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Abstract

Brokate and Sprekels introduced the notion of hysteresis operators of the Preisach type (HOPTs), that are more general than (and

include as a subset) the classical Preisach operator. In this paper, we provide a mathematical framework to the important representation

problem for HOPTs by presenting two results on the approximation of the output function on the set of memory curves. One of the

results shows the existence of a neural network representation when the functional is continuous, and the other shows a representation

based on a multiresolution analysis when the functional is Hölder continuous and bounded on compact subsets of the space of memory

curves.

r 2005 Elsevier B.V. All rights reserved.

Keywords: Hysteresis operators of Preisach type; Representation problem; Neural networks; Multiresolution analysis
1. Introduction

The Preisach operator is a well-known and widely used
hysteresis operator in the magnetics and smart structures
community. An important result that makes it useful in
applications is the well-known characterization theorem
[1,2] which (in rough terms) states that any hysteresis
operator can be represented by a Preisach operator if and
only if it is rate-independent, and satisfies the congruency
and wiping-out properties. It is also widely known that the
hysteresis phenomenon in ferromagnetism satisfies the
wiping-out property but need not satisfy the congruency
property [1,3]. In the literature, there have been several
generalizations within the framework of the Preisach
operator that were proposed, for example, the moving
model [2] and the nonlinear Priesach model [1,4]. Recently,
Brokate and Sprekels [2] introduced the notion of
hysteresis operators of the Preisach type (HOPTs), that
are more general than (and include as a subset) the
classical, moving and nonlinear Preisach operators. The
generating functional for these operators are formed by a
composition of a family of parametrized Play operators,
and an output function that maps into R. By construction
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the wiping-out property is satisfied, while the nature of the
output function dictates whether the congruency property
is satisfied or not.
Though the theory of HOPTs was well developed by

Brokate and Sprekels [2], the representation of these
operators needs to be studied before they can used in
practical applications. There has been very few prior results
on this topic, and as far as we are aware only Serpico and
Visone [5] studied the problem along these lines. They
make the observation that for the identification of
hysteresis operators of the Preisach type, one only needs
to identify the output function on the space of memory
curves. This they proceed to do by discretizing the space of
memory curves, and then constructing a neural network on
this discretized set. Adly and Abd-El-Hafiz [6] also use a
neural network on the space of discretized memory curves,
though their motivation was to approximate a Preisach
output function. In both these papers, the core motivation
was to obtain a better match of higher-order reversals than
that obtained with a classical Preisach operator.
In this paper, we provide a mathematical framework to

the representation problem, by presenting results on the
approximation of the output function on the set of memory
curves. Not surprisingly, there are multiple solutions to the
representation problem depending on the assumed proper-
ties of the output function. We consider the output
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function on the space of memory curves to be continuous
and show that a neural network representation exists. This
result provides theoretical justification to the work of
Serpico and Visone [5]. The unknown coefficients that
appear in this representation are nonlinearly related to the
output function—a fact which hinders their identification.
Furthermore, it is desirable to obtain results on the decay
of the coefficients for ease of numerical implementation.
This lead us to (a) impose conditions on the modulus of
regularity of the output function and (b) consider it to be
bounded on compact subsets of the set of memory curves.
Proceeding carefully, we show that for this case, a
representation arising from a multivariate multiresolution
analysis exists.

2. Hysteresis operators of Preisach type

A detailed treatment on the Preisach memory curves can
be found in Brokate and Sprekels [2]. The following
introductory material can be found in the same source. For
brevity, we adopt the same notation as Brokate and
Sprekels, and refer the reader to this source for the notions
of Play operator Fr : Cpm½0;T � � R! Cpm½0;T �, where
Cpm½0;T � denotes the space of piecewise monotone
continuous functions. Let the ‘‘initial memory curve’’ as
a function of r be given by c�1ðrÞ. The resulting function
on Rþ (with t fixed): cuðt; rÞ ¼ F r½u;c�1ðrÞ�ðtÞ is exactly the
memory curve for a hysteresis operator of Preisach type
with input u. As this function is Lipschitz continuous with
Lipschitz constant 1, define the set of admissible memory

curves for HOPTs:

C09ff jf : Rþ ! R; jfðrÞ � fðr̄Þjpjr� r̄j 8r; r̄X0,

K ¼ RsuppðfÞoþ1g,

where RsuppðfÞ9 supfr j rX0;fðrÞa0g. As this set is not a
compact set, we will need to restrict ourselves to the case of
bounded input functions in the space C½0;T � or W 1;pð0;TÞ.
Let the input function u belong to one of the sets:

U09fu 2 C½0;T � j kuk1pM0; M040g, (1)

Up9fu 2W 1;pð0;TÞ j kukW 1;ppMp; Mp40g,

1ppp1. ð2Þ

We will also impose the reasonable condition uð0Þ ¼ c�1ð0Þ
for all the inputs under consideration, where c�1 is a given
initial memory curve. Then we can show that the set of
memory curves resulting from the application of these
inputs to a parametrized family of Play operators is
compact:

Lemma 2.1. Let U ¼ U0 or Up for 1ppp1; and

furthermore, suppose that all u 2 U satisfy uð0Þ ¼ c�1ð0Þ.
For each c�1 2 C0, the set: FU ¼

S
t2½0;T �

u2U

cuðt; �Þ � C0, is a

compact subset of Cð½0; M̄�Þ, where M̄ ¼ maxfjc�1ð0Þj þ
M;Rsuppðc�1Þg and M ¼M0 or M ¼Mp for 1ppo1 or

M ¼M1T for p ¼ 1.
Proof. For the case U ¼ U0, by Lemma 2.4.7 in Ref. [2],
the support of the memory curves is the set ½0;RsuppðcðTÞÞ�
where RsuppðcðTÞÞ ¼ maxfM0;Rsuppðc�1Þg. Obviously,
RsuppðcðTÞÞpM̄ given in the statement. For the case
U ¼ Up, we use the fact that a function v 2W 1;pð0;TÞ if
and only if vðtÞ ¼ vð0Þ þ

R t

0 wðtÞdt for some wð�Þ 2 Lpð0;TÞ.
It is clear that v0ðtÞ ¼ wðtÞ a.e on ð0;TÞ. So for 1ppo1:
jvðtÞjpjvð0Þj þ

R t

0 jv
0ðsÞj dspjvð0Þj þ ½

R t

0 jv
0ðsÞjp ds�1=ppjc�1

ð0Þj þMp, and for p ¼ 1: jvðtÞjpjvð0Þj þ
R t

0 jv
0ðsÞj dspjvð0Þ

j þ kv0k1
R t

0 1 dspjc�1ð0Þj þM1t.
Therefore sup0ptpT jvðtÞjpjc�1ð0Þj þM, and M ¼M0

or M ¼Mp for 1ppo1 or M ¼M1T for p ¼ 1.
Again by Lemma 2.4.7 in Ref. [2], the support of the
memory curves is the set ½0;RsuppðcðTÞÞ� where
RsuppðcðTÞÞ ¼ maxfjc�1ð0Þj þM;Rsuppðc�1Þg. When U ¼

U0 or Up for 1ppp1, the set FU is a bounded,
equicontinuous subset of C½0; M̄�: Hence it is compact by
the Arzela–Ascoli theorem. &

A main point of Brokate and Sprekels’ HOPT is that the
hysteresis operator is determined by an output function on
the space of memory curves C0 [2, p. 52]. Thus the
representation problem for the operator reduces to the
representation problem for the output function.

