topology onC0,ν [0, T ] is defined by a countable family
of semi-norms. On the other hand,C0,1[0, T ] is isomorphic
to L∞ and so its weak-star topology is also defined by a
countable family of semi-norms [21]. Using these semi-norms,
one can define equivalent metrics onC0,ν [0, T ], 0 < ν ≤ 1
such that convergence in any of the metrics is equivalent to
convergence in the weak-star topology (Zimmer [23], page
14). Denote any one of the metrics so obtained onC0,νi [0, T ],
where i = 1, 2 and 0 < ν1 < ν2 ≤ 1, by di(·, ·). A key
observation is that these metrics aretranslation invariant, that
is, di(x + c, y + c) = di(x, y) since they are defined using
semi-norms.

One would like to define an (induced) norm forΓ−1 in
studying the convergence of approximation schemes. Putting
the inverse operator and various approximate inverses in a
vector space would facilitate the use of tools available to vector
spaces. This can be achieved by appropriately shifting the
input and the output ofΓ. To be specific, considering that the
inputs must have the initial conditionu(0) = ψ−1(0) and the
outputs must have the same initial valuez0 = Γ[u; ψ−1](0),
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we define the sets̄I = {v − ψ−1(0) | v ∈ I}, and J̄ =
{w − z0 |w ∈ J}, and the maps:

Γ̄[·, ψ−1] : C0,ν1

Ī
[0, T ] → C0,ν2

J̄
[0, T ] (14)

ū 7→ ȳΓ[ū + ψ−1(0), ψ−1](t)− z0,

Γ̄−1[·, ψ−1] : C0,ν2

J̄
[0, T ] → C0,ν1

Ī
[0, T ] (15)

ȳ 7→ ū = Γ−1[ȳ + z0, ψ−1]− ψ−1(0).

By translation invariance ofdi, one hasd1(u1−ψ−1(0), u2−
ψ−1(0)) = d1(u1, u2), andd2(y1− z0, y2− z0) = d2(y1, y2).

It can be verified that̄Γ−1[·, ψ−1] belongs in the vector
spaceS (with field IR) of mapsS : C0,ν2 [0, T ] → C0,ν1 [0, T ]
that satisfyS[θ2](t) = θ1 ∀ t ∈ [0, T ], whereθi are the zero-
functions inC0,νi [0, T ]; i = 1, 2. The zero elementΘ on S
is simply the element that maps allȳ ∈ C0,ν2 [0, T ] to θ1. On
S, we can define the norm:

‖S‖S = sup
ȳ1,ȳ2∈C0,ν2 [0,T ]

ȳ1 6=ȳ2

d1(S[ȳ1], S[ȳ2])
d2(ȳ1, ȳ2)

. (16)

Convergence of approximate inverse schemes can be discussed
using this norm.

Definition 3.1: Let Γ̄ be defined by (14). Aregularization
strategyfor Γ̄ is a family of operators

Rε[·, ψ−1] : CJ̄ [0, T ] → C0,ν1

Ī
[0, T ], ε > 0,

such that:

1) ∀ ȳ ∈ CJ̄ [0, T ],

lim
ε→0

Γ̄ ◦Rε[ȳ, ψ−1] = ȳ; (17)

2)

lim
ε→0

d1(Rε[ȳ, ψ−1], Γ̄−1[ȳ, ψ−1]) = 0, (18)

uniformly on bounded sets ofC0,ν2

J̄
[0, T ].

In other words, one requires point-wise convergence forȳ ∈
CJ̄ [0, T ] and weak-star convergence forȳ ∈ C0,ν2

J̄
[0, T ]. Ob-

viously, Rε with domain restricted to functions inC0,ν2 [0, T ]
is in S. The following elementary lemmas hold for the family
{Rε}.

Lemma 3.1:If ‖Rε − Γ̄−1‖S → 0, as ε → 0, then
lim
ε→0

d1(Rε[ȳ, ψ−1], Γ̄−1[ȳ, ψ−1]) = 0 uniformly on bounded

sets ofC0,ν2

J̄
[0, T ].

Proof. Consider the bounded setM = {ȳ | d2(ȳ, 0) ≤ M}.
Now:

d1(Rε[ȳ, ψ−1], Γ̄−1[ȳ, ψ−1])
≤ d1

(
(Rε − Γ̄−1)[ȳ, ψ−1], 0

)

(by the translation invariance ofd1)

≤ ‖Rε − Γ̄−1‖S d2(ȳ, 0) (by the definition of‖ · ‖S )

≤ M ‖Rε − Γ̄−1‖S .

