
HOMEWORK 1

1



Problem 1. Classify the covering spaces of the circle. Describe what
they are.
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Problem 1. Classify the covering spaces of the circle. Describe what
they are.

Solution: The fundamental group of the circle is

π1(S1, 1) = Z.
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Problem 1. Classify the covering spaces of the circle. Describe what
they are.

Solution: The fundamental group of the circle is

π1(S1, 1) = Z.

The subgroups of this group are

H = mZ, m = 0, 1, 2, 3, . . .
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Problem 1. Classify the covering spaces of the circle. Describe what
they are.

Solution: The fundamental group of the circle is

π1(S1, 1) = Z.

The subgroups of this group are

H = mZ, m = 0, 1, 2, 3, . . .

If m = 1, we obtain the trivial cover of the space by itself via a
homeomorphism.

If m = 0, we obtain the universal covering R with covering map
p(x) = e2πix.
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For m 6= 0, 1 we will construct we will construct directly a covering
p : Em→ S1 with p∗(π1(Em, e0)) = mZ.
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For m 6= 0, 1 we will construct we will construct directly a covering
p : Em→ S1 with p∗(π1(Em, e0)) = mZ.

Take Em = S1, and p : Em→ S1, p(z) = zm.
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For m 6= 0, 1 we will construct we will construct directly a covering
p : Em→ S1 with p∗(π1(Em, e0)) = mZ.

Take Em = S1, and p : Em→ S1, p(z) = zm.

Recall that the fundamental group of S1 is

π1(S1, 1) = {[zk] | k ∈ Z}
with

[zk] ∗ [zn] = [zk+n].
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For m 6= 0, 1 we will construct we will construct directly a covering
p : Em→ S1 with p∗(π1(E, e0)) = mZ.

Take Em = S1, and p : Em→ S1, p(z) = zm.

Recall that the fundamental group of S1 is

π1(S1, 1) = {[zk] | k ∈ Z}
with

[zk] ∗ [zn] = [zk+n].

This implies that p∗ : Z → Z, is k → mk. So p∗(Z) = mZ. Hence
the conclusion.
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Problem 2. Show that the only covering spaces of the 2-dimensional
torus are tori, cylinders and the plane. What about the n-dimensional
case?
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Problem 2. Show that the only covering spaces of the 2-dimensional
torus are tori, cylinders and the plane. What about the n-dimensional
case?

Solution: The fundamental group of the torus is

π1(S1 × S1, (1, 1)) = π1(S1, 1)× π1(S1, 1) = Z× Z.
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Problem 2. Show that the only covering spaces of the 2-dimensional
torus are tori, cylinders and the plane. What about the n-dimensional
case?

Solution: The fundamental group of the torus is

π1(S1 × S1, (1, 1)) = π1(S1, 1)× π1(S1, 1) = Z× Z.

Lemma. The subgroups of Z× Z are of the form

1. the trivial subgroup,

2. free abelian groups with one generator (p, q),

3. free abelian groups with two generators (p, q) and (r, s) such that
ps− qr 6= 0.
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Proof of the lemma: Because we have a subgroup of a free abelian
group, it is free abelian. Assume that it must have more than two
generators.
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Proof of the lemma: Because we have a subgroup of a free abelian
group, it is free abelian. Assume that it must have more than two
generators.

By taking linear combintations with integer coefficients we can obtain
an element of the form (p, q) with p the greatest common divisor of
the generators. Add this element to the set of generators. The other
generators can then be transformed into elements of the form (0, r) by
subtracting multiples of (p, q).

14



Proof of the lemma: Because we have a subgroup of a free abelian
group, it is free abelian. Assume that it must have more than two
generators.

By taking linear combintations with integer coefficients we can obtain
an element of the form (p, q) with p the greatest common divisor of
the generators. Add this element to the set of generators. The other
generators can then be transformed into elements of the form (0, r) by
subtracting multiples of (p, q).

By taking algebraic combinations of the generators of the form (0, r)
we can obtain an element of the form (0, s) where s is the greatest
common divisor of the r’s.
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Proof of the lemma: Because we have a subgroup of a free abelian
group, it is free abelian. Assume that it must have more than two
generators.

