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ABSTRACT

In this work, we explore various ideas and approaches
to deal with the inherent uncertainty and image noise
in motion analysis, and develop a low-complexity, accu-
rate and reliable scheme to estimate the motion fields
from UAV navigation videos. The motion field infor-
mation allows us to accurately estimate ego-motion pa-
rameters of the UAV and refine (or correct) the motion
measurements from other sensors. Based on the motion
field information, we also compute the range map for
objects in the scene. Once we have accurate knowledge
about the vehicle motion and its navigation environ-
ment (range map), control and guidance laws can be
designed to navigate the UAV between way points and
avoid obstacles.

I. INTRODUCTION

In vision-based UAV navigation control [1], the video
data captured from the on-board camera has two major
purposes: 1) It will be used to determine the ranges of
scene objects. Based on the range information, a guid-
ance law can be designed for the UAV such that it is
able to avoid obstacles during its navigation between
waypoints. 2) The angular velocity estimated from the
gyroscope often has a significant amount of noise, espe-
cially in the yaw angle or when the wind effect is strong.
The vision information, as another source of sensor in-
formation, is able to help us refine the estimation of
angular velocity for flight control purposes.

We assume that the UAV has a fairly good knowl-
edge (from GPS data) about its linear velocity in the
inertial frame. The gyroscope on the UAV is able to
give us a rough estimation of the vehicle’s orientation.
At this moment, we assume that the camera is located
at the center of gravity of the UAV, and the camera ori-
entation is the same as the UAV’s body orientation, as
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illustrated in Fig. 1. We map the linear velocity from
the inertial frame into the camera coordinate system
and denoted it by Vb = (Vb1, Vb2, Vb3).

Figure 1: Coordinate systems in UAV navigation.

Fig. 2 shows the block diagram of the proposed
vision-based motion analysis and obstacle avoidance
system. We denote the video frame (also called an im-
age) captured from the camera by It(x, y), 0 ≤ x ≤ W ,
0 ≤ y ≤ H, where t is the time index, W and H are
the width and height of the frame. Using two consecu-
tive video frames, It−1(x, y) and It(x, y), we are going
to determine the angular velocity Ω of the camera and
the range map dt(x, y). Here, dt(x, y) is the distance
between camera and the scene object represented by
pixel (x, y). To determine Ω and dt(x, y), we need an
accurate estimation of motion field {Mt(x,y)|0 ≤ x ≤
W,0 ≤ y ≤ H}, where Mt(x,y) represents the motion
vector (or velocity vector) of pixel (x, y). The major
challenge in computer-based motion field estimation is
uncertainty. To manage the uncertainty and accurately
estimate the camera motion, we equally partition the
image It(x, y) into blocks and classify them into two
groups: structural (e.g. buildings edges, corners, tree
top, etc) and non-structural blocks (e.g. texture). The
structural blocks will have distinctive features for accu-
rate motion estimation. To obtain a reliable estimation
of camera motion, we propose a new motion estimation
scheme called reliability-based motion field estimation
(rMFE), which will be explained in Section II. Based
on the motion information of the structural blocks, we
determine the angular motion of camera. Once we have



a complete knowledge about the camera motion, we can
roughly predict the actual motion of each object in the
scene. In other words, for each non-structural block,
we can determine a small image region where its mo-
tion vector should lie within. Inside this small region,
we find the best match for the block and determine its
motion vector. Once the motion vector is obtained for
each block (both structural and non-structural blocks),
we can then compute the range for each block and ob-
tain the range map dt(x, y). Based on the range map, a
guidance law can be designed to control the UAV such
that is able to avoid the obstacle and maintain a steady
flight between waypoints.

Figure 2: Block diagram for vision-based ego-motion
analysis and obstacle avoidance.

II. MOTION FIELD ANALYSIS

Our objective is to develop a low-complexity and robust
motion analysis scheme to accurately estimate the cam-
era motion and range map for UAV navigation. Sev-
eral approaches have been developed in the literature,
including feature tracking and structure from motion
[1, 2]. The major problems with the existing methods
are: 1) High computational complexity. Feature track-
ing and structure analysis often involve computation-
intensive computer vision tasks, such as feature extrac-
tion and geometric modeling. Computation-intensive
motion analysis is not affordable on micro-UAV plat-
forms which have limited on-board computation capa-
bility. 2) Constrained navigation environments. Many
existing algorithms are developed based on assump-
tions on the image content [1, 6]. This type of al-
gorithms work efficiently in constrained environments
with desired image features, but may fail in other nav-
igation environments.