So given anε0 > 0, there exists an̄ε > 0 such that: if0 <
ε ≤ ε̄ then d1(Rε[ȳ, ψ−1], Γ̄−1[ȳ, ψ−1]) < ε0 for all y ∈ M.
¤

This lemma shows that (18) is weaker than norm-
convergence. SinceΓ−1 : C0,ν2 [0, T ] → C0,ν1 [0, T ] is weak-
star continuous, one would like the approximating family to
have a similar property. The next lemma studies the weak-star
continuity properties of the family{Rε}.

Lemma 3.2:Let ‖Γ̄−1‖S be bounded and{Rε} be a reg-
ularization strategy for̄Γ. Then givenε0 > 0 and a bounded
set M, there exists an̄ε > 0 and δ > 0 such that: if
0 < ε ≤ ε̄; ȳ1, ȳ2 ∈ M; and d2(ȳ1, ȳ2) < δ, then
d1(Rε[ȳ1, ψ−1], Rε[ȳ2, ψ−1]) < ε0.

Proof. Let M = {ȳ | d2(ȳ, 0) ≤ M}. Then givenε0 > 0,
there existsε̄ > 0 such that for all0 < ε ≤ ε̄, we have
d1(Rε[ȳ, ψ−1], Γ̄−1[ȳ, ψ−1]) < ε0

3 for all ȳ ∈ M. Therefore,
for ȳ1, ȳ2 ∈ M,

d1(Rε[ȳ1, ψ−1], Rε[ȳ2, ψ−1])
≤ d1(Rε[ȳ1, ψ−1], Γ̄−1[ȳ1, ψ−1])

+d1(Γ̄−1[ȳ1, ψ−1], Γ̄−1[ȳ2, ψ−1])
+d1(Rε[ȳ2, ψ−1], Γ̄−1[ȳ2, ψ−1])

< 2
ε0
3

+ d1(Γ̄−1[ȳ1, ψ−1], Γ̄−1[ȳ2, ψ−1])

≤ 2
ε0
3

+ ‖Γ̄−1‖S d2(ȳ1, ȳ2)

< ε0, for d2(ȳ1, ȳ2) < δ,

whereδ > 0 is chosen asδ = ε0
3 ‖Γ̄−1‖S . ¤

This lemma shows that verifying the boundednessΓ̄−1 is
sufficient to ensure weak-star continuity-like properties of the
regularization strategy. It also shows that one should not try
to prove the weak-star continuity ofRε for any fixedε > 0,
but rather consider the family{Rε} as a whole.

IV. F IXED-POINT ITERATION-BASED APPROXIMATE

INVERSION

In this section, an approximate inversion algorithm is pro-
posed based on successive iteration. The point-wise conver-
gence condition for a regularization strategy (17) is proved
under the same conditions on the density function as in
Theorems 2.1 and 2.2. The second condition (18) is much
more difficult to prove, and we will consider it in future
research.

First consider the case that the desired output function
is monotone. LetCm+,J [0, T ] denote the space of non-
decreasing, continuous functions on[0, T ] taking values in
J, and C0,1

m+,J [0, T ] denote those functions inCm+,J [0, T ]
that are Lipschitz continuous. We consider the equation
Γ[u, ψ−1] = y whereψ−1 ∈ Ψ0 and y ∈ Cm+,J [0, T ] (and
y ∈ C0,1

m+,J [0, T ] ) in Proposition 4.1. Analogous results are

true if Cm−,J([0, T ]) and C0,1
m−,J([0, T ]) (the space of non-

increasing functions) are considered.
Proposition 4.1:Assume that the Preisach density function

ω(r, s) has compact support; is integrable; is non-negative;
and ω(r, s) ≥ Crξ for almost every(r, s) ∈ Rε = [0, ε] ×
[umin − ε, umax + ε], whereC > 0, ξ ≥ 0, andε > 0. Let k2

denote the Lipschitz constant forΓ. Let ψ−1 ∈ Ψ0 with the
corresponding outputy0. Fory ∈ Cm+,J [0, T ] with y(0) = y0,
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considerthe following algorithm:
{

u(n+1) = u(n) + y−Γ[u(n),ψ−1]
k2

, n ≥ 0
u(0) ≡ ψ−1(0)

. (19)

Then:

