Complex Analysis – Homework 5

1. Show that any biholomorphic map from the upper half-plane onto the open unit disk has the form

$$f(z) = e^{i\theta} \frac{z-a}{z-\bar{a}}.$$

- 2. Let f be the Riemann map of a simply connected domain D onto the open unit disk satisfying $f(z_0) = 0$, $f'(z_0) = A > 0$. Show that if g is an analytic function on Dsatisfying $g(z_0) = 0$ and |g| < 1, then $|g'(z_0)| \le A$, with equality if an only if $f = e^{i\theta}g$, $\theta \in \mathbb{R}$.
- 3. Let f(z) be analytic for 0 < |z| < 1, and define $f_n(z) = f(z/n)$ for 0 < |z| < 1, $n \ge 1$. Show that $\{f_n\}$ is a normal family in the space of meromorphic functions on the punctured disk if and only if the singularity of f at 0 is a pole or removable.
- 4. Find a biholomorphic map from $\mathbb{C}\setminus(-\infty, 0]$ to $D = \{z \mid |z| < 1\}$.
- 5. Find a biholomorphic map from the domain

$$\{z = re^{i\theta} \mid r \in \mathbb{R}, \quad 0 < \theta < 2\pi/3\}$$

to the upper half plane Im z > 0.

6. Show that $w(z) = \frac{1}{2}(z + \frac{1}{z})$ maps the interior of the unit disk conformally onto a domain D on the Riemann sphere. What is D? What is the inverse map?