II-A. Uncertainty in Motion Field Analysis

During UAV navigation, the dominant change in image
data from time t − 1 to t is caused by camera motion,
such as location change, camera rotation, and camera
zoom in/out. In addition to this dominant motion,
there could be moving objects, such as vehicles or per-
sons on the ground, which cause local changes in the
image data. Another major source that cause image
content change is noise, including video capture noise,
changes in lighting condition, etc. A typical approach
to motion field estimation is to partition the image It

into blocks. For each block B, we find its best match A
in the previous frame (also called reference frame) It−1.
To find the best match, we need to define a distance (or
similarity) metric to measure how close block A is to B.
This distance metric is denoted by d(A,B). With this
metric, we can then search in the previous frame within
a neighborhood of B to find the best-match block which
minimizes the distance metric [4]. In block-based mo-
tion analysis, especially for images with noise and little
distinctive features, it is sometimes very hard to find
out the exact motion based on only local information,
even with human eyes. For example, as shown in Fig.
3, the blocks on building edges, regions with flat colors,
or texture areas, such as grassland, are able to find a
number of “best matches” within its neighborhood [5].
In this case, there is a lot of uncertainty and ambiguity
in determining the exact motion of the block. If wrong
motion vectors are selected, the camera motion param-
eters and range map estimation will be inaccurate.

We propose three major ideas to deal with the un-
certainty in motion field analysis. 1) We classify the im-
age blocks into two groups: structural and non-structural
blocks. The structural blocks with distinctive features
will have reliable motion estimation. 2) We allow the
motion estimation to find multiple “best” motion vec-
tors, instead of one single best motion vector for each
block as in the conventional motion estimation. We
also define a reliability metric to measure how reliable
is the motion estimation in each block. 3) We use the
reliable motion information from the structural blocks
to estimate the camera motion. Accurate knowledge
about the camera motion will help us to reduce and un-
certainty in motion analysis for non-structural blocks
and find the true motion for them.

II-B. Classification Image Blocks

Structural blocks, such as buildings edges, corners, road
lines, and tree tops, have distinctive features for accu-
rate motion estimation. In the frequency domain, a
structural block has a major portion of its total energy
in the low-to-medium frequency bands. The proposed



Figure 3: Sample video frames in UAV navigation.

classification algorithm has three major steps: Step 1)
We apply discrete cosine transform (DCT) to the block
and order the transform coefficients xi, 0 ≤ i ≤ S from
low to high frequencies. Step 2) The first 20% of the
coefficients, except the DC coefficient, contains a signif-
icant amount of structural information, such as edges,
corners, and other patterns. For each block, we define
an energy ratio for the structural coefficients:

r =
0.2S
∑

i=1

x2
i /

S
∑

i=1

x2
i . (1)

Step 3) We select the portion of blocks, for example
top 15%, which have the highest structural energy ra-
tios, as the structural blocks, and with the rest being
classified as non-structural ones. Fig. 4 shows the clas-
sification results. The structural blocks are highlighted
with white boxes.

Figure 4: Classification into structural (highlighted
with white boxes) and non-structural blocks.

II-C. Distance Metric for Motion Search

In motion field analysis for UAV navigation, a desired
distance (or similarity) measure should be invariant
to camera motion, local object motion, and robust to
image noise. To measure the similarity between two
blocks A and B, we need to take two steps: 1) First,
we extract a set of features from each block. 2) Sec-
ond, we compute the distance between these two sets of
features. In conventional motion estimation, the pixel
value is often used as the feature, and the distance

measure is simply given by

d0(A,B) =
∑

ij

|aij − bij|, (2)

which is the SAD (sum of absolute difference) measure
used in many video compression systems. The SAD
metric is invariant only under translational motion.