3. Approximation of nonlinear continuous functionals

The key ideas in the approximation of a nonlinear
continuous functional defined on C0 are: (a) Restrict the
set of inputs so that the corresponding subset of memory
curves FU is compact. Approximate the functional on the
subset FU according to the steps below. (b) Project the
memory curves to a finite D-dimensional subspace of
Cð½0; M̄�Þ. This process is achieved by maps:
PD : FU ! CU � RD, and LD : R

D ! FD
U � FU ; the first

map is simply a ‘‘sampling’’ step, while the second step is
an interpolation on the sampled values. (c) Approximate
the continuous function Q : FD

U ! R by a neural network
or through multiresolution analysis. Notice that: QD ¼

Q � LD can be thought of directly acting on the compact
subset CU � RD and hence QD : CU ! R. This is similar
to the approach of Chen–Chen [7]. However, there is also
another approach to the projection and interpolation step
where one can directly project into a finite dimensional
subspace of polynomials [8]. This approach is not appro-
priate for our problem, for the following reason. The
function Q is defined on the space C0 which consists of
curves of Lipschitz constant 1. The curve after projection
into a finite dimensional subspace of polynomials need not
belong to C0 and hence approximating Q over this set is
meaningless. Due to this subtlety, the interpolation step in
(b) above needs more attention.
Suppose, 0pr1p � � �prD be a discretization of ½0; M̄�.

Suppose that the projection PD is defined by
PD : f7!ðfðr1Þ; . . . ;fðrDÞÞ. An interpolation between these
points can be defined in several ways to yield a curve in FU .
For r 2 ½rk; rkþ1�, we define the interpolation between
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points ðrk;fðrkÞÞ and ðrkþ1;fðrkþ1ÞÞ to be the curve

fþðrÞ ¼ maxfcðrÞ jc 2 C0; cðrkÞ ¼ fðrkÞ;

cðrkþ1Þ ¼ fðrkþ1Þg. ð3Þ

Other possibilities include

f�ðrÞ ¼ minfcðrÞ jc 2 C0; cðrkÞ ¼ fðrkÞ;

cðrkþ1Þ ¼ fðrkþ1Þg. ð4Þ

In Fig. 1, a given memory curve fðrÞ is shown as a solid
line, and the curves fþðrÞ; f�ðrÞ are shown by dashed lines.
It is clear that the given memory curve fðrÞ is always
bounded by fþðrÞ and f�ðrÞ: It is also clear by the
definition of the sets U0 and Up where 1ppp1 that the
curves f�ð�Þ 2 FU if fð�Þ 2 FU . The maximum value of
the curve fþðrÞ between rk and rkþ1 can be easily
computed to be maxrkprprkþ1

fþðrÞ ¼ ðfðrkÞ þ fðrkþ1ÞÞ=2þ
ðrkþ1 � rkÞ=2. The minimum value of the curve f�ðrÞ
between rk and rkþ1 can also be computed to
beminrkprprkþ1

f�ðrÞ ¼ ðfðrkÞ þ fðrkþ1ÞÞ=2þ ðrk � rkþ1Þ=2,
while the points at which the minimum and maximum are
attained are, respectively (for all cases fðrkÞxfðrkþ1Þ):
x1 ¼ ðfðrkÞ � fðrkþ1ÞÞ=2þ ðrk þ rkþ1Þ=2; x2 ¼ ðfðrkþ1Þ�

fðrkÞÞ=2þ ðrk þ rkþ1Þ=2. With this information, we com-
pute (for all cases fðrkÞxfðrkþ1Þ)

sup
rkprprkþ1

jfþðrÞ � f�ðrÞj

¼ fþðx2Þ � min
rkprprkþ1

f�ðrÞ

¼ ðrkþ1 � rkÞ � jfðrkÞ � fðrkþ1Þj. ð5Þ

Hence, the interpolation fþðrÞ and the given memory curve
fðrÞ satisfy

sup
rkprprkþ1

jfþðrÞ � fðrÞjp sup
rkprprkþ1

jfþðrÞ � f�ðrÞj

¼ ðrkþ1 � rkÞ � jfðrkÞ � fðrkþ1Þj.

kfþ � fkL1 ¼ max
k¼1;...;D�1

ðrkþ1 � rkÞ � jfðrkÞ � fðrkþ1Þj

p max
k¼1;...;D�1

ðrkþ1 � rkÞ. ð6Þ
Fig. 1. Interpolation between two sampled values fðr1Þ and fðr2Þ.
This result tells us that for a given f 2 C0, if the net
r1p � � �prD is dense in the RsuppðfÞ in the limit then
limD!1 kfþ � fkL1 ¼ 0. Another fact that can be easily
verified using the same technique as above is
kfþ � cþkL1 ¼ kPDðfÞ �PDðcÞk1.