1) For any n ≥ 0, u(n) ∈ Cm+,I [0, T ]; and if y ∈
C0,1

m+,J [0, T ], u(n) ∈ C0,1
m+,I [0, T ];

2) As n → ∞, u(n) converges pointwise tou∗ ∈
Cm+,I [0, T ] with Γ[u∗, ψ−1] = y;

3) Forε > 0, let Nε be the smallest integer satisfyingNε ≥
k2(umax−umin)

ε . Then

‖Γ(u(Nε), ψ−1)− y‖∞ ≤ ε;

4) As n →∞, we haveu(n) → u∗ uniformly on [0, T ].
Proof. 1. Under the hypothesis on the density function, it

is clear from Theorem 2.1 thatΓ : CI [0, T ] → CJ [0, T ] is
Lipschitz continuous. We will first showu(n) ∈ Cm+,I [0, T ],
∀n. Then we will show thatu(n) is Lipschitz continuous
providedy ∈ C0,1

m+,J [0, T ].
Clearly u(n) ∈ CI [0, T ], ∀n. We use induction to show

u(n) ∈ Cm+,I [0, T ]. Sinceu(0) is a constant function, it is
non-decreasing. Now suppose that for somen ≥ 0, u(n) is
non-decreasing. This, together with the Lipschitz continuity
of Γ, implies, for0 ≤ t1 ≤ t2 ≤ T ,

Γ[u(n), ψ−1](t2)−Γ[u(n), ψ−1](t1) ≤ k2(u(n)(t2)−u(n)(t1)).
(20)

Using (19), we have

u(n+1)(t2)− u(n+1)(t1)

=
y(t2)− y(t1)

k2
+ u(n)(t2)− u(n)(t1)

−Γ[u(n), ψ−1](t2)− Γ[u(n), ψ−1](t1)
k2

≥ y(t2)− y(t1)
k2

(by (20))

≥ 0, (sincey ∈ Cm+,J [0, T ])

and thereforeu(n+1) is non-decreasing.
Next we show thatu(n) is Lipschitz continuous for every

n, if y ∈ C0,1
m+,J [0, T ], again by induction. Note thatu(0) is

Lipschitz continuous andΓ : C0,1
I [0, T ] → C0,1

J [0, T ] by The-
orem 2.1. HenceΓ[u(0), ψ−1] is Lipschitz continuous, and by
(19) u(1) is Lipschitz continuous. Furthermore, if we assume
u(n) to be Lipschitz continuous, the same arguments imply
that u(n+1) is Lipschitz continuous. Thusu(n) is Lipschitz
continuous for everyn, by induction.

2. Consider the sequence{u(n)}. As y ≥ y0 =
Γ[u(0), ψ−1](t), we haveu(1) ≥ u(0). In the preceding, the
inequalityf ≥ g is said to be true, if and only iff(t) ≥ g(t)
for all t ∈ [0, T ]. Supposeu(n) ≥ u(n−1) for somen ≥ 1.
From (19),

u(n+1) = u(n) +
y − Γ[u(n), ψ−1]

k2
, (21)

u(n) = u(n−1) +
y − Γ[u(n−1), ψ−1]

k2
. (22)

The Lipschitz continuity of the operatorΓ[·, ψ−1] implies:

Γ[u(n), ψ−1]− Γ[u(n−1), ψ−1] ≤ k2(u(n) − u(n−1)). (23)

Subtracting (22) from (21), and using (23), we getu(n+1) ≥
u(n). Note thatu(n)(t) > u(n−1)(t) if and only if y(t) >
Γ[u(n−1), ψ−1](t) by (19). For eacht ∈ [0, T ], as {u(n)(t)}
is a monotone increasing sequence bounded byumax, the
sequenceu(n)(t) → u∗(t) asn →∞. Hence{u(n)} converges
pointwise to someu∗. By the continuity of Γ[·, ψ−1], the
sequence{Γ[u(n), ψ−1]} → Γ[u∗, ψ−1]. By (19), u∗ = u∗ +
y−Γ[u∗,ψ−1]

k2
which implies Γ[u∗, ψ−1] = y. Now we have

u∗ ∈ CI [0, T ] due to the condition on the density function
and Item 3 of Theorem 2.1, andu∗ ∈ Cm+,I [0, T ] because
eachu(n) is monotone and the setCm+,I [0, T ] is a closed
subspace ofCI [0, T ].