To handle other types of camera motions, such as
rotation, zoom in/out, and perspective changes, we in-
troduce one additional feature, called intensity profile.
The intensity profile aims to characterize the intensity
distribution in an image region. Let OB = (xB , yB) be
the center position (pixel) of block B. Let C(OB , r) be
a circle centered at OB with a radius r, as illustrated
in Fig. 5. The average intensity on this circle is given
by

m(OB , r) =
1

|C(OB , r)|

∮

C(OB ,r)

It(x, y)dxdy, (3)

where 0 < r ≤ R, and R is the maximum radius to
search. For example, we can set R to be the block
width. The function m(OB , r) is called the intensity
profile for pixel OB or block B. Similarly, we can define
the intensity profile for the center pixel of block A

m(OA, r) =
1

|C(OA, r)|

∮

C(OA,r)

It−1(x, y)dxdy. (4)

We can see that if pixel OA in frame It−1 moves to
OB in frame It, the intensity profiles m(OB , r) and
m(OA, r) will be the same even with camera rotation.
However, with camera zoom, m(OB , r) and m(OA, r)
will be different. For example, if the camera zooms
out, m(OA, r) will match the first segment of m(OB , r)
after being scaled horizontally (either compressed or
stretched), as illustrated in Fig. 5. Based on this ob-
servation, we can define another distance measure as
follows

d1(A,B) = min
1−δ≤λ≤1+δ

max
0≤r≤R/λ

|m(OA, λ · r) − m(OB , r)|, (5)

where λ is the scaling factor, and [1 − δ, 1 + δ] is the
search range for λ. It can be seen that the distance
(or similarity) metric d1(A,B) is invariant under cam-
era rotation and zoom. The distance metrics d0(A,B)
and d1(A,B) captures different information about the
similarity between blocks. We form a comprehensive
distance metric for motion search as follows

d(A,B) = w · d0(A,B) + (1 − w) · d1(A,B), (6)

where w is the weighting factor which can be adjusted
according to the amount of camera motion in rotation



and zoom. For example, if the angular velocity of the
camera is relatively small, we can choose a smaller value
of w. Once the distance metric is established, we can
then search the neighborhood of block B in the pre-
vious frame It−1, denoted by N (B), to find the best
block A∗ which has the minimum distance to B,

A∗ = arg min
A∈N (B)

d(A,B) (7)

The difference vector between the center positions of
blocks A∗ and B is the motion vector.

Figure 5: Definition of intensity profile for blocks.

II-D. Reliability-Based Motion Field Estimation

As discussed in Section I, the image is equally parti-
tioned into blocks, {Bn|1 ≤ n ≤ N}. Based on the
frequency-domain information, we classify these blocks
into structural and non-structural blocks, as discussed
in Section II-B. We denote the structural blocks by
{Bm|1 ≤ m ≤ M}, M ≤ N . As discussed in Section
II-A, because of the inherent uncertainty and ambigu-
ity in motion analysis, each block may be able to find
multiple “best” matches according the distance metric
in (7). In addition, because of image noise, the true mo-
tion vector may even not have the minimum distance.
To deal with this problem, we propose a reliability-
based motion field analysis scheme as explained in the
following.

For each structural block Bm, we find the top L
best matches for Bm in the previous frame It−1 and the
estimation results are denoted by Λ = {(Vm

j ,dm
j )|1 ≤

j ≤ L}, where Vm
j = (ẋm

j , ẏm
j ) represents the motion

vector and dm
j is the corresponding distance. Based

on the data set {(Vm
j ,dm

j )|1 ≤ j ≤ L}, we extract
a representative motion vector, denoted by Vm, and
define a reliability measure γm. We assume Vm is the
“true” motion vector, which could be wrong. Our basic
idea is as follows: if we choose Vm as the representative
motion vector, there will be a number of other motion
vectors in the set whose distance measurements are also
very close to the one of Vm. Certainly, the larger the
number is, the more uncertainty we have, and the less
reliability the motion estimation is. Let

dm
− = min

j
dm

j , dm
+ = max

j
dm

j . (8)