3.1. Approximation with neural networks

We next study the approximation of the continuous
functional Q by neural networks. In Serpico–Visone [5] and
Adly–Abd-Al-Hafiz [6], a neural network was constructed
using sigmoidal functions to approximate QD: However,
more general constructions are possible as shown by
Chen–Chen [9,7].

Definition 3.1 (TW function) (Chen and Chen [7]). If g :
R! R satisfies that all linear combinations:PN

i¼1 cigðlixþ yiÞ; li 2 R, yi 2 R; i ¼ 1; . . . ;N, are

dense in every C½a; b�, then g is called a Tauber–Wiener
(TW) function.

Sigmoidal functions that are widely used in neural
network literature are TW functions [7].

Theorem 3.1. Suppose Q is a continuous functional on C0.
Let U ¼ U0 or Up for 1ppp1, and suppose that all u 2 U

satisfy uð0Þ ¼ c�1ð0Þ. Furthermore, suppose that g is a TW

function. Then for any �40, there are D points

r1; . . . ; rD 2 ½0; M̄�; a positive integer N; and real constants

ci, yi, xij, i ¼ 1; . . . ;N ; j ¼ 1; . . . ;D such that

QðfÞ �
XN

i¼1

cig
XD

j¼1

xijfðrjÞ þ yi

 !�����
�����o� 8f 2 FU . (7)

Proof. FU is a compact subset of Cð½0; M̄�Þ when U ¼ U0

or Up by Lemma 2.1. So the theorem follows from
Theorem 4 of Chen and Chen [7]. &

It is interesting to note here that the Tietze Extension
theorem is used in the proof of Theorem 4 in Ref. [7], while
we will need the Whitney–McShane Extension Lemma [10]
in the next section.

3.2. Approximation with multiresolution analysis

Theorem 3.1 is an existence theorem and does not yield
any conditions on the coefficients ci; yi; xij as N !1. This
is because we have not imposed any conditions on Q other
than continuity. Using the framework of multiresolution
analysis we can hope to characterize the coefficients if we
imposed some restriction on the modulus of continuity of
Q—that is defined as [2]

o1ðQ; dÞ9 supfjQðfÞ �QðcÞj jf;c 2 C0; kf� ckL1pdg.
(8)

The functional Q is said to be a-Hölder continuous if

jQðfÞ �QðcÞjpCkf� ckaL1 ; f;c 2 C0 (9)
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for some C40 and 0oao1: The smallest number C for
which Eq. (9) is true is called the Hölder semi-norm ½Q�a of
Q. It is easy to see that Q is a-Hölder continuous with if
and only if o1ðQ; dÞpCda. One possible restriction that
one might impose on Q is for it to be a-Hölder continuous.
However, as we will be approximating of QD, it is the
Hölder continuity of QD that is required. The modulus of
continuity of QD can be defined to be

o1ðQD; dÞ9 supfjQDðPDðfÞÞ �QDðPDðcÞÞj

jf;c 2 C0; kPDðfÞ �PDðcÞk1pdg. ð10Þ

The first result is straight-forward. If Q is a-Hölder
continuous and f 2 C0, then

lim
D!1

jQðfÞ �QDðPDðcÞÞj ¼ lim
D!1

jQðfÞ �QðfþÞj

p lim
D!1

Ckf� fþk
a
L1 ¼ 0.