3. If for somet ∈ [0, T ], |y(t)− Γ[u(n), ψ−1](t)| > ε, then
u(n+1)(t) − u(n)(t) > ε

k2
. Since |y(t) − Γ[u(n), ψ−1](t)| is

non-increasing withn, and u(n)(t) − ψ−1(0) is bounded by
umax − umin, one concludes that afterNε iterations,|y(t)−
Γ[u(n), ψ−1](t)| ≤ ε for every t.

4. By Lemma 2.1 and the assumption onω(r, s), we have
χI(x) ≥ Kxξ+2 for 0 ≤ x ≤ 2ε, for someK > 0. Hence

|y(t)− Γ[u(n), ψ−1](t)| ≥ K |u(n)(t)− u∗(t)|ξ+2. (24)

From item 3 above,‖y − Γ[u(n), ψ−1]‖∞ → 0 asn →∞.
Eq. (24) then implies the uniform convergence of{u(n)} to
u∗. ¤

Based on Proposition 4.1, the following algorithm (see
illustration in Fig. 3) can be used to generate an approxi-
mate inverseuε ∈ C0,1

I [0, T ] for y ∈ CJ ([0, T ]) such that
‖Γ[uε, ψ−1]− y‖∞ ≤ ε.

Fixed Point Algorithm:
• Step 1. Picky′ ∈ C0,1

pm,J [0, T ] such that‖y′ − y‖∞ ≤
ε′

4
= ε

2 , and the variation in each monotone section of
y′ is at leastε′.
Let 0 = T0 < T1 < T3 < · · · < T2N−1 < T2N+1 = T be
the standard partition fory′. We will shortly define the
timesT2, T4, · · · , T2N .

• Step 2. On[T0, T1], run the algorithm (19) (at mostNε′

times) until‖y′ − Γ[u(n), ψ−1]‖∞ ≤ ε′. Set

uε(t) = u(n)(t) for t ∈ [T0, T1].

• Step 3. LetT2 ≥ T1 be the smallest time instant such that
y′(T2) = Γ[uε, ψ−1](T1). T2 is well defined considering
Step 1. Setuε(t) ≡ uε(T1) on (T1, T2);

• Step 4. Run (19)Nε′ times on [T2, T3] with u(0) ≡
uε(T1), which definesuε on [T2, T3];

• Step 5. Continue Steps 3 and 4 untiluε is defined up to
the final timeT .

As in Section III, fort ∈ [0, T ], define

ȳ(t)
4
= y(t)− y(0) and ūε(t)

4
= uε(t)− u(0). (25)

Define:

Rε[·, ψ−1] : CJ̄ [0, T ] → C0,1

Ī
[0, T ]

ȳ 7→ ūε, (26)
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whereuε is the result of the Fixed Point algorithm. Letyε =
Γ[uε, ψ−1] and Γ̄[·, ψ−1], Γ̄−1[·, ψ−1] be defined as in (14)
and (15).

ε’−envelope of y’

ε’

ε’

yε

T1 T2
T3

y’

0
t

Fig. 3. Illustration of the fixed-point iteration-based inverse algorithm.

One can establish the following regularization-type proper-
ties for the schemeRε :

Theorem 4.1:Assume that the density function of the
Preisach operatorΓ satisfies the conditions of Proposition 4.1.
Let ε > 0. Then:

1) ∀ ȳ ∈ CJ̄ [0, T ],

lim
ε→0

Γ̄ ◦Rε[ȳ, ψ−1] = ȳ; (27)

2) and∀ φ ∈ L1[0, T ],

lim
ε→0

<Rε[ȳ, ψ−1]− Γ−1[ȳ, ψ−1], φ> 0, (28)

uniformly for ȳ on bounded sets ofC0,1

J̄
[0, T ].

Proof. Given ȳ ∈ CJ̄ [0, T ], choose ȳ′ ∈ Cpm,J̄ [0, T ]
according to Step 1. By Proposition 4.1, on the time-intervals
[T2n, T2n+1] wheren = 0, · · ·N, we have:|ȳε(t) − ȳ′(t)| =
|yε(t)− y′(t)| ≤ ε′ = ε

2 . On the time intervals[T2n+1, T2n+2]
wheren = 0, · · ·N−1, uε is simply a constant, and by Step 3
of the Fixed Point algorithm:|ȳε(t)−ȳ′(t)| = |yε(t)−y′(t)| ≤
ε′. Thus:‖ȳε − ȳ′‖∞ = ‖yε − y′‖∞ ≤ ε′, and then:

‖ȳε − ȳ‖∞ = ‖yε − y‖∞ ≤ ‖yε − y′‖∞ + ‖y − y′‖∞ ≤ ε.

