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Abstract— Implicit integration schemes, such as Runge-Kutta
methods, are widely used in mathematics and engineering
to numerically solve ordinary differential equations. Every
integration method requires one to choose a step-size, h, for
the integration. If h is too large or too small the efficiency of
an implicit scheme is relatively low. As every implicit integration
scheme has a global error inherent to the scheme, we choose the
total number of computations in order to achieve a prescribed
global error as a measure of efficiency of the integration
scheme. In this paper, we propose the idea of choosing h
by minimizing an efficiency function for general Runge-Kutta
integration routines. We show the efficacy of this approach on
some standard problems found in the literature.

I. INTRODUCTION

Recently, there has been interest in the literature con-
cerning the use of geometric integration methods, which are
numerical methods that preserve some geometric quantities.
For example, the symplectic area of a Hamiltonian system
is one such concern in recent literature [4], [10], [14], [13].
Tan [17] explores this concept using implicit Runge-Kutta
integrators. Hamiltonian systems are of particular interest
in applied mathematics, and in fact we test our variable
step-size selection method on a well-known Hamiltonian
system in Section IV-B. Furthermore, Hairer and Wanner
[5], [6] showed that although implicit Runge-Kutta methods
can be difficult to implement, they possess the strongest
stability properties. These properties include A-stability and
A-contractivity (algebraic stability). These are the main rea-
sons we choose to investigate variable integration step-size
selection using Runge-Kutta methods.

First order ordinary differential equations are solved nu-
merically using many different integration routines. Among
the most popular methods are Runge-Kutta methods, mul-
tistep methods and extrapolation methods. Hull, Enright,
Fellen and Sedgwick [8] have written an excellent compari-
son of these types of methods. They test a number of Runge-
Kutta methods against multistep methods based on Adams
formulas and an extrapolation method due to Bulirsch and
Stoer [1]. A goal of that paper was to compare these different
types of methods as to how they handle routine integration
steps under a variety of accuracy requirements.

Implicit or explicit integration methods require one to
choose a step-size, h, for the integration. If h is too large or
too small the efficiency of an implicit scheme is relatively
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low. One of the questions Bulirsch and Stoer investigate is a
strategy for deciding what step-size h to use as the methods
progress from one step to another. Others have investigated
this very same concept in the past [8], [15], [7], [2]. As
every implicit integration scheme has a global error inherent
to the scheme, we choose the total number of computations
in order to achieve a prescribed global error as a measure
of efficiency of the integration scheme. In this paper, we
propose the idea of choosing h by minimizing an efficiency
function for general Runge-Kutta integration routines.

In the rest of this section, we describe the approach taken
by Stoer and Bulirsch [15] for computing the variable step-
sizes. The method described by Stoer and Bulirsch is quite
similar to that of [8]. In order to describe the method, we
first note that throughout this paper, we will consider solving
the following first order ordinary differential equation:

dx

dt
= f(t, x), x(0) = x0 ∈ IRn, t ∈ [0, T ], (1)

where f : IR × IRn → IRn is Lipschitz continuous in the
second argument. This means for any t ∈ [0, T ] and any
vectors x, y ∈ IRn, ‖f(t, x) − f(t, y)‖ ≤ L(t)‖x − y‖,
where L(·) ∈ L∞[0, T ]. Stoer and Bulirsch consider two
discretization methods, Φ1 and Φ2, of Runge-Kutta type to
solve (1). The first method, Φ1, is of order p and the second
method, Φ2, is of order p + 1. In other words, they first
compute

x̄k+1 = x̄k + holdΦ1(tk, x̄k;hold)
x̂k+1 = x̄k + holdΦ2(tk, x̄k;hold).

For a more detailed description of Φ1 and Φ2, please
consult [15]. Then, denoting the tolerance by ε, they deter-

mine hnew = hold

(
ε |x̄k+1 − x̂k+1|−1

)1/(p+1)

. This process
clearly depends on a measure of the local error at the
(k + 1)−st step of integration. Stoer and Bulirsch [15] also
point out that there is another way to determine hnew, but it
requires one to estimate higher order derivatives of f . For
example, a fourth order Runge-Kutta method would require
one to estimate derivatives of f of the fourth order. Not
only is this very costly, but this other method uses the local
truncation error at the k−th step of integration.

