Complex Analysis – Homework 7

- 1. What conditions on a and b guarantee that $z^a(1-z)^b$ can be defined as a single-valued function on $\mathbb{C}\setminus[0,1]$? In this case describe the Riemann surface of this function?
- 2. Show that the set of points $\{(z, w) \in \mathbb{C}^2 | w^2 = \sin z\}$ is a Riemann surface.
- 3. Let P(z) be a polynomial with 2n + 1 distinct complex roots. Show that $X = \{(z, w) | w^2 = P(z)\}$ is a Riemann surface. What is its genus?
- 4. With the notation from the lecture notes, show that for every ω_1 and ω_2 such that $\operatorname{Im} \omega_2/\omega_1 > 0$, there is a τ in the upper half plane such \mathbb{C}/Λ and \mathbb{C}/L are conformally equivalent.