Hence the scheme{Rε} satisfies the first condition (17) for a
regularization strategy.

Next, let y ∈ C0,1
J [0, T ], and ȳ be given by (25). Let

‖y‖0,1 ≤ M. Pick y′ ∈ C0,1
pm,J [0, T ] such that‖y−y′‖0,1 ≤ δ.

Then ‖y′‖0,1 ≤ ‖y′ − y‖0,1 + ‖y‖0,1 ≤ M + δ. The finest
partition needed for all such functionsy′ is one with intervals
of length ε′

M+δ . Thereforethe upper bound on the number
of iterations needed for convergence (to withinε in the sup-
norm) is (M+δ) TNε′

ε′ . Thuswe have uniform convergence on
bounded sets inC0,1

J̄
[0, T ].

By Theorem 2.2,Γ̄−1 : C0,1

J̄
[0, T ] → C0,ν

Ī
[0, T ] where

ν = 1
ξ+2 . This implies that ū∗ = Γ̄−1[ȳ, ψ−1] belongs in

C0,ν

Ī
[0, T ], even thoughūε ∈ C0,1

Ī
[0, T ]. As C0,ν

Ī
[0, T ] ⊂

L∞̄
I

[0, T ], we haveL1
Ī
[0, T ] ⊂ C0,ν

Ī,w∗[0, T ], whereC0,ν

Ī,w∗[0, T ]
denotes the weak-star dual ofC0,ν

Ī
[0, T ]. Let φ be an element

of L1
Ī
[0, T ]. Since‖ūε − ū∗‖∞ → 0 as ε → 0, we have:

<ūε − ū∗, φ> =
∫ T

0

(ūε(t)− ū∗(t)) φ(t) dt

≤ ‖ūε − ū∗‖∞ ‖φ‖1
→ 0 asε → 0. (29)

¤
The above result falls slightly short of showing thatRε is a

regularization scheme. In order to showRε is a regularization
scheme, (29) must hold for allφ ∈ C0,ν

Ī,w∗[0, T ]. This is a
question that needs to be further investigated in the future.

V. D ISCRETIZATION-BASED APPROXIMATE INVERSION

In this section a discretization-based approximate inver-
sion scheme is discussed. The discretization results in a
discretized Preisach operator, an approximate inverse of which
can be efficiently constructed by the so calledclosest-match
algorithm. Experimental results on trajectory tracking of a
magnetostrictive actuator based on this algorithm will also be
presented.

A. The Closest-Match Algorithm

There are two discretization steps involved, discretization of
the input rangeI = [umin, umax] and discretization of the time
interval [0, T ]. Discretize[umin, umax] uniformly into L + 1
levels and denote the resulting set of discrete input values as
UL = {ûi, i = 1, · · · , L + 1}, where

ûi = umin + (i− 1)∆u,

and∆u = umax−umin

L . As a consequence of input discretiza-
tion, the Preisach plane is discretized into cells.

When restricted to inputs taking values inUL, the Preisach
operator becomes a weighted combination of a finite number
of hysterons, where the weight of each hysteron equals the
integral of the original Preisach density function over the
corresponding grid (see Fig. 4 for illustration). Denote this
discretized Preisach operator asΓL and its set of memory
curves asΨL. Note that an element ofΨL consists ofL
vertical or horizontal segments, each with length∆u.

u1
^

u2
^

u1
^ u2̂

u3
^

u4̂ u5
^

u4̂

u5̂

α

β

Fig. 4. Illustration of the discretization scheme (L = 4), where weighting
masses are located at the centers of cells.

Discretization of time is performed similarly. GivenN ≥ 1,
the time interval [0, T ] is uniformly divided into N sub-
intervals with consecutive end-points denoted as{tj}N

j=0,

wheretj = j∆t with ∆t
4
= T

N .
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Let DN
J denotethe set of sequences of lengthN +1 taking

values inJ , i.e.,∀s ∈ DN
J , s[j] ∈ J , for j = 0, 1, · · · , N . For

the discretized Preisach operatorΓL, an approximate inversion
problem can be formulated as follows: givenψ−1 ∈ ΨL and
sy ∈ DN

J , find s∗u ∈ DN
UL

(set of sequences taking values in
UL), such that

‖ΓL[s∗u, ψ−1]−sy‖∞ = min
su∈DN

UL

‖ΓL(su, ψ−1)−sy‖∞. (30)