II. RUNGE-KUTTA METHODS

Numerical methods for solving initial value problems such
as (1) may be either explicit or implicit. The focus of
this paper is concentrated on using implicit methods. In
this section, we describe two classes of implicit numerical
integration schemes and how one might use the methods to
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solve (1). We assume the solution exists for t ∈ [0, T ], with
T > 0.

A.M. Stuart and A.R. Humphries [16] describe a general
s-stage fixed time-step Runge-Kutta method for the solution
of (1) which may be written as:

yi = xk + h

s∑

j=1

aijf(tk, yj), i = 1, ..., s, (2)

xk+1 = xk + h

s∑

i=1

bif(tk, yi), x0 = x(0). (3)

In the above equations, the yi’s are called stage-values, and
xk approximates the exact solution x(tk) at the point tk =
kh, where h is the fixed step-size of integration.

We now make a few definitions. Let A(i, j) = aij be the
s× s matrix of aij entries. Let Yk =

[
yT
1 · · · yT

s

]T
, Xk =[

xT
k · · · xT

k

]T
, and Ā = A ⊗ I , where I is the n × n

identity matrix and ⊗ is the Kronecker product. In other
words, Ā is the ns × ns matrix direct product of A and
I. Let f̃(tk, Yk) =

[
f(tk, y1)T · · · f(tk, ys)T

]T
. We can

now write the system of ns equations given in equation (2)
as

Yk = Xk + hĀf̃(tk, Yk). (4)

Here we must point out that the subscript k in Yk signifies
that each yi (i = 1, ..., s) depends on k. For each k this is an
implicit equation involving the vectors {yi}s

i=1. Equation (4)
can be solved using Newton’s method or fixed point iteration
(Picard iteration). Let’s consider Picard iteration. We solve
(4) for each k by considering the following iterative scheme:

Y j+1
k = Xk + hĀf̃

(
tk, Y j

k

)
= F

(
tk, Y j

k

)
. (5)

For any fixed k, the iterative scheme given in (5) will
converge to the solution of (4) provided that F satisfies a
favorable condition. The following theorem addresses this
convergence.

Theorem 2.1: Consider the iterative scheme given by
equation (5). Let L(t) be the Lipschitz number of f , and
let A be the s × s matrix given above. Also, let L =
supt∈[0,T ] L(t). If hL‖A‖ < 1 then there exists a unique
vector Y ∈ IRns such that F (tk, Y ) = Y for any point
tk ∈ [0, T ] that is fixed. Furthermore, the sequence Y j+1

k =
F (tk, Y j

k ) converges linearly to Y .
Proof: We begin by referring to a useful result concern-

ing norms of Kronecker products. According to Van Loan
[11],

∥∥Ā
∥∥ = ‖A⊗ I‖ = ‖A‖ · ‖I‖ = ‖A‖ . It is easily

shown that the Lipschitz constant of f̃ is also L. Now we
compute the Lipschitz constant of F . Choose any t ∈ [0, T ]
and any vectors u, v ∈ IRns.

‖F (t, u)− F (t, v)‖ = h
∥∥∥Ā

(
f̃(t, u)− f̃(t, v)

)∥∥∥
≤ h

∥∥Ā
∥∥

∥∥∥f̃(t, u)− f̃(t, v)
∥∥∥

≤ hL ‖A‖ ‖u− v‖ .

This shows that F is Lipschitz continuous in the second
argument with Lipschitz constant hL‖A‖. Since hL‖A‖ < 1,

we may apply the Contractive Mapping Theorem to F [9].
Hence, there exists a unique point Y ∈ IRns such that
F (tk, Y ) = Y for any point tk ∈ [0, T ] that is fixed. The
theorem also ensures that Y must be the limit of every
sequence obtained from (5) with a starting point Y 0

k ∈ IRns.

Theorem 2.1 suggests how one might implement equations
(3) and (5) to solve (1) on [0, T ]. The starting vector x0 ∈ IRn

is known. In general, assume xk is known. Use the following
procedure to compute xk+1.

1) Choose a tolerance ε > 0.
2) Choose a starting guess for the s stage-values, and

denote this guess as Y 0
k .

3) For j = 0, 1, 2, ..., compute the following:

a) Y j+1
k = F

(
tk, Y j

k

)

b) δ =
∥∥∥Y j+1

k − Y j
k

∥∥∥.

4) If δ ≤ ε, let Yk = Y j+1
k .

5) Use the s n×1 stage-value vectors determined in step
four to explicitly compute xk+1 using (3).