By taking linear combintations with integer coefficients we can obtain
an element of the form (p, q) with p the greatest common divisor of
the generators. Add this element to the set of generators. The other
generators can then be transformed into elements of the form (0, r) by
subtracting multiples of (p, q).

By taking algebraic combinations of the generators of the form (0, r)
we can obtain an element of the form (0, s) where s is the greatest
common divisor of the r’s.

Then (p, q) and (0, s) generate the subgroup, a contradiction. The
conclusion follows.

16



For each subgroup of Z × Z we will construct a covering space. If
the subgroup is trivial we obtain the universal covering space R2 with
covering map p : R2→ S1 × S1, p(x, y) = (e2πix, e2πiy).
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For each subgroup of Z × Z we will construct a covering space. If
the subgroup is trivial we obtain the universal covering space R2 with
covering map p : R2→ S1 × S1, p(x, y) = (e2πix, e2πiy).

If H is the subgroup generated by the element (p, q) the covering space

is S1 × R, with covering map p(e2πix, y) = (e2πipx, e2πi(qx+y)).
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For each subgroup of Z × Z we will construct a covering space. If
the subgroup is trivial we obtain the universal covering space R2 with
covering map p : R2→ S1 × S1, p(x, y) = (e2πix, e2πiy).

If H is the subgroup generated by the element (p, q) the covering space

is S1 × R, with covering map p(e2πix, y) = (e2πipx, e2πi(qx+y)).

Indeed, note that p∗([z]) = ([zp], [zq]), hence p∗(1) = (p, q) ∈ Z× Z.
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For each subgroup of Z × Z we will construct a covering space. If
the subgroup is trivial we obtain the universal covering space R2 with
covering map p : R2→ S1 × S1, p(x, y) = (e2πix, e2πiy).

If H is the subgroup generated by the element (p, q) the covering space
is S1 × R, with covering map p(e2πix, y) = (e2πipx, e2πiqx+y).

Indeed, note that p∗([z]) = ([zp], [zq]), hence p∗(1) = (p, q) ∈ Z× Z.

This implies that p∗(Z) = (p, q)Z = H which solves the case of one
generator.
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If the subgroup has two generators (p, q) and (r, s) with ps− rq 6= 0,
the corresponding covering space is S1 × S1, with covering map

p : S1 × S1→ S1 × S1, p(z, w) = (zpwr, zqws).
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If the subgroup has two generators (p, q) and (r, s) with ps− rq 6= 0,
the corresponding covering space is S1 × S1, with covering map

p : S1 × S1→ S1 × S1, p(z, w) = (zpwr, zqws).

Indeed, p([z], [1]) = ([zp], [zq]) and p([1], [w]) = ([w]r, [w]s).

22



If the subgroup has two generators (p, q) and (r, s) with ps− rq 6= 0,
the corresponding covering space is S1 × S1, with covering map

p : S1 × S1→ S1 × S1, p(z, w) = (zpwr, zqws).

Indeed, p([z], [1]) = ([zp], [zq]) and p([1], [w]) = ([w]r, [w]s).

So p∗(1, 0) = (p, q) and p∗(0, 1) = (r, s), which shows that p∗(Z× Z)
is the subgroup generated by (p, q) and (r, s).
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If the subgroup has two generators (p, q) and (r, s) with ps− rq 6= 0,
the corresponding covering space is S1 × S1, with covering map

p : S1 × S1→ S1 × S1, p(z, w) = (zpwr, zqws).

Indeed, p([z], [1]) = ([zp], [zq]) and p([1], [w]) = ([w]r, [w]s).

So p∗(1, 0) = (p, q) and p∗(0, 1) = (r, s), which shows that p∗(Z× Z)
is the subgroup generated by (p, q) and (r, s).

Mission accomplished.
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Problem 3. Let G be a topological group and p : (G̃, ẽ) → (G, e)
a covering map, where e is the identity element. Show that there is a
unique multiplication on G̃ with ẽ the identity element, such that p is a
group homomorphism.
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Problem 3. Let G be a topological group and p : (G̃, ẽ) → (G, e)
a covering map, where e is the identity element. Show that there is a
unique multiplication on G̃ with ẽ the identity element, such that p is a
group homomorphism.