Let
dm
0 = dm

− + α · (dm
+ − dm

− ), (9)

where α is a threshold value between 0 and 1. By de-
fault, we set α = 0.1. The physical meaning of α = 0.1
is noise level. We pick out a subset of those motion vec-
tors in Λ whose distance measurements are very close
to the minimum dm

− , and denote this subset by

Λ− = {(Vm
k ,dm

k )|dm
k ≤ dm

0 }. (10)

Here, we re-lable the elements in the set Λ− by index
k, 1 ≤ k ≤ Km < L. We choose the mean of those
motion vectors as their representative

Vm =
1

Km

Km
∑

k=1

Vm
k . (11)

We define the reliability measure as

γm =
1

1 +
Km
∑

k=1

||Vm
k − Vm||2

. (12)

Here, 0 < γm ≤ 1. If a motion search is reliable, ei-
ther the value of Km will be small (close to one which
implies a single minimum) or the motion vectors Vm

k

will be very close to each other. In this case, the cor-
responding reliability measure γm will be very close to
1.

In camera motion parameter estimation as discussed
in the next section, the reliability measure γm will act
as a weighting factor. Those motion vectors with lower
reliability, i.e., higher uncertainty, will have less influ-
ence when determining the camera motion.

III. CAMERA MOTION PARAMETER
ESTIMATION

From the motion field analysis, we have obtained a rep-
resentative motion vector Vm (assumed to be the true
motion) and an associated reliability measure γm for
each structural block Bm, 1 ≤ m ≤ M . (An example
value of M is 60.) Based on this data set, we are going
to estimate the camera motion parameters.

Let (X,Y,Z) be the coordinate of the object. Let
(x, y) be the pixel coordinate in the image, as illus-
trated in Fig. 1. Based on camera view geometry anal-
ysis [7], we have

ẋ =
Vb1

Z
(x +

Vb3

Vb1
)

+ ΩXxy − ΩY (1 + x2) + ΩZy (13)

ẏ =
Vb1

Z
(y −

Vb2

Vb1
)

+ ΩX(1 + y2) − ΩY xy − ΩZx (14)



where Ω = (ΩX,ΩY,ΩZ) is the angular velocity; (ẋ, ẏ)
is the motion vector of the object which is obtained
from the motion field analysis. The unknown variables
are (ΩX ,ΩY ,ΩZ) and the range Z for each pixel (x, y).

III-A. Estimate the Angular Velocity

The angular velocity, denoted by Ω = (ΩX,ΩY,ΩZ)
plays an important role in UAV navigation and obsta-
cle avoidance. From other sensors, such as gyroscope,
we can get a rough estimation of body orientation, and
the angular velocity Ω can be roughly estimated by
taking the difference between body orientation mea-
surements at two time instances. Vision information,
as another important source of information, is able to
help us refine the estimation of the angular velocity Ω.
Combining Eqs. (13) and (14) and getting rid of the
pixel-dependent variable Z, we have

D1(x, y)ẋ − D2(x, y)ẏ = C1(x, y)ΩX

+ C1(x, y)ΩY + C3(x, y)ΩZ , (15)

where

D1(x, y) = (y −
Vb2

Vb1
),

D2(x, y) = (x +
Vb3

Vb1
),

C1(x, y) = xy(y −
Vb2

Vb1
) − (1 + y2)(x +

Vb3

Vb1
),

C2(x, y) = −(1 + x2)(y −
Vb2

Vb1
) + xy(x +

Vb3

Vb1
),

C3(x, y) = y(y −
Vb2

Vb1
) + x(x +

Vb3

Vb1
). (16)

The unknown variables (ΩX ,ΩY ,ΩZ) can be obtained
with Least Mean Square Error (LMSE) fitting weighted
by the reliability. Let (xm, ym) be the pixel coordinate
of the center of block Bm. From the motion field anal-
ysis, we have obtained the motion vector (ẋm, ẏm) for
this pixel and the associated reliability measure γm.
The weight LMS can be written into a matrix form as

ΓAΩ = Γb, (17)

where

A =











C1(x
1, y1) C2(x

1, y1) C3(x
1, y1)

C1(x
2, y2) C2(x

2, y2) C3(x
2, y2)

...
...