The method described above is known as Picard iteration;
Newton’s method might also be used to solve for the stage-
values. A theorem on the convergence of Newton’s method
is more complicated than Theorem 2.1; it is not sufficient
to assume hL‖A‖ < 1 in order to guarantee that Newton’s
method converges. The Newton-Kantorovich Theorem [15],
[3], [12] provides sufficient conditions for existence of a
solution to the iteration and the uniqueness of that solution.
To solve for the stage-values using Newton’s method, step
three should be replaced by the following:

3) Define G(tk, Yk) = F (tk, Yk) − Yk, and for j =
0, 1, 2, ..., compute the following:

a) Y j+1
k = Y j

k −
(

DG
(
tk, Y j

k

)−1
)

G
(
tk, Y j

k

)

b) δ =
∥∥∥G

(
tk, Y j+1

k

)∥∥∥
where DG represents the Jacobian matrix of G.

III. STEP-SIZE SELECTION

When implementing a Runge-Kutta numerical integration
routine, we have shown it is sufficient to assume that
hL‖A‖ < 1 to guarantee convergence of the implicit scheme
when using a Picard iteration. One might wonder though,
is there an optimal choice, in the sense of computational
efficiency, for h? If so, how might it be found?

A. Optimization Using Picard Iteration

Consider solving (1) numerically on the interval [0, T ]
which is partitioned by the following sequence of points:
{jh}K

j=0. In the k-th sub-interval the convergence of the
Picard iteration is linear, so the number of computations
required for convergence, to within ε, to the fixed point of
(5) can be written as a function of the Lipschitz constant of
the function F : Nk = φ

(
hL‖A‖) . Then the total number

of computations over the interval [0, T ] can be written as:
N(h) = Kφ

(
hL‖A‖) = (T/h)φ

(
hL‖A‖) .



In the following, we find an explicit expression for φ(·).∥∥∥Y j+1
k − Y j

k

∥∥∥ ≤ hL‖A‖
∥∥∥Y j

k − Y j−1
k

∥∥∥ · · ·
≤ (

hL‖A‖)j ∥∥Y 1
k − Y 0

k

∥∥
= Ck

(
hL‖A‖)j

,

where Ck =
∥∥Y 1

k − Y 0
k

∥∥ is fixed for each k and de-
pends on the guess Y 0

k . Since hL‖A‖ < 1, we must
have

∥∥∥Y j+1
k − Y j

k

∥∥∥ → 0 as j → ∞. Suppose we want

δ =
∥∥∥Y j+1

k − Y j
k

∥∥∥ ≤ ε; then, it is sufficient to have

Ck

(
hL‖A‖)j ≤ ε. As a stopping criterion in the k-th step

of integration, we choose to stop the fixed point iteration
at the smallest natural number Nk greater than or equal
to M where M satisfies Ck

(
hL‖A‖)M

= ε. We get
M = ln (ε/Ck)

(
ln

(
hL‖A‖))−1

and Nk = dMe. Let
C = max

k
Ck. In the equation for M , ε and Ck depend on

the user. Once these are chosen, the choice of h depends on
the differential equation being solved, through the Lipschitz
constant L and on the integration method being implemented,
through ‖A‖. We will try to minimize M by adjusting
the choice of h to the problem parameters L and ‖A‖.
Notice that C(hL‖A‖)M = ε implies that Ck(hL‖A‖)M ≤
ε. We minimize J1(h) = K ln (ε/C)

(
ln

(
hL‖A‖))−1

=
T ln (ε/C)

(
h ln

(
hL‖A‖))−1

, which is the same as maxi-
mizing J2(h) = h ln

(
hL‖A‖) (T ln (ε/C))−1

. By comput-
ing arg min J2(h), one finds the step-size h that minimizes
the number of computations for the iterative scheme to con-
verge. If this were the only measure of optimality of concern,
it is easily shown, through a calculus argument, that the cost
function J2(h) is maximized when h =

(
eL‖A‖)−1

.
However, one might also want the global error of the

numerical solution to be as small as possible. Global error
in any numerical integration scheme depends on the scheme
being used. In this paper, we are concentrating on Runge-
Kutta schemes. The global error for Runge-Kutta schemes
also varies depending on the scheme one chooses to imple-
ment. For the purpose of explanation, let us consider the
implicit midpoint rule. The implicit midpoint rule is a one-
stage Runge-Kutta method where a11 = 0.5 and b1 = 1 in
(2) and (3). The implicit midpoint method has global error
O(Th2). Then to find h, we alter the cost function J2 and
maximize J3(h) = h ln(hL‖A‖) (T ln(ε/C))−1 − κTh2,
where κ is a number to be chosen. First we compute
(dJ3/dh) =