Solution: Recall that the covering p : (G̃, ẽ)→ (G, e) is obtained by
a standard procedure in which the elements of G̃ are equivalence classes
of paths in G.
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Problem 3. Let G be a topological group and p : (G̃, ẽ) → (G, e)
a covering map, where e is the identity element. Show that there is a
unique multiplication on G̃ with ẽ the identity element, such that p is a
group homomorphism.

Solution: Recall that the covering p : (G̃, ẽ)→ (G, e) is obtained by
a standard procedure in which the elements of G̃ are equivalence classes
of paths in G.

More precisely, one considers paths in G starting at e modulo the
equivalence relation

α ∼ β if and only if α(1) = β(1) and [α ∗ β̄] ∈ H
where H = p(π1(G̃, ẽ)). We denote by α̂ the equivalence class of α.
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Define the multiplication on G̃ by

α̂ · β̂ = γ̂

where the path γ is defined by

γ(t) = α(t) · β(t).
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Define the multiplication on G̃ by

α̂ · β̂ = γ̂

where the path γ is defined by

γ(t) = α(t) · β(t).

Associativity follows from the pointwise associativity of G, the identity
element is the constant path at ẽ, and α̂−1 is the equivalence class of
the path α(t)−1, t ∈ [0, 1]. Done.
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Problem 4. Show that if the action of the group of deck transforma-
tions in one fiber is transitive, then its action in every fiber is transitive.
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Problem 4. Show that if the action of the group of deck transforma-
tions in one fiber is transitive, then its action in every fiber is transitive.

31



Problem 4. Show that if the action of the group of deck transforma-
tions in one fiber is transitive, then its action in every fiber is transitive.

Solution: Let p : E → B be the covering in question. We assume that
the action of the group of deck transformations is transitive in some fiber
p−1(b0) and let us show that it is transitive in some other fiber p−1(b′0).
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Problem 4. Show that if the action of the group of deck transforma-
tions in one fiber is transitive, then its action in every fiber is transitive.

Solution: Let p : E → B be the covering in question. We assume that
the action of the group of deck transformations is transitive in some fiber
p−1(b0) and let us show that it is transitive in some other fiber p−1(b′0).

Take e0 ∈ p−1(b0) and e′0 ∈ p
−1(b′0) and consider some path α in E

from e0 to e′0. For every e ∈ p−1(b0), the path p(α) has a unique lift
that starts at e.
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Problem 4. Show that if the action of the group of deck transforma-
tions in one fiber is transitive, then its action in every fiber is transitive.

Solution: Let p : E → B be the covering in question. We assume that
the action of the group of deck transformations is transitive in some fiber
p−1(b0) and let us show that it is transitive in some other fiber p−1(b′0).

Take e0 ∈ p−1(b0) and e′0 ∈ p
−1(b′0) and consider some path α in E

from e0 to e′0. For every e ∈ p−1(b0), the path p(α) has a unique lift
that starts at e.

Moreover, every point in p−1(b′0) is the endpoint of a unique such lift.
Indeed, run p(α) backwards with b′0 its initial point and lift it to a path

that starts at e′. Then this path ends at some e in p−1(b0), and reversing
again we obtain a lift from e to e′.
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The deck transformations permute the paths that are lifts of p(α), and
because they act transitively on the initial points, by the unique lifting
theorem they act transitively on the paths (this is because each path is
uniquely determined by its starting point).
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The deck transformations permute the paths that are lifts of p(α), and
because they act transitively on the initial points, by the unique lifting
theorem they act transitively on the paths (this is because each path is
uniquely determined by its starting point).

It follows that the group of deck transformations acts transitively on
the endpoints, and we are done.
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Problem 5. Find the universal covering space of the figure eight.
Compute the fundamental group of figure eight.
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Problem 5. Find the universal covering space of the figure eight.
Compute the fundamental group of figure eight.

Solution: We need to learn a little bit more, so let us get back to the
theory.
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