SinceΓL : DN
UL

→ DN
J is not “onto”, only an approximate

inverses∗u is sought in (30).
Dynamic programming can be used to solve the problem

(30) [24]. However, asN andL get large, this approach be-
comes prohibitive in terms of computational and storage costs.
A sub-optimal scheme is tosequentiallygenerate an input
sequencesu of lengthN so that at timej, |ΓL[su, ψ−1][j]−
sy[j]| is minimized. This decomposes the original (approxi-
mate) inverse problem of lengthN + 1 into N + 1 successive
problems of length 1. To be precise, at each time instant, given
the current memory curveψ(0)(from which the current input
u(0) and outputy(0) can be derived) and a desired output value
ŷ, find u# ∈ UL, such that

|ΓL[u#, ψ(0)]− ŷ| = min
u∈UL

|ΓL[u, ψ(0)]− ŷ|. (31)

Also the resulting memory curveψ# should be returned for
use at the next time instant.

The following algorithm can be used to efficiently solve
the problem (31) (see Figure 5 for an illustration). As the
fixed-point algorithm, it is also based on the piecewise strictly
increasing property of the Preisach operator, and it fully
utilizes the discrete structure of the problem. Consider the case
y(0) ≤ ŷ (the other casey(0) > ŷ is dealt with analogously).
Intuitively, in this algorithm we keep increasing the input by
one level in each iteration, until either a) the input reaches
the maximumûL+1, or b) y(n) exceedŝy. For case a), take
u# = ûL+1; for case b), takeu# to be u(n) or u(n−1)

whichever yields smaller output error. In both cases,u# so
obtained solves (31).
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Fig. 5. Illustration of the convergence of the Closest-Match Algorithm.

Closest-Match Algorithm.
• Step 0. Set n=0.
• Step 1. Ifu(n) = ûL+1, let u# = u(n), ψ# = ψ(n), go to

Step 4; otherwiseu(n+1) = u(n) +4u, ψ̃ = ψ(n)[backup
the memory curve],n = n + 1, go to Step 2;

• Step 2. Evaluatey(n) = Γ[u(n), ψ(n−1)], and (at the same
time) update the memory curve toψ(n). Comparey(n)

with ŷ: if y(n) = ŷ, let u# = u(n), ψ# = ψ(n), go to
Step 4; ify(n) < ŷ, go to Step 1; otherwise go to Step 3;

• Step 3. If|y(n)− ŷ| ≤ |y(n−1)− ŷ|, let u# = u(n), ψ# =
ψ(n), go to Step 4; otherwiseu# = u(n−1), ψ# = ψ̃
[restore the memory curve], go to Step 4;

• Step 4. Exit.

It’s not hard to see the above algorithm yieldsu# in at most
L iterations.

B. Approximate Inversion Based on the Closest-Match Algo-
rithm

An algorithm to approximately solveΓ[u, ψ−1] = y is
proposed as follows: pickN ≥ 1, L ≥ 1.

• Step 1. Construct̃ψ−1 ∈ ΨL from ψ−1 ∈ Ψ0 based
on the input discretization rules (i.e., approximating the
given ψ−1 ∈ Ψ0 by an element inΨL);

• Step 2. Fory ∈ CJ([0, T ]), constructsy ∈ DN
J via

sy[j] = y(j∆t);
• Step 3. Obtainsu ∈ DN

UL
by applying the Closest-Match

algorithm described above;
• Step 4. ConstructuN,L ∈ C0,1

I [0, T ] using linear splines
based onsu, i.e.,

uN,L(t) = τsu[j] + (1− τ)su[j + 1],

if t = (j + τ)∆t, j = 0, · · · , N − 1, and0 ≤ τ ≤ 1.

Analogous to (25) and (26), denotēuN,L(t) = uN,L(t) −
uN,L(0), ȳ(t) = y(t)− y(0), and define

RN,L[·, ψ−1] : CJ̄ [0, T ] → C0,1
Ī

[0, T ]
ȳ 7→ ūN,L. (32)

Similar to Proposition 4.1, fory ∈ Cm+,J [0, T ], we have the
following convergence results for the closest-match algorithm-
based inversion scheme:

Proposition 5.1:Assume that the density function of the
Preisach operatorΓ satisfies the conditions of Proposition 4.1.
Let k2 denote the Lipschitz constant forΓ. Then for anyψ−1 ∈
Ψ0, y ∈ Cm+,J [0, T ],

1) For anyN,L ≥ 1, uN,L ∈ C0,1
m+,I [0, T ];

2) As L,N →∞,

‖Γ(uN,L, ψ−1)− y‖∞ → 0, (33)

3) AsN, L →∞, we haveuN,L → u∗ uniformly on[0, T ],
whereu∗ = Γ−1[y, ψ−1], andu∗ ∈ Cm+,I [0, T ].