...
C1(x

M , yM ) C2(x
M , yM ) C3(x

M , yM )











(18)
and

b =











D1(x
1, y1)ẋ1 + D2(x

1, y1)ẏ1

D1(x
2, y2)ẋ2 + D2(x

2, y2)ẏ2

...
D1(x

M , yM )ẋM + D2(x
M , yM )ẏM











, (19)

and

Γ =









γ1

γ2

. . .
γM









. (20)

The solution is given by

Ω = [(ΓA)t(ΓA)]−1(ΓA)t(Γb). (21)

III-B. Range Estimation

Once the camera motion is known, we are able to deter-
mine the range (or depth) Z for each block in the scene.
As discussed in Section II, the image is partitioned into
blocks, Bn, 1 ≤ n ≤ N . Let Λ = {(ẋn

j , ẏn
j )|1 ≤ j ≤ L}

be the top candidate motion vectors. If the block,
which corresponds to an object in the scene, is sta-
tionary, the true motion vector must satisfy Eqs. (13)
and (14). Denote the right-hand sides of (13) and (14)
by

f(x, y, Z) =
Vb1

Z
(x +

Vb3

Vb1
)

+ ΩXxy − ΩY (1 + x2) + ΩZy, (22)

g(x, y, Z) =
Vb1

Z
(y −

Vb2

Vb1
)

+ ΩX(1 + y2) − ΩY xy − ΩZx. (23)

If the (ẋn
j , ẏn

j ) is the true motion, then the range of this
block can be determined by least mean squared error
estimation

Zj = arg min
Z

[ẋn
j −f(x, y, Z)]2+[ẏn

j −g(x, y, Z)]2. (24)

The corresponding fitting error is denoted by

Ej = [ẋn
j − f(x, y, Zj)]2 + [ẏn

j − g(x, y, Zj)]2. (25)

Certainly, the true motion must have the minimum fit-
ting error. Let

j∗ = arg min
j

Ej . (26)

The range of the block is given by Zj∗

, and the associ-
ated motion vector is (ẋn

j∗ , ẏn
j∗).



IV. EXPERIMENTATION AND
PERFORMANCE ANALYSIS

The proposed motion field estimation, reliability anal-
ysis, camera motion estimation, and range map com-
putation have been implemented with C code. We take
two major steps to evaluate this vision analysis system.
First, we are going to test the system using the multi-
UAV simulator. The simulator is able to generate a
video sequence for the UAV camera view and the as-
sociated camera coordinate system and orientation. In
addition, since the simulator knows which point object
in the world scene is mapped to which pixel in a video
frame, we have the ground truth for the motion fields,
as well as the range map.

In simulator-based performance evaluation, the in-
puts to the vision analysis system, are the video frames,
the linear velocity, as well as the camera orientation.
We add some level of noise to the camera orientation to
simulate the sensor measurement noise. The output of
the system will be the angular velocity estimation and
range map. We are going to check if the vision informa-
tion is able to reduce the noise in angular velocity and
camera orientation measurement. We also compare the
estimated range map again the ground truth. In the
second stage of evaluation, we will use the flight test
data. The flight data has video from the UAV camera,
its GPS location, and orientation (with noise). It also
has the GPS location of the targets. The vision anal-
ysis system will estimate the range of the targets, and
we will compare the estimate again the actual measure-
ment. In addition to the performance evaluation, we
will also analyze the impact of noise in linear velocity
on the estimation accuracy.

V. CONCLUDING REMARKS

We propose a hierachical framework to deal with un-
certainty and noise in motion field analysis, so as to
develop a low-complexity and reliable vision analysis
system for UAV navigation. First, we classify the image
data into structural and non-structural, and only use
the reliable motion information from structural blocks
for camera motion estimation. Second, we introduce
reliability analysis into motion field estimation and let
those motion vectors with higher reliability plays an in-
fluential role in camera motion estimation. In this way,
even if the local motion estimation could be wrong in-
side some image regions, the overall camera motion es-
timation is still accurate and robust due to those highly
reliable structural blocks. Third, we use the accurate
estimation of camera motion to constrain the motion
search for non-structural blocks, and this reduces the

uncertainty, as well as computational complexity sig-
nificantly.
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