Available online at www.sciencedirect.com

sciznce (@oinmer

Physica B 372 (2006) 4044

PHYSICA

www.elsevier.com/locate/physb

On the representation of hysteresis operators of Preisach type

R.V. Iyer®, R. Paige

Department of Mathematics and Statistics, Room 201, Broadway and Boston, Texas Tech University, Lubbock, TX 79409-1042, USA

Abstract

Brokate and Sprekels introduced the notion of hysteresis operators of the Preisach type (HOPTs), that are more general than (and
include as a subset) the classical Preisach operator. In this paper, we provide a mathematical framework to the important representation
problem for HOPTs by presenting two results on the approximation of the output function on the set of memory curves. One of the
results shows the existence of a neural network representation when the functional is continuous, and the other shows a representation
based on a multiresolution analysis when the functional is Hélder continuous and bounded on compact subsets of the space of memory

curves.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The Preisach operator is a well-known and widely used
hysteresis operator in the magnetics and smart structures
community. An important result that makes it useful in
applications is the well-known characterization theorem
[1,2] which (in rough terms) states that any hysteresis
operator can be represented by a Preisach operator if and
only if it is rate-independent, and satisfies the congruency
and wiping-out properties. It is also widely known that the
hysteresis phenomenon in ferromagnetism satisfies the
wiping-out property but need not satisfy the congruency
property [1,3]. In the literature, there have been several
generalizations within the framework of the Preisach
operator that were proposed, for example, the moving
model [2] and the nonlinear Priesach model [1,4]. Recently,
Brokate and Sprekels [2] introduced the notion of
hysteresis operators of the Preisach type (HOPTs), that
are more general than (and include as a subset) the
classical, moving and nonlinear Preisach operators. The
generating functional for these operators are formed by a
composition of a family of parametrized Play operators,
and an output function that maps into R. By construction
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the wiping-out property is satisfied, while the nature of the
output function dictates whether the congruency property
is satisfied or not.

Though the theory of HOPTs was well developed by
Brokate and Sprekels [2], the representation of these
operators needs to be studied before they can used in
practical applications. There has been very few prior results
on this topic, and as far as we are aware only Serpico and
Visone [5] studied the problem along these lines. They
make the observation that for the identification of
hysteresis operators of the Preisach type, one only needs
to identify the output function on the space of memory
curves. This they proceed to do by discretizing the space of
memory curves, and then constructing a neural network on
this discretized set. Adly and Abd-El-Hafiz [6] also use a
neural network on the space of discretized memory curves,
though their motivation was to approximate a Preisach
output function. In both these papers, the core motivation
was to obtain a better match of higher-order reversals than
that obtained with a classical Preisach operator.

In this paper, we provide a mathematical framework to
the representation problem, by presenting results on the
approximation of the output function on the set of memory
curves. Not surprisingly, there are multiple solutions to the
representation problem depending on the assumed proper-
ties of the output function. We consider the output
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function on the space of memory curves to be continuous
and show that a neural network representation exists. This
result provides theoretical justification to the work of
Serpico and Visone [5]. The unknown coefficients that
appear in this representation are nonlinearly related to the
output function—a fact which hinders their identification.
Furthermore, it is desirable to obtain results on the decay
of the coefficients for ease of numerical implementation.
This lead us to (a) impose conditions on the modulus of
regularity of the output function and (b) consider it to be
bounded on compact subsets of the set of memory curves.
Proceeding carefully, we show that for this case, a
representation arising from a multivariate multiresolution
analysis exists.

2. Hysteresis operators of Preisach type

A detailed treatment on the Preisach memory curves can
be found in Brokate and Sprekels [2]. The following
introductory material can be found in the same source. For
brevity, we adopt the same notation as Brokate and
Sprekels, and refer the reader to this source for the notions
of Play operator F,: Cpn[0,T] x R = Cpy[0,T], where
Cpm[0, 7] denotes the space of piecewise monotone
continuous functions. Let the “initial memory curve” as
a function of r be given by _,(r). The resulting function
on Ry (with ¢ fixed): ¥, (¢, r) = F,[u,y_,(r)](?) is exactly the
memory curve for a hysteresis operator of Preisach type
with input u. As this function is Lipschitz continuous with
Lipschitz constant 1, define the set of admissible memory
curves for HOPTs:

PoL{pld: Ry — R, [p() — ()< |r 7l
K = Rsupp(¢)< + oo},

where Rgupp(¢) = sup{r|r=0,p(r)#0}. As this set is not a
compact set, we will need to restrict ourselves to the case of

bounded input functions in the space C[0, T] or W'(0, T).
Let the input function u belong to one of the sets:

Uo£{u € C[0, T]| llulloo < Mo; Mo>0}, (1)

Vr,i=0,

Up&{ue W0O,T) | llullyo <My M,>0},
I<p<oo. 2)

We will also impose the reasonable condition #(0) = _,(0)
for all the inputs under consideration, where {/_; is a given
initial memory curve. Then we can show that the set of
memory curves resulting from the application of these
inputs to a parametrized family of Play operators is
compact:

Lemma 2.1. Let U=Uy or U, for 1<p<oo, and

Sfurthermore, suppose that all u € U satisfy u(0) = y_,(0).