Proof. 1. As uN,L is constructed using linear splines, it
is clear thatuN,L ∈ C0,1

I [0, T ]. As y is monotone non-
decreasing,uN,L is also monotone and non-decreasing by the
non-negativity condition on the density function.

2. Note that by the construction ofΓL, it is also Lipschitz
continuous with the same Lipschitz constantk2 for Γ. Hence
if the input at any instantt is increased (or decreased) by∆u,
the output ofΓL at time t is increased (or decreased) by no
more thank2 ∆u. From the Closest-Match algorithm,

|s̃y[j]− sy[j]| < k2 ∆u, j = 0, · · · , N, (34)

where s̃y = ΓL[su, ψ̃−1]. By the construction ofψ̃−1, it is
within the ∆u-neighborhood ofψ−1 (see Visintin[14], page
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113, for the definition of neighborhood of a memory curve),
and hence by the Lipschitz continuity ofΓ,

‖Γ[uN,L, ψ−1]− Γ[uN,L, ψ̃−1]‖∞ ≤ k2∆u. (35)

Noting ΓL[su, ψ̃−1][j] = Γ[uN,L, ψ̃−1](tj), we get from (34)
and (35), forj = 0, · · · , N ,

|Γ[uN,L, ψ−1](tj)− sy[j]|
≤ |Γ[uN,L, ψ−1](tj)− Γ[uN,L, ψ̃−1](tj)|

+|Γ[uN,L, ψ̃−1](tj)− sy[j]|
= |Γ[uN,L, ψ−1](tj)− Γ[uN,L, ψ̃−1](tj)|+ |s̃y[j]− sy[j]|
≤ k2∆u + k2∆u = 2k2∆u.

Since both y and Γ[uN,L, ψ−1] are monotone, non-
decreasing on[tj , tj+1], for t ∈ [tj , tj+1]; j = 0, · · · , N , if
Γ[uN,L, ψ−1](t) ≤ y(t), one has

|Γ[uN,L, ψ−1](t)− y(t)| ≤ |Γ[uN,L, ψ−1](tj)− y(tj+1)|
≤ |Γ[uN,L, ψ−1](tj)− y(tj)|+ |y(tj)− y(tj+1)|
≤ 2k2∆u + ρy(∆t), (36)

whereρy(·) is the continuity modulus ofy. Same inequality
can be obtained ifΓ[uN,L, ψ−1](t) ≥ y(t). Therefore, for each
t :

lim
N,L→∞

|Γ[uN,L, ψ−1](t)− y(t)| = 0.

As y ∈ CJ [0, T ], y is uniformly continuous on[0, T ]. Thus
the right hand side of (36) is independent oft. Therefore,

‖Γ[uN,L, ψ−1]− y‖∞ ≤ 2 k2 ∆u + ρy(∆t). (37)

Eq. (33) follows, sinceρy(∆t)) → 0 as∆t → 0.
3. Let u∗ = Γ−1[y, ψ−1]. Then u∗ ∈ CI [0, T ] as Γ−1 :

CJ [0, T ] → CI [0, T ]. The functionu∗ is also monotone, by
the non-negativity condition on the density function and by
y ∈ Cm+,J [0, T ].

From Item 3 of Theorem 2.1,Γ−1 : CJ [0, T ] → CI [0, T ] is
continuous, and hence we get from (33) that‖uN,L−u∗‖∞ →
0 asN, L →∞. ¤

Again let Γ̄[·, ψ−1] and Γ̄−1[·, ψ−1] be defined by (14) and
(15), andȳ defined by (25). The following theorem shows a
continuity property ofR∆u,∆t

similar to that for the Fixed
Point iteration method.

Theorem 5.1:Assume that the density function of the
Preisach operatorΓ satisfies the conditions of Proposition 4.1.
Then:

1) ∀ ȳ ∈ CJ̄ [0, T ],

lim
N,L→∞

Γ̄ ◦R∆u,∆t [ȳ, ψ−1] = ȳ; (38)

2) ∀φ ∈ L1[0, T ],

lim
N,L→∞

<R∆u,∆t
[ȳ, ψ−1]− Γ̄−1[ȳ, ψ−1], φ>= 0, (39)

uniformly for ȳ on bounded sets ofC0,1

J̄
[0, T ].

