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Abstract. In this paper we verify a conjecture of M. Vuorinen that the Muir approxima-
tion is a lower approximation to the arc length of an ellipse. Vuorinen conjectured that f(x) =

2F1(
1
2
,− 1

2
; 1;x) − [(1 + (1 − x)3/4)/2]2/3 is positive for x ∈ (0, 1). The authors prove a much

stronger result which says that the Maclaurin coefficients of f are nonnegative. As a key lemma, we
show that 3F2(−n, a, b; 1 + a + b, 1 + ε − n; 1) > 0 when 0 < ab/(1 + a + b) < ε < 1 for all positive
integers n.
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1. Introduction. Let a and b be the semiaxes of an ellipse with eccentricity
e =

√
a2 − b2/a. Let L(a, b) denote the arc length of the ellipse. Without loss of

generality we can take one of the semiaxes, say a, to be 1. Legendre’s complete
elliptic integral of the second kind can be defined by

E(r) =
∫ π/2

0

√
1 − r2 sin2 t dt.

Elliptic integrals are so named because of their connection with L(a, b). In turn, these
are related to Gauss’s hypergeometric functions, 2F1, defined by

2F1(a1, a2; b1; z) =
∞∑

n=0

(a1)n(a2)n

(b1)nn!
zn

with the Appell (or Pochhammer) symbol (a)n = a(a+1) · · · (a+n−1) for n ≥ 1 and
(a)0 = 1, a 6= 0. We shall need the generalized hypergeometric function, pFq, defined
by

pFq(a1, a2, . . . , ap; b1, b2, . . . , bq; z) =
∞∑

n=0

(a1)n · (a2)n · · · (ap)n

(b1)n · (b2)n · · · (bq)n

zn

n!

(see [12, p. 73]). It was noted by Maclaurin in 1742 (see [2]) that

L(1, b) = 4E(e) = 2π2F1(1
2 ,− 1

2 ; 1; e2).

There are various references, books, and articles, which discuss the relationships be-
tween elliptic integrals and hypergeometric functions (see [3], [7]) and their role in
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applications to physics (see [11], [9]) and in geometric function theory (see [10], [3]).
From antiquity several more easily computable approximations to L(a, b) have been
suggested. The Almkvist–Berndt survey article [2] has an extensive discussion of these
approximations. These approximations and their historical and recent connections to
the approximations of π can be found in the Borweins’ book [6]. An excellent source
for all of the above ideas is the Anderson–Vamanamurthy–Vuorinen book Conformal
Invariants, Inequalities, and Quasiconformal Mappings [3].

In 1883, it was proposed by Muir (see [2]) that L(1, b) could be simply approx-
imated by 2π[(1 + b3/2)/2]2/3. A close numerical examination of the error in this
approximation lead M. Vuorinen to pose Problem 5.6 in [13]. This was announced
at several international conferences. Letting x = 1 − b2, he asked whether the Muir
approximation

g(x) =
(

1 + (1 − x)3/4

2

)2/3

is a lower approximation for the value given by the hypergeometric function

h(x) = 2F1

(
1
2 ,− 1

2 ; 1; x
)
,

that is, whether

h(x) − g(x) ≥ 0 for all x ∈ (0, 1).

We shall prove the following much stronger result.
Theorem 1.1. Let g(x) =

∑∞
n=0 anxn and h(x) =

∑∞
n=0 Anxn. Then,

ak ≤ Ak for all k = 0, 1, 2, . . . , n, . . . .(1.1)

In particular, the function f(x) ≡ [h(x)−g(x)]/x4 is convex and increasing from (0, 1]
onto (α, β], where α = 2−14 = 0.000061 · · · and β = (2/π) − 2−2/3 = 0.006659 · · ·.

Remarks. The ideas and techniques used to prove Lemma 2.1 and Theorem 1.1
will be used in [5] to determine surprising hierarchical relationships among the 13
historical approximations to L(a, b) discussed in [2]. These approximations range
over four centuries from Kepler’s in 1642 to Almkvist’s in 1985 and include two from
Ramanujan.