For each y_, € Wy, the set: Py = Usepo.n ¥, (1,-) C WPo, is a
ueU

compact subset of C([0, M]), where M = max{|y_,(0)| +
M, Ropp(W_1)} and M = My or M = M, for 1<p<oo or
M = My T for p = oo.

Proof. For the case U = U, by Lemma 2.4.7 in Ref. [2],
the support of the memory curves is the set [0, Roupp(W(T))]
where Rsupp(l_p(T)) = max{My, Rypp(Y_1)}. Obviously,
Ropp(W(T))< M given in the statement. For the case
U = U,, we use the fact that a function v € W'(0,T) if
and only if v(z) = v(0) + fot w(t)dt for some w(-) € LP(0,T).
It is clear that v/(¢) = w(z) a.e on (0, T). So for 1<p<oo:
(DI O] + J5 1V/(8) ds<[o(O)] +[fg 10'(s)1P ds]""P < [_y
(0)] + M, and for p = oo: |[v(2)| < [v(0)] + fé [v'(s)| ds < |v(0)
|+ 1V lloo fo 1<y (0)] + Moot

Therefore supy; <7 v(@)I<|Y_1(0)| + M, and M = M,
or M =M, for 1<p<oo or M =M.T for p=occ.
Again by Lemma 2.4.7 in Ref. [2], the support of the
memory curves is the set [0, Rypp(¥(T))] where
Rsupp(W(T)) = max{|yy_;(0)] + M, Rupp(y_1)}. When U =
Uy or U, for 1<p<oo, the set &y is a bounded,
equicontinuous subset of C[0, M]. Hence it is compact by
the Arzela—Ascoli theorem. [

A main point of Brokate and Sprekels” HOPT is that the
hysteresis operator is determined by an output function on
the space of memory curves ¥, [2, p. 52]. Thus the
representation problem for the operator reduces to the
representation problem for the output function.

3. Approximation of nonlinear continuous functionals

The key ideas in the approximation of a nonlinear
continuous functional defined on ¥, are: (a) Restrict the
set of inputs so that the corresponding subset of memory
curves @y is compact. Approximate the functional on the
subset @y according to the steps below. (b) Project the
memory curves to a finite D-dimensional subspace of
C([0, M]). This process is achieved by maps:
Mp:dy — Cy CRP, and Lp: R? — &Y C dy; the first
map is simply a “sampling” step, while the second step is
an interpolation on the sampled values. (c) Approximate
the continuous function Q : 7 — R by a neural network
or through multiresolution analysis. Notice that: Qp =
Qo Lp can be thought of directly acting on the compact
subset Cyy € R and hence Qp : Cy — R. This is similar
to the approach of Chen—Chen [7]. However, there is also
another approach to the projection and interpolation step
where one can directly project into a finite dimensional
subspace of polynomials [8]. This approach is not appro-
priate for our problem, for the following reason. The
function Q is defined on the space ¥y which consists of
curves of Lipschitz constant 1. The curve after projection
into a finite dimensional subspace of polynomials need not
belong to ¥, and hence approximating Q over this set is
meaningless. Due to this subtlety, the interpolation step in
(b) above needs more attention.

Suppose, 0<r; < --- <rp be a discretization of [0, M].
Suppose that the projection IIp is defined by
Ip : p—>(¢p(r1),...,o(rp)). An interpolation between these
points can be defined in several ways to yield a curve in @.
For r € [rg,rks1], we define the interpolation between
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points (7, ¢(rr)) and (rry1, d(ris1)) to be the curve

¢ (r) = max{y(r) | € Vo; Y(ri) = P(ri);
V(1) = P} (©)

Other possibilities include

¢_(r) = min{y(r) | € Yo Y(ri) = (ri)s;
V(1) = P} (4)

In Fig. 1, a given memory curve ¢(r) is shown as a solid
line, and the curves ¢ (r), ¢_(r) are shown by dashed lines.
It is clear that the given memory curve ¢(r) is always
bounded by ¢_(r) and ¢_(r). It is also clear by the
definition of the sets Uy and U, where 1<p<oo that the
curves ¢ () € @y if ¢() € ®y. The maximum value of
the curve ¢, (r) between r; and rry; can be easily
computed to be MaAXy, <r<ris ¢+(V) = (¢(ri) + ¢(rk+1))/2+
(rk+1 — r¢)/2. The minimum value of the curve ¢_(r)
between rr and rpy; can also be computed to
beminy, <r<p,, @_(r) = (@) + P(rrs1))/2 + (ri — re1)/2,
while the points at which the minimum and maximum are
attained are, respectively (for all cases ¢(rx)= P(rir1)):
x1 = (p(re) — dri1)) /2 + (i + 14 /25 x2 = (P(rpg1)—
O(re))/2 + (ric + re41)/2. With this information, we com-
pute (for all cases ¢(ry) = d(res1))

sup [, (r) — _(r)]