(
ln(hL‖A‖) + 1

)
(T ln(ε/C))−1 − 2κTh and

(d2J3/dh2) = (Th ln(ε/C))−1 − 2κT. In order to find
max

h
J3(h), we must find the h > 0 that solves

(
ln(hL‖A‖) + 1

)
(T ln(ε/C))−1 − 2κTh = 0 (6)

such that (Th ln(ε/C))−1− 2κT < 0. We must have T and
h positive, and for a numerical solution to be meaningful,
certainly ε must be very small and in general much less than
C. Thus, ln(ε/C) < 0. We then require κ ≥ 0 to ensure that
the second derivative of J3 is negative, which guarantees that
the solution to (6) is indeed a maximum.

Now let κ = −λ2L‖A‖ (
2T 2 ln(ε/C)

)−1
, where λ is

a free parameter that weights the optimization toward effi-
ciency in time or toward global error. A better understanding
of how λ affects the variable step-size selection process can
best be explained by studying Table IV-A.2 and Table IV-
B.2. By substituting this κ into (6), we find that we must
solve

ln(hL‖A‖) + 1 + λ2hL‖A‖ = 0 (7)

for h given an arbitrary value for λ. In practice, we actually
make the substitution x = hL‖A‖ and solve

ln x + 1 + λ2x = 0 (8)

for x. We then compute h = x
(
L‖A‖)−1

. The solution to
this equation exists and is unique. This is because the h that
solves (7) is the unique global maximum of the function J3,
which exists because of the concavity of J3. Furthermore,
equation (7) must be solved numerically for λ 6= 0; for
example, Newton’s method or Picard iteration may be used.
For λ = 0, notice that the solution is h =

(
eL‖A‖)−1

which
was discussed earlier.

If one is interested in finding an equation similar to (7) for
a Runge-Kutta method other than the implicit midpoint rule,
two things will change. First, ‖A‖ will change as the method
changes. It may also be necessary to change the second term
in the cost function as well. Suppose the method chosen
has global error O(Thr). Then, J3(h) becomes J̃3(h) =
h ln(hL‖A‖) (T ln(ε/C))−1−κThr. If we then define κ =
−λ2(L‖A‖)r−1

(
2T 2 ln(ε/C)

)−1
, we discover that ln x +

1+λ2xr−1 = 0 must be solved for x after again making the
substitution x = hL‖A‖.
B. Lipschitz Constant Unknown

For most initial value problems the Lipschitz constant of
f is not easily accessible. In this case, an approach that
is slightly different than that of Section III-A is taken to
optimize h. The idea in this case is to linearize the function
f at each step of integration by computing the Jacobian
of f . We essentially find an optimal h at each step of the
integration using the analysis from Section III-A. The method
is described in detail below:

1) Choose a value for the parameter λ. (A method for
choosing λ will be given in Section IV-A.)

2) Solve (8) for x once.
3) At t = 0, let L = ‖Df‖, where Df is the Jacobian

matrix of f, and compute h = x
(
L‖A‖)−1

.
4) Perform one step of integration using the implicit

midpoint rule.
5) Recompute L using the new values of the state vari-

ables, and use this L to find a new optimal h.
6) Repeat steps four and five until the integration reaches

t = T.

IV. EXAMPLES

In this section we explore this variable step-size selection
method for two problems, the Lotka-Volterra model and the
Kepler problem.



A. The Lotka-Volterra Model

For this example we consider the Lotka-Volterra model of
a simple predator-prey system from mathematical biology.
This particular example is taken from Hairer, Lubich, and
Wanner [4]. Consider the following system:

[
u̇
v̇

]
=

[
u(v − 2)
v(1− u)

]
= f(u, v); t ∈ [0, 50]. (9)

In (9), u(t) denotes the number of predators present at time
t, v(t) represents the number of prey present at time t, and
the constants one and two have been chosen arbitrarily. This
system was integrated numerically using the implicit mid-
point rule. Since the system is non-linear and the Lipschitz
constant of the system as a whole is unknown, we will use
the method described in Section III-B.