2. Proof of main results. The proof of Theorem 1.1 requires the following
lemma.

Lemma 2.1. Suppose a, b > 0. Then, for any ε satisfying ab
1+a+b < ε < 1,

3F2(−n, a, b; 1 + a + b, 1 + ε − n; 1) > 0 for all integers n ≥ 1.

For the reader’s convenience, we include the following classical identities.
Identity 1 (see [1, p. 558, eq. (15.2.24)]). If |z| < 1, then

(c − b − 1) · 2F1(a, b; c; z) = (c − 1) · 2F1(a, b; c − 1; z) − b · 2F1(a, b + 1; c; z).

Identity 2 (see [12, p. 60, Thm. 21]). If |z| < 1, then

2F1(a, b; c; z) = (1 − z)c−a−b · 2F1(c − a, c − b; c; z).
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Identity 3 (see [8, p. 59, eq. (3.1.1)]). If F = 3F2, then

F (−n, a, b; c, d; 1) =
(d − b)n

(d)n
F (−n, c − a, b; c, 1 + b − d − n; 1).

Identity 4 (see [12, p. 82, eq. (14)]). If F = 3F2 and |z| < 1, then

(a1 − a2) · F (a1, a2, a3; b1, b2; z)
= a1 · F (a1 + 1, a2, a3; b1, b2; z) − a2 · F (a1, a2 + 1, a3; b1, b2; z).

Proof of Lemma 2.1. Using an idea suggested in [4], we let F = 3F2 and consider
the generating function

f(r) =
∞∑

n=0

−(−ε)n

n!
F (−n, a, b; 1 + a + b, 1 + ε − n; 1)rn =

∞∑
n=0

cnrn,

where |r| < 1. Note that −(−ε)n > 0 for 0 < ε < 1 and for all n ≥ 1. Thus we seek
to verify that cn > 0 for all n ≥ 1.

In this direction, we have

f(r) =
∞∑

n=0

−(−ε)n

n!

n∑
k=0

(−n)k(a)k(b)k

(a + b + 1)k(1 + ε − n)kk!
rn

=
∞∑

n=0

−(−ε)n

(1)n

n∑
k=0

(−1)k(1)n

(1)n−k
(a)k(b)k

(a + b + 1)k
(−1)k(−ε)n

(−ε)n−k
k!

rn

{
using (α)n−k = (−1)k(α)n

(1−α−n)k
and (1)n = n!

}

= −
∞∑

n=0

n∑
k=0

(
(a)k(b)k

(a + b + 1)kk!
rk

)(
(−ε)n−k

(n − k)!
rn−k

)

= −
∞∑

n=0

(
(−ε)n

(n)!
rn

) ∞∑
k=0

(
(a)k(b)k

(a + b + 1)kk!
rk

)
(see [12, p. 57, eq. (2)])

= −(1 − r)ε
2F1(a, b; a + b + 1; r).

Differentiating, we have

f ′(r) = ε(1 − r)ε−1
2F1(a, b; a + b + 1; r)(2.1)

− ab(1 − r)ε

(a + b + 1) 2F1(a + 1, b + 1; a + b + 2; r).

An application of Identity 1 followed by Identity 2 to 2F1(a + 1, b + 1; a + b + 2; r)
yields

ab(1 − r)ε

(a + b + 1)2F1(a + 1, b + 1; a + b + 2; r)

=
b(1 − r)ε

(a + b + 1)
[(a + b + 1) · 2F1(a + 1, b + 1; a + b + 1; r)

− (b + 1) · 2F1(a + 1, b + 2; a + b + 2; r)]

= (1 − r)ε−1

[
b · 2F1(a, b; a + b + 1; r) − b(b + 1)

(a + b + 1)
· 2F1(a, b + 1; a + b + 2; r)

]
.
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Thus (2.1) becomes

f ′(r) = (1 − r)ε−1

[
(ε − b) · 2F1(a, b; a + b + 1; r)

+
b(b + 1)

(a + b + 1)
· 2F1(a, b + 1; a + b + 2; r)

]

= (1 − r)ε−1
∞∑

n=0

(a)n

n!