= ¢, (x2) — " gg}“l ¢_(r)
= (1 — 1) — 1) — Pl Q)

Hence, the interpolation ¢_ (r) and the given memory curve
¢(r) satisfy

LS 16— dMI< sup 1) — ¢ ()]
o = (P _+”k) —19(ri) — (req 1)l
19 = Pl = | _max (s — 1) = 160%) = $ier1)]
<, max (st = 1) (6)
Vi

& l X Kpel

Fig. 1. Interpolation between two sampled values ¢(r) and ¢(r>).

This result tells us that for a given ¢ € ¥y, if the net
r<---<rp is dense in the Rpp(¢) in the limit then
limp_. ¢, — ¢llz» = 0. Another fact that can be easily
verified using the same technique as above is

oy — Vil = HIp(P) — Hp(Y)lloo-

3.1. Approximation with neural networks

We next study the approximation of the continuous
functional Q by neural networks. In Serpico—Visone [5] and
Adly—Abd-Al-Hafiz [6], a neural network was constructed
using sigmoidal functions to approximate Q. However,
more general constructions are possible as shown by
Chen—Chen [9,7].

Definition 3.1 (TW function) (Chen and Chen [7]). If g :
R — R satisfies that all linear combinations:

Zfil ciglix+0,), 2, eR, 0;eR,i=1,...,N, are
dense in every Cla,b], then g is called a Tauber—Wiener
(TW) function.

Sigmoidal functions that are widely used in neural
network literature are TW functions [7].

Theorem 3.1. Suppose Q is a continuous functional on ¥y.
Let U= Uy or U, for 1 <p<oo, and suppose that allu € U
satisfy u(0) = _,(0). Furthermore, suppose that g is a TW
function. Then for any ¢>0, there are D points
ri,...,rp € [0, M]; a positive integer N; and real constants
¢i, 0i, &i=1,...,N, j=1,...,D such that

N D
0 -3 g <z bl + el-)
Jj=1

i=1

<¢ Ve dy. (7)

Proof. @ is a compact subset of C([0, M]) when U = U,
or U, by Lemma 2.1. So the theorem follows from
Theorem 4 of Chen and Chen [7]. O

It is interesting to note here that the Tietze Extension
theorem is used in the proof of Theorem 4 in Ref. [7], while
we will need the Whitney—McShane Extension Lemma [10]
in the next section.

3.2. Approximation with multiresolution analysis

Theorem 3.1 is an existence theorem and does not yield
any conditions on the coefficients ¢;, 0;, {;; as N — oo. This
is because we have not imposed any conditions on Q other
than continuity. Using the framework of multiresolution
analysis we can hope to characterize the coefficients if we
imposed some restriction on the modulus of continuity of
O—that is defined as [2]

@oo(0;0) £ sup{|Q(¢) — Q)| | p, ¥ € Pos [l — I~ <}
(®)

The functional Q is said to be a-Holder continuous if

10(¢) = QWIS Cllp = li7~: ¢ € P ©)
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for some C>0 and 0<a<1. The smallest number C for
which Eq. (9) is true is called the Holder semi-norm [Q], of
Q. It is easy to see that Q is a-Holder continuous with if
and only if w.(Q; )< Co”. One possible restriction that
one might impose on Q is for it to be a-Holder continuous.
However, as we will be approximating of Qp, it is the
Hoélder continuity of Qp, that is required. The modulus of
continuity of Q can be defined to be

®oo(Qp3 8) £ sup{|Qp(Ip($)) — Qp(ITp())|

|, € Woi IHIp(p) — Hp(Y)lle <O} (10)
The first result is straight-forward. If Q is a-Holder
continuous and ¢ € ¥, then

Jim 10(¢) = QpUTp(Y))| = lim 0(¢) — (¢, )l

< Jim Cllg— I~ =0.