We now suppose that a discretization r1p � � �prD has
been selected. Let j 2 C0, and let f ¼ jþ and c ¼ j�,
where the interpolated curves are as defined in Eqs. (3)
and (4). Then from Eq. (6) we see that kf� ckL1 ¼

maxk¼1;...;D�1ðrkþ1 � rkÞ. In the finite dimensional space RD

we have kPDðfÞ �PDðcÞk1 ¼ 0. It is clear that we can
change the values of f by at most ðrkþ1 � rkÞ in the interval
ðrk; rkþ1Þ and still have kPDðfÞ �PDðcÞk1 ¼ 0. On
the other hand, we can have curves f;c 2 C0, that differ
by a constant, yielding kPDðfÞ �PDðcÞk1 ¼ kf� ckL1 .
Hence

o1ðQD; dÞ ¼ sup
kPDðfÞ�PDðcÞk1pd

jQDðPDðfÞÞ �QDðPDðcÞÞj

p sup
kf�ckL1pd

jQðfÞ �QðcÞj

¼ o1ðQ; dÞ.

Hence any restriction on the modulus of continuity of Q

passes on to QD: Furthermore, the Hölder semi-norm
½QD�ap½Q�a.

We now turn our attention to multiresolution analysis. A
multiresolution analysis of L2ðRDÞ consists of closed
subspaces ðV jÞj2Z of LðRDÞ having the following properties
[11,12]:
1.
 � � � � V 1 � V 0 � V�1 � � � �.S T

2.
 j2Z V j is dense in L2ðRDÞ and j2Z Vj ¼ f0g.

3.
 f 2 Vj3f ð2�j�Þ 2 V 0.

4.
 f 2 V 0 ¼;3f ð� � gÞ 2 V 0 for all g 2 ZD.

5.
 There exists a function called the scaling function

f 2 V0, such that the system ffð� � gÞgg2ZD is an
orthonormal basis in V 0.

Even though the D-dimensional Haar wavelet is a multi-
resolution analysis on L2ðRDÞ, it is not an appropriate tool
to approximate a-Hölder continuous functions, as we need
wavelets with more regularity. For our purposes, we only
need the following definition (modified from Ref. [11]):

Definition 3.2. A multiresolution analysis on RD is called
regular if the scaling function f is of class C1, and satisfies:
jðq=qxÞfðxÞjpCk=ð1þ jxjÞ

k, for each k ¼ 0; 1; 2; . . . and
some constants Ck.

It is known that there exist regular multiresolution
analysis for L2ðRDÞ [11–13], with an orthonormal wavelet
set fci;j;kðxÞ ¼ 2�Dj=2cið2

�jx� kÞ; i ¼ 1; 2; . . . ; 2D � 1; j 2

Z; k 2 ZD:g. If f0 is the scaling function, then we denote
its translates in V 0 by f0;k ¼ f0ðx� kÞ.
Let us now consider the approximation of QD using

multiresolution analysis. As QD is only defined on a
compact subset CU of RD, we extend it to a a-Hölder
continuous function Qext

D defined on all of RD; agreeing
with QD on CU ; and having the same Hölder semi-norm as
QD. This is done by an easy extension of Whitney–Mc-
Shane Lemma [10]. For instance, the function Qext

D ðxÞ ¼

infa2CU
QDðaÞ þ ½QD�akx� aka where x 2 RD, satisfies the

requirements.
The projection of Qext

D ðxÞ where x 2 RD onto V0 is
given by b0;k ¼

R
Qext

D ðxÞf̄0;k dx; k 2 ZD. Here f̄0;k denotes
the complex conjugate of f0;k. The projection of
Qext

D ðxÞ onto the wavelet subspaces is given by ai;j;k ¼

2�Dj=2
R

Qext
D ðxÞc̄i;j;k dx, i ¼ 1; 2; . . . ; 2D � 1, j 2 Z, k 2 ZD.

Then we have the following theorem [12]:

Theorem 3.2. Suppose that Q : C0! R is s-Hölder con-

tinuous for some 0oso1 and Q is bounded on compact

subsets of C0. Let U ¼ U0 or Up for 1ppp1 and uð0Þ ¼
c�1ð0Þ for all u 2 U . Let the support of the memory curves in

FU be contained in ½0; M̄� and let 0 ¼ r1p � � �prD ¼ M̄be a

discretization of ½0; M̄�. Then Qext
D is s-Hölder continuous

ð0oso1Þ if and only if in a regular multiresolution

approximation the coefficients satisfy jb0;kjpC0; k 2 ZD

and jai;�j;kjpC12
�jðsþ

Dj
2 Þ; i ¼ 1; 2; . . . ; 2D � 1, jX0; k 2 ZD,

for some C0;C140.