This procedure was compared to a fixed step-size integra-
tion method with random step-sizes chosen. Two measures
were chosen for comparison. The first measure, T , was total
cpu time (in seconds) for 1000 runs with random initial
data uniformly distributed on [0.1, 10]. The second measure,
E, was the maximum absolute variation of the numerical
method from I(u, v) = ln u − u + 2 ln v − v, an invariant
quantity for this system. The initial data for the system in
this case was chosen to be [u(0) v(0)]T = [2 6]T .

We found that for simple systems such as (9), the nu-
merical computational overhead in computing the step-size
in the optimal h method renders the method less useful
than a simple fixed step-size method. After trying various
fixed step-sizes, it was determined that for 1000 runs with
random initial data, h = 0.125 was the fastest fixed step-
size attempted that permitted convergence. For h = 0.125,
T = 118.3 and E = 0.064. For the optimal h method,
various values for λ were tried until a comparable value for
E was found. For instance, for λ = 2 we get E = 0.143; for
λ = 3 we get E = 0.068; and for λ = 4 we get E = 0.037.
Since λ = 3 yielded a comparable value of E, λ = 3 was
chosen for 1000 runs with random initial data and it was
found that T = 195.6.

Different results arise when we try more challenging prob-
lems. Consider this variation to the Lotka-Volterra problem:

[
u̇
v̇

]
=

[
u2v(v − 2)
v2u(1− u)

]
= f(u, v); t ∈ [0, 50]. (10)

This system has has the same invariant as (9), but is very
sensitive to random initial data. For this reason the initial
data is fixed at [u(0) v(0)]T = [2 3]T for the computation
of both T and E.

Two methods were chosen to solve for the stage value y1

which is defined implicitly by (2). The first method is the
algorithm of Section II, which is simply a Picard iteration.
Secondly, we used Newton’s method to compute y1.

The results from this example are given in Table IV-A.1
and Table IV-A.2. In the tables, (P) stands for Picard and (N)
stands for Newton, referring to the method used to compute
the stage-values. To compare the fixed step-size method to
the variable step-size method, we must locate times that are
comparable from the tables and then compare the equivalent

error. For example, we first notice that for the fixed step-size
h = 0.1 in Table IV-A.1, the method took 160.7 seconds
to solve the problem using a Picard iteration to solve for
y1. The error involved for this step-size was 0.094. Now we
look in Table IV-A.2 and find that when λ = 2, the problem
was solved in 168.4 seconds, which is about eight seconds
longer than for h = 0.1. However, we notice that the error
has been reduced to 0.004, which is about 4% of the error
from when h = 0.1. We can locate other instances similar to
this from the two tables. For the fixed step-size h = 0.08, the
problem is solved in 234.4 seconds using Newton’s method
to find y1, yielding an error of 0.069. We compare this to
λ = 2 which was solved in 229.9 seconds with an error of
0.004. In addition, for the fixed step-size h = 0.125 using
Newton’s method to solve for y1, the problem is solved in
155.6 seconds with an error of 0.084. We compare this to
λ = 1 in which the problem is solved in 151.6 seconds with
an error of 0.025.

As one can see from the example above, inherent with
this variable step-size selection method is the choice of the
parameter λ. We will use the system given by equation (10)
to explain how one should choose an appropriate value of λ
when integrating a system that evolves over a long period of
time. Suppose we are interested in integrating the system
described by (10) over the interval [0, 500] or [0, 1000].
First, we choose a much smaller value for the final time
of integration; in this example that value is T = 50. We
then integrate the system over the interval [0, 50] with a
fixed step-size and at the same time with various values
of λ. Essentially, we analyze how λ affects this system in
particular, just as we did in the above example. After we have
integrated the system over the much smaller time interval,
we choose the value of λ that works best for this system
to integrate the system over the entire time interval. This
process should be done for any system where the length of
the interval over which the integration must be performed is
quite large when compared to the evolution of the dynamics
of the system.

All computations were done in MATLABr version
6.1.0.450 Release 12.1 running in Microsoft Windows
XP Professional version 5.1.2600 with an AuthenticAMD
processor running at 1544 Mhz.