We now suppose that a discretization r; < --- <rp has
been selected. Let ¢ € ¥y, and let ¢ =@, and ¥y =¢_,
where the interpolated curves are as defined in Egs. (3)
and (4). Then from Eq. (6) we see that [[¢p — Y~ =
maxy—i.._p_1(rk+1 — r¢). In the finite dimensional space R”
we have |[IIp(¢) — IIp(Y)|lso = 0. It is clear that we can
change the values of ¢ by at most (14| — ) in the interval
(ri,ree1) and  still have |[Ip(¢p) — Hp(Yf)]leo =0. On
the other hand, we can have curves ¢, € ¥y, that differ
by a constant, yielding [[IIp(¢) — Hp(Y)llee = ¢ — Yl .
Hence

©oo(Qp,0) = sup 1Qp(ITp(¢)) — Qp(Tp())
1T o(@)~TTp ()]l <0
< sup Q) — QW)
l¢=vlioe <0
= Woo(Q, 9).

Hence any restriction on the modulus of continuity of Q
passes on to Qp. Furthermore, the Holder semi-norm
[Op], <[Q].-

We now turn our attention to multiresolution analysis. A
multiresolution analysis of L*(RP) consists of closed
subspaces (V);cz of L(RP) having the following properties
[11,12]:

l....cVicVoCcV_4C---.

2. Ujez Vj is dense in L*(R”) and ez Vi = {0}

3.feVief(27) eV,

4. feVy= <=f(-—y) eV, forallyezP.

5. There exists a function called the scaling function
¢ € Vo, such that the system {¢(-—7)}, 0 is an
orthonormal basis in V.

Even though the D-dimensional Haar wavelet is a multi-
resolution analysis on L*(RP), it is not an appropriate tool
to approximate a-Hoélder continuous functions, as we need

wavelets with more regularity. For our purposes, we only
need the following definition (modified from Ref. [11]):

Definition 3.2. A multiresolution analysis on R” is called
regular if the scaling function ¢ is of class C!, and satisfies:
10/0x)p(x)| < Ci /(1 + |x])*, for each k=0,1,2,... and
some constants Cy.

It is known that there exist regular multiresolution
analysis for L?>(RP) [11-13], with an orthonormal wavelet
set. (Y, (x) =272, x k), i=1,2,...,2° 1, j e
Z, k € ZP ). If ¢, is the scaling function, then we denote
its translates in Vo by ¢, = ¢o(x — k).

Let us now consider the approximation of Qp using
multiresolution analysis. As Qp is only defined on a
compact subset Cy of RP, we extend it to a a-Hélder
continuous function Q%' defined on all of R?; agreeing
with Qp on Cy; and having the same Holder semi-norm as
QOp. This is done by an easy extension of Whitney—Mc-
Shane Lemma [10]. For instance, the function Q%'(x) =
infuec, Op(a) +[Qpl,llx — al|* where x € RP, satisfies the
requirements.

The projection of Q%'(x) where x € R? onto V), is
given by B, = Ik Qj;“(x)d_)o’k dx, k € 7. Here d;o,k denotes
the complex conjugate of ¢,,. The projection of

5'(x) onto the wavelet subspaces is given by o =
27PIR [ O W d, i =1,2,...,20 — 1, je Z, ke ZP.
Then we have the following theorem [12]:

Theorem 3.2. Suppose that Q: ¥y — R is s-Holder con-
tinuous for some 0<s<1 and Q is bounded on compact
subsets of Yy. Let U = Uy or U, for 1<p<oo and u(0) =
V_1(0) for allu € U. Let the support of the memory curves in
&y be contained in [0, M] and let 0 = r1 < --- <rp = Mbe a
discretization of [0, M]. Then Q%" is s-Hdlder continuous
(O<s<) if and only if in a regular multiresolution
approximation the coefficients satisfy |By|<Co; k € 7P
and o x| < C 27D i=1,2,...,20 — 1, j>0, k € 77,
for some Cy, C;>0.

Proof. The assumption that Q is bounded on compact
subsets of Woimplies that Q%' C LIIOC(RD). This and the
assumption on the «-Holder continuity of Q yield the
theorem by Theorem 5, Chapter 6 of Meyer [12]. O

Theorem 3.3. Suppose Q and the input signals satisfy the
conditions of Theorem 3.2. Let Rypp(Pv)<M. Then given
an >0, there exists 0 =r < --- <rp of [0, M] such that

0(P) =Y Pox boxTn(@))

kez
201

+Z Z Z %k Wi Ip(P))| <& ¢ € ¥o, (11)

J20 =l kez®

where the coefficients B and o;_; satisfy the conditions of
Theorem 3.2.

Proof. The proof follows from the fact that as the net 0 =
r1< --- <rp becomes dense in [0, M] for D — oo, we have
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limD*)OO'Q((rb) - Q(¢+)| = hmDﬁoo|Q(¢) - QD(HD(¢))| =
0, and Theorem 3.2. O

4. Conclusion

In this paper, we propose two approaches to the
representation problem for hysteresis operators of
Preisach type (HOPTs). One of the results shows the
existence of a neural network representation when the
functional is continuous, and the other shows a representa-
tion based on a multiresolution analysis when the func-
tional is Holder continuous and locally bounded the set of
memory curves.
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