[
(b)n(ε − b)
(a + b + 1)n

+
b(b + 1)(b + 1)n

(a + b + 1)(a + b + 2)n

]
rn

= (1 − r)ε−1
∞∑

n=0

(a)n

n!

[
(b)n(ε − b)
(a + b + 1)n

+
(b + 1)(b)n(b + n)

(a + b + 1)n(a + b + 1 + n)

]
rn(2.2)

= (1 − r)ε−1
∞∑

n=0

(a)n(b)n

(a + b + 1)n(a + b + 1 + n)n!

× [(ε − b)(a + b + 1 + n) + (b + 1)(b + n)] rn

= (1 − r)ε−1
∞∑

n=0

(a)n(b)n

(a + b + 1)n(a + b + 1 + n)n!
(2.3)

× [ε(a + b + 1 + n) + n − ab] rn,

where (2.2) makes use of α(α + 1)n = (α)n(α + n). If ab
a+b+1 < ε < 1, then the

expression in (2.3) is the product of two series with all positive Maclaurin series
coefficients. Hence f ′ has all positive Maclaurin series coefficients which is equivalent
to the desired result.

Corollary 2.2. Let Tn = 3F2

(−n, 3
2 , 1

2 ; 2, 5
4 − n; 1

)
. Then, for all integers

n ≥ 8,

Tn+1 > Tn > 0.

Proof. Let F = 3F2 and Bn =
(

3
4 − n

)
n

/
(

5
4 − n

)
n
. Using Identity 3, we have

that

Tn = BnF
(−n, 1

2 , 1
2 ; 2, 1

4 ; 1
)
.

Direct calculation reveals that T9 > T8 > 0 > T7 > · · · > T2 = T1. Now suppose that
Tn > Tn−1 > 0 for some n ≥ 9 and note that Bn+1/Bn =

(
n + 1

4

)
/
(
n − 1

4

)
. Then,

Tn+1 = Bn+1F
(−n − 1, 1

2 , 1
2 ; 2, 1

4 ; 1
)

=
Bn+1(
n + 3

2

) [(n + 1)F
(−n, 1

2 , 1
2 ; 2, 1

4 ; 1
)

+ 1
2F
(−n − 1, 3

2 , 1
2 ; 2, 1

4 ; 1
)]

(2.4)

=
Bn+1(n + 1)
Bn

(
n + 3

2

) Tn +
Bn+1

2
(
n + 3

2

)F (−n − 1, 3
2 , 1

2 ; 2, 1
4 ; 1
)

=

(
n + 1

4

)
(n + 1)(

n − 1
4

) (
n + 3

2

)Tn +
Bn+1

2
(
n + 3

2

)F (−n − 1, 3
2 , 1

2 ; 2, 1
4 ; 1
)

> Tn +
Bn+1

2
(
n + 3

2

)F (−n− 1, 3
2 , 1

2 ; 2, 1
4 ; 1
)
,
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where (2.4) follows from Identity 4, and the inequality holds because (n+1/4)(n+1)
(n−1/4)(n+3/2) >

1 and Tn > 0. Since Bn+1 < 0, we shall have that Tn+1 > Tn > 0 provided we show
that F (−n − 1, 3

2 , 1
2 ; 2, 1

4 ; 1) < 0. To this end, we again apply Identity 3 to observe
that

F
(−n− 1, 3

2 , 1
2 ; 2, 1

4 ; 1
)

=

(− 1
4

)
n+1(

1
4

)
n+1

F
(−n − 1, 1

2 , 1
2 ; 2, 1

4 − n; 1
)
.

Since (− 1
4

)
n+1(

1
4

)
n+1

< 0,

we need to show that

F
(−n− 1, 1

2 , 1
2 ; 2, 1

4 − n; 1
)

> 0.