TABLE IV-A.1
FIXED STEP-SIZE

h → 0.05 0.08 0.1 0.125
T (P) 240.0 181.1 160.7 159.6

E × 10−2 (P) 3.1 6.9 9.4 8.4
T (N) 354.4 234.4 187.7 155.6

E × 10−2 (N) 3.1 6.9 9.4 8.4

B. The Kepler Problem
This example, taken from Hairer, Lubich, and Wanner [4],

is the well known two-body problem describing planetary
motion. Consider the equations

q̈i = − qi

(q2
1 + q2

2)3/2
, i = 1, 2 (11)



TABLE IV-A.2
VARIABLE STEP-SIZE

λ → 0.25 0.4 0.5 0.75 1 2
T (P) 113.8 119.7 118.5 124.8 127.3 168.4

E × 10−2 (P) 11.5 8.7 7.8 4.8 2.5 0.4
T (N) 117.6 124.3 127.4 140.7 151.6 229.9

E × 10−2 (N) 11.5 8.7 7.8 4.8 2.5 0.4

with q1(0) = 1 − e, q2(0) = 0, q̇1(0) = 0, and q̇2(0) =
((1 + e)/(1− e))1/2

, where 0 ≤ e < 1. To describe the
motion of two bodies, one of the bodies is taken to be the
center of the coordinate system and the position of the second
at any time t is given by the two coordinates q1(t) and q2(t).

Before (11) can be integrated using the implicit midpoint
rule, we must convert the equations to a system of four first-
order ordinary differential equations. Let z1 = q1, z2 =
q̇1, z3 = q2 and z4 = q̇2. Define z = [z1 z2 z3 z4]T . Then
(11) is equivalent to the following system:

ż =

[
z2

−z1

(z2
1 + z2

3)3/2
z4

−z3

(z2
1 + z2

3)3/2

]T

. (12)

The above system of equations was solved using the implicit
midpoint rule for t ∈ [0, 50]. Just as in the previous
example, both a Picard iteration and Newton’s method were
used to compute the stage value y1. The two measures we
chose for this example are very similar to the those of the
previous example. The first measure is T , the total cpu time
required to solve the system 1000 times with eccentricity,
e, that is uniformly distributed in the interval [0.4,0.8]. The
second measure was E, the maximum absolute error that the
integration deviates from the exact solution with eccentricity
e = 0.6. For this measure, we considered the absolute error
at every step of the integration.

The computations were performed on the same machine as
was the previous example, and the results are summarized in
Table IV-B.1 and Table IV-B.2. Just as before, (P) stands for
Picard and (N) stands for Newton in the tables. We compare
the performance of the variable step-size method to the fixed-
step size method exactly as we did in the previous example.
In Table IV-B.1 we begin with the fixed step-size h = 0.01.
The problem is solved in 84.8 seconds using Picard iteration
to find y1, giving an error of 0.11. We compare this to
λ = 8 in Table IV-B.2 where the problem is solved in 81.4
seconds with an error of 0.07. Also, when the fixed step-
size is h = 0.05, the problem is solved in 21.2 seconds
using Picard iteration to find y1 and is solved in 29.6 seconds
using Newton’s method to find y1. The error in both cases
is 1.58. We compare these to when λ = 2 in Table IV-B.2.
Respectively, the times are 21.6 seconds and 29.9 seconds.
The error for these two times is 0.64.

All of the computations, up until this point, in this
section were performed on the same machine as those
from Section IV-A. The computations below were performed
in MATLABr version 5.3.0.10183 Release 11 running in
Microsoft Windows XP Professional version 5.1.2600 with
an x86 Family 15 Model 4 Stepping 1 GenuineIntel processor