Proof. The first item follows by simply repeating the proof
of Proposition 5.1. Other than the monotonicity ofu∗ (defined
to be Γ̄−1[ȳ, ψ−1]), the rest of the proof applies to this case.

The proof of the second statement is exactly analogous to
that of Theorem 4.1, and utilizes the convergence in the‖·‖∞
norm of the functions̄uN,L to ū∗. ¤

C. Experimental Results on Tracking Control

The above inversion algorithm is applied to tracking control
of a magnetostrictive actuator (made of Terfenol-D). Mag-
netostriction is the phenomenon of strong coupling between
magnetic properties and mechanical properties of some fer-
romagnetic materials: strains are generated in response to an
applied magnetic field, while conversely, mechanical stresses
in the materials produce measurable changes in magnetization.
By varying the current in the coil surrounding the Terfenol-D
rod, one can vary the magnetic field inside the rod and thus
control the displacement output of the actuator. The actuator
used in this study is an AA-050H series Terfenol-D actuator
manufactured by Etrema. The displacement of the actuator is
measured with a LVDT sensor (Schaevitz 025MHR). Fig. 6
shows the hysteretic relationship between the current input and
the displacement output.
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Fig. 6. A typical hysteresis curve of the Terfenol-D actuator.

When the input current is quasi-static, the hysteretic behav-
ior of the magnetostrictive actuator can be modeled as [17]:





H = c0I
M = Γ[H, ψ−1]
z = lrodλs

M2
s

M2
, (40)

whereH andM are the magnetic field and the bulk magne-
tization along the rod direction, respectively,I is the current
input, z is the displacement output,c0 is the coil factor,lrod is
the rod length,λs is the saturation magnetostriction, andMs is
the saturation magnetization. In (40) the magnetostrictive hys-
teresis is essentially captured by the ferromagnetic hysteresis
betweenM andH, which is modeled by the Preisach operator
Γ.

For a discretization level ofL, the weighting masses for
ΓL can be identified through a constrained least squares
algorithm [7], [25]. HereL has been chosen to be 25, and
∆t = T

N = 10ms. Figure 7 shows the identified density
function. As can be observed, the density function is non-zero
along theβ = α line, which is the same as the liner = 0 in
(r, s) coordinates (recall that the variables(α, β) and(r, s) are
related according tor = α−β

2 and s = α+β
2 ). Therefore, the

key condition of Theorem 2.2 and Proposition 4.1 is satisfied,
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andboth Theorems 4.1 and 5.1 can be applied to this actuator
to find an approximate right-inverse.
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Fig. 7. The identified Preisach density function for a commercial magne-
tostrictive actuator.

An open loop tracking experiment has been conducted based
on the Closest-Match inversion algorithm. Fig. 8 shows the
comparison of the desired trajectory and the actual trajectory,
together with the tracking error. The desired trajectory is
chosen to vary in both amplitude frequency. The tracking error
is small (under 3µm), which shows the inversion algorithm
is effective. An extension of this approach to the closed-loop
l1 control of the magnetostrictive actuator over a0− 200 Hz
range can be found in Tan and Baras [26].

VI. CONCLUSION

The Preisach operator is a popular tool for hysteresis
modeling in various smart materials. Inversion of the Preisach
operator plays a fundamental role in effective control of these
materials. This paper dealt with approximately inverting the
Preisach operator, in such a way that the resulting functions
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Fig. 8. Trajectory tracking of a magnetostrictive actuator based on the
approximate inversion.

have some regularity properties. We first presented a weak
and easily verifiable condition that guarantees the weak-star
continuity of the inverse operator. Motivated by this result,
the notion of a regularization strategy was proposed for the
inversion problem.

In practice, exact inversion of the Preisach operator is
generally not possible due to numerical limitations. Two
inversion schemes were developed in this paper, both of which
fully utilized the piecewise strictly increasing property of
the Preisach operator (under some mild conditions on the
density function). Both algorithms yield Lipschitz continuous
inputs. They were shown to satisfy the first condition for a
regularization strategy. Both schemes also enjoy a continuity
property that is similar to but weaker than that of a regu-
larization strategy. An interesting direction for future work
is to investigate whether the two schemes satisfy the second
condition (Eq. (18)) for a regularization strategy.
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