Letting m = n + 1, a = b = 1
2 , and ε = 1

4 , it follows from Lemma 2.1 that

F
(−n− 1, 1

2 , 1
2 ; 2, 1

4 − n; 1
)

= F (−m, a, b; a + b + 1, 1 + ε − m; 1) > 0.

Hence Tn+1 > Tn > 0 for all integers n ≥ 8 by induction.
Proof of Theorem 1.1. Clearly,

An =

(
1
2

)
n

(− 1
2

)
n

n!n!
.

Computing the logarithmic derivative of g we have

g′(x)
g(x)

= −1
2

(
(1 − x)−

1
4

1 + (1 − x)
3
4

)
,

which implies( ∞∑
n=0

(n + 1)an+1x
n

)(
(1 − x)

1
4 + 1 − x

)
= −1

2

∞∑
n=0

anxn.(2.5)

The coefficients of xn of the left-hand side of (2.5) are obtained from the Cauchy
product of the two terms. Solving for an+1 yields (by extracting the nth and (n−1)st
terms from the Cauchy product)

an+1 =
1

2(n + 1)

[(
5
4
n − 1

2

)
an −

n−2∑
k=0

(k + 1)ak+1

(− 1
4

)
n−k

(n − k)!

]
.(2.6)

We now verify (1.1) using an inductive argument. Clearly, the coefficients of the terms
ak in (2.6) are nonnegative. Computation gives: a0 = A0 = 1, a1 = A1 = −1/4, a2 =
A2 = −3/64, a3 = A3 = −5/28, a4 = −11/210 and A4 = −175/214. Suppose that
the inequality in (1.1) holds for 4 ≤ k ≤ n. From (2.6) we have

an+1 ≤(2.7)

1
2(n + 1)

[(
5
4
n − 1

2

) ( 1
2

)
n

(− 1
2

)
n

n!n!
−

n−2∑
k=0

(k + 1)

(
1
2

)
k+1

(− 1
2

)
k+1

(k + 1)!(k + 1)!

(− 1
4

)
n−k

(n − k)!

]
.
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We need to show that the right-hand side of (2.7) is less than or equal to An+1 =
( 1

2 )n+1(−
1
2 )n+1

(n+1)!(n+1)! , that is,

(
5
4
n − 1

2

) ( 1
2

)
n

(− 1
2

)
n

n!n!
− 2(n + 1)

(
1
2

)
n+1

(− 1
2

)
n+1

(n + 1)!(n + 1)!
(2.8)

≤
n−2∑
k=0

(k + 1)

(
1
2

)
k+1

(− 1
2

)
k+1

(k + 1)!(k + 1)!

(− 1
4

)
n−k

(n − k)!
.

After adding the (n− 1)st and nth terms of the right-hand side of (2.8) to inequality
(2.8) and then simplifying, we use (a)k+1 = (a+ k)(a)k, (a)n−k = (−1)k(a)k/(1− a−
n)k, the fact that (−n)k = 0 for k ≥ n + 1, and the definition of 3F2 to obtain(

1
2

)
n

(− 1
2

)
n

n!n!
· (2n − 1)
4(n + 1)

≤ −
(

1
4

)(
−1

4

)
n

3F2

(−n, 1
2 , 3

2 ; 2, 5
4 − n; 1

)
n!

,

or equivalently

3F2

(−n, 1
2 , 3

2 ; 2, 5
4 − n; 1

) ≥
(

1
2

)2
n(− 1

4

)
n

(n + 1)!
.(2.9)

Clearly, the right-hand side of (2.9) is negative for all n ≥ 1. Inequality (2.9) can be
explicitly verified for 0 ≤ n ≤ 7. For n ≥ 8, inequality (2.9) follows from Corollary
2.2. Thus, the inequality in (1.1) also holds for k = n + 1. Hence, by induction (1.1)
holds for all k ∈ N ∪ {0}.

Finally, the convexity and monotonicity of f are clear. By l’Hôpital’s rule,
f(0+) = A4 − a4 = 1/214 = 1/16384, while the value of f(1) is clear.
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