TABLE IV-B.1
FIXED STEP-SIZE

h → 0.01 0.05 0.1 0.125
T (P) 84.8 21.2 13.3 11.9

E × 10−1 (P) 1.1 15.8 20.4 24.8
T (N) 137.5 29.6 16.5 14.4

E × 10−1 (N) 1.1 15.8 20.4 24.8

TABLE IV-B.2
VARIABLE STEP-SIZE

λ → 1 2 4 6 8 10
T (P) 20.2 21.6 37.2 58.5 81.4 111.4

E × 10−1 (P) 12.5 6.4 3.0 1.3 0.7 0.4
T (N) 22.1 29.9 50.6 79.3 114.7 157.2

E × 10−1 (N) 12.5 6.4 3.0 1.3 0.7 0.4

running at 3056 Mhz.
Now we would like to compare the performance of

the proposed variable step-size selection method versus the
accepted variable step-size selection method of Stoer and
Bulirsch [15]. For the method from Stoer and Bulirsch, we
chose Φ1 to be of order two and Φ2 to be of order three. The
method is described in great detail in [15], including coeffi-
cients for the function evaluations in computing Φ1(tk, x̄k;h)
and Φ2(tk, x̄k; h). The only control given to the user of such
a method is the initial choice of h0. First, we decided to test
the method to see what kind of errors and time of execution
we would get from various starting values of h0. Twelve
different values of h0, ranging from h0 = 5×10−5 to h0 = 2,
were chosen. The error function chosen, is exactly the same
from the comparisons above in this section. We found that
regardless of the starting value of h0, the error ranged only
from 2.88×10−3 to 2.90×10−3. Furthermore, there seemed
to be no significant difference in the times of execution either.
The times ranged from 9.5 seconds to 13.0 seconds with no
discernable order to them. Random computer processes could
be a possible cause for some variation, but the mean time of
execution for the twelve runs was 11.7 seconds. The results
of this test are given in Table IV-B.3.

Next, we wanted to compare these results to the method
proposed in this paper. As the results above suggest, we could
not control the variable step-size selection method described
by Stoer and Bulirsch, so it was necessary to find a value of
λ for the proposed method that would yield a similar error.
After a few attempts, it was determined that λ = 26.75 was
the best choice. For comparison purposes, we ran the code
twenty times because of one to two second fluctuations in
time of executions. We then determined the mean error for
all twenty runs and the mean time of execution for all twenty
runs. The mean error was 2.90 × 10−3 and the mean time
of execution was 13.8 seconds.

Although, the mean time of execution was slightly higher
for the proposed method, the method from Stoer and Bulirsch
has one major drawback. The error is essentially uncontrol-
lable aside from the tolerance used. The user has no ability
to loosen an error requirement to gain speed of execution
or vice versa. For the proposed method, this is controlled



by the user through the parameter λ, much like a fixed step-
size method can be controlled by choosing the step-size. The
difference between them is that our results also show that
the proposed method performs better than a fixed step-size
method as well.

TABLE IV-B.3
VARIABLE STEP-SIZE DATA

h0 E (Picard) Time (for one run)
5× 10−5 2.90× 10−3 11.4 seconds
1× 10−4 2.90× 10−3 13.0 seconds
5× 10−4 2.90× 10−3 12.2 seconds
1× 10−3 2.90× 10−3 9.5 seconds
5× 10−3 2.90× 10−3 11.3 seconds

0.01 2.90× 10−3 12.1 seconds
0.05 2.92× 10−3 10.9 seconds
0.1 2.91× 10−3 10.9 seconds
0.2 2.88× 10−3 11.4 seconds
0.5 2.91× 10−3 12.1 seconds
1 2.90× 10−3 12.3 seconds
2 2.91× 10−3 12.9 seconds

V. CONCLUSION

The collection of implicit numerical integration routines
is vast to say the least. Often times one routine is chosen
over another to improve either efficiency or accuracy. In this
paper, we have shown that it is possible to wisely choose a
variable step-size for these integration schemes.

For linear ordinary differential equations or equations in
which the Lipschitz constant for the function f is known,
the task becomes quite simple as the optimal value of the
step-size will not change from one step of the integration to
the next. But, if we are dealing with more complicated non-
linear differential equations, we can still choose an optimal
time step at each step of integration of the system. As we
have shown, this process often involves solving a non-linear
equation numerically. Because of this, the computational
overhead in using this optimal step-size routine seems to
be too much for solving differential equations in which the
function f is quite simple. However, our results have shown
that this is consistently not the case when f is a complicated
function as we describe below.

Tables IV-A.1, IV-A.2, IV-B.1 and IV-B.2 clearly show
that, for comparable integration times, the variable step-size
selection method presented in this paper drastically reduces
the global error in the solution of the problem. For the Kepler
problem, we found that for comparable execution times, the
error was reduced 41% and 59% when the variable step-size
method is used. In the Lotka-Volterra example, we found
that for comparable execution times, the problem is solved
with the error reduced 70%, 94% and 96% when we use the
variable step-size method. From studying the tables we may
choose λ so that execution times are comparable, in which
case the variable step-size method noticeably reduces error
as evidenced from the above discussion. However, λ may
also be adjusted to find comparable errors between the fixed
step-size and variable step-size methods. When you do this,

one notices that the time required to achieve a comparable
error for the fixed step-size is much larger.

We must point out that this optimal step-size selection
process is dependent upon the scheme being used and we
have concentrated on Runge-Kutta methods. It should not
be too difficult of a task to adapt this process to the ever
growing collection of implicit integration routines.
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