Proof. The assumption that Q is bounded on compact
subsets of C0implies that Qext

D � L1
locðR

DÞ. This and the
assumption on the a-Hölder continuity of Q yield the
theorem by Theorem 5, Chapter 6 of Meyer [12]. &

Theorem 3.3. Suppose Q and the input signals satisfy the

conditions of Theorem 3.2. Let RsuppðFU ÞpM̄. Then given

an �40, there exists 0 ¼ r1p � � �prD of ½0; M̄� such that

QðfÞ �
X
k2Z

b0;k f0;kðPDðfÞÞ

�����
þ
X
jX0

X2D�1

i¼1

X
k2ZD

ai;�j;k ci;�j;kðPDðfÞÞ

�����o�; f 2 C0, ð11Þ

where the coefficients b0;k and ai;�j;k satisfy the conditions of

Theorem 3.2.

Proof. The proof follows from the fact that as the net 0 ¼
r1p � � �prD becomes dense in ½0; M̄� for D!1, we have
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limD!1jQðfÞ �QðfþÞj ¼ limD!1jQðfÞ �QDðPDðfÞÞj ¼
0, and Theorem 3.2. &

4. Conclusion

In this paper, we propose two approaches to the
representation problem for hysteresis operators of
Preisach type (HOPTs). One of the results shows the
existence of a neural network representation when the
functional is continuous, and the other shows a representa-
tion based on a multiresolution analysis when the func-
tional is Hölder continuous and locally bounded the set of
memory curves.

References

[1] I.D. Mayergoyz, Mathematical Models of Hysteresis, Springer,

Berlin, 1991.

[2] M. Brokate, J. Sprekels, Hysteresis and Phase Transitions, Applied

Mathematical Sciences, Springer, Berlin, 1996.

[3] A.A. Adly, I.D. Mayergoyz, A. Bergvist, Preisach modeling of

magnetostrictive hysteresis, J. Appl. Phys. 69 (8) (1991) 5777.
[4] I.D. Mayergoyz, G. Friedman, Generalized Preisach model of

hysteresis, IEEE Trans. Magn. 24 (1) (1988) 212.

[5] C. Serpico, C. Visone, Magnetic hysteresis modeling via feed-forward

neural networks, IEEE Trans. Magn. 34 (3) (1998) 623.

[6] A.A. Adly, S.K. Abd-El-Hafiz, Using neural networks in the

identification of Preisach-type hysteresis models, IEEE Trans. Magn.

34 (3) (1998) 629.

[7] T. Chen, H. Chen, Universal approximation to nonlinear operators

by neural networks with arbitrary activation functions and its

application to dynamical systems, IEEE Trans. Neural Networks 6

(4) (1995) 911.

[8] H.N. Mhaskar, N. Hahm, Neural networks for functional approx-

imation and system identification, Neural Comput. 9 (1997) 143.

[9] T. Chen, H. Chen, Approximation capability to functions of several

variables, nonlinear functionals, and operators by Radial Basis

Function neural networks, IEEE Trans. Neural Networks 6 (4) (1995)

904.

[10] E.J. McShane, Extension of range of functions, Bull. Am. Math. Soc.

40 (1934) 837.

[11] P. Wojtaszczyk, A Mathematical Introduction to Wavelets, Cam-

bridge University Press, Cambridge, 1997.

[12] Y. Meyer, Wavelets and Operators, Cambridge Studies in Advanced

Mathematics, Cambridge, 1992.

[13] S. Jaffard, Y. Meyer, R.D. Ryan, Wavelets: Tools for Science and

Technology, SIAM, Philadelphia, PA, 2001.


	On the representation of hysteresis operators of Preisach type
	Introduction
	Hysteresis operators of Preisach type
	Approximation of nonlinear continuous functionals
	Approximation with neural networks
	Approximation with multiresolution analysis

	Conclusion
	References


