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Abstract

In 1972, D.A. Brannan conjectured that all of the odd coefficients,
a2n+1, of the power series (1 + xz)α/(1 − z) were dominated by those
of the series (1 + z)α/(1 − z) for the parameter range 0 < α < 1,
after having shown that this was not true for the even coefficients. He
verified the case when 2n + 1 = 3. The case when 2n + 1 = 5 was
verified in the mid-eighties by J.G. Milcetich. In this paper, we verify
the case when 2n + 1 = 7 using classical Sturm sequence arguments
and some computer algebra.
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Introduction.

For k ≥ 2 let Vk denote the class of locally univalent analytic functions

f(z) = z + a2z
2 + a3z

3 + · · · (1)

which map |z| < 1 conformally onto a domain whose boundary rotation is at

most kπ. (See [Pa] for the definition and basic properties of the class Vk.)

The function

fk(z) =
1

k

[(
1 + z

1 − z

)k
2

− 1

]
=

∞∑
n=1

Anzn

belongs to Vk. The coefficient conjecture for the class Vk was that for a

function (1) in Vk that

|an| ≤ An, (n ≥ 1). (2)

This conjecture was verified for n = 2 by Pick (see [Le]), for n = 3 by Lehto

[Le] in 1952 and for n = 4 by Schiffer and Tammi [ScTa] in 1967, Lonka and

Tammi [LoTa] in 1968 and Brannan [Br1] in 1969.

Using extreme point theory arguments, Brannan, Clunie and Kirwan [Br-

ClKi] showed in 1973 that (2) can be reduced to showing that for

Φ(α, x; z) =

(
1 + xz

1 − z

)α

=

∞∑
n=1

Bn(α, x)zn

that

|Bn(α, x)| ≤ Bn(α, 1), (n ≥ 1) (3)

for α ≥ 1, |x| = 1. Brannan, Clunie and Kirwan showed that (3) holds for

1 ≤ n ≤ 13, which implies (2) for 2 ≤ n ≤ 14.

In 1972 Aharonov and Friedland [AhFr] considered a related coefficient

inequality. Let

Ψ(α, x; z) =
(1 + xz)α

1 − z
=

∞∑
n=1

An(α, x)zn.
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In [AhFr] it was shown, by a long technical argument, that

|An(α, x)| ≤ An(α, 1), (n ≥ 1) (4)

for α ≥ 1, |x| = 1, which implies (3) and, hence, by the work in [BrClKi],

also implies (2). Later, in 1973 Brannan [Br2] gave a short, elegant proof

that (4) holds for α ≥ 1, |x| = 1.

In [Br2] Brannan also considered the question about whether (4) holds

for 0 < α < 1, |x| = 1. He showed there the unexpected result that for each

α, 0 < α < 1, there exists an nα such that

max
|x|=1

Re A2n(α, x) > A2n(α, 1) (5)

for n > nα, that is, that (4) fails for even coefficients when 0 < α < 1.

Brannan showed, using an inequality for quadratic trigonometric polyno-

mials, that

|A3(α, x)| ≤ A3(α, 1)

for 0 < α < 1 and he conjectured, based on numerical data, that

Brannan’s Conjecture

|A2n+1(α, x)| ≤ A2n+1(α, 1), (n ≥ 1) (6)

for 0 < α < 1, |x| = 1.

Brannan’s conjecture has been verified for n = 2, that is, for 2n + 1 = 5,

by Milcetich [Mi], who employed a lengthy argument based on a result of

Brown and Hewitt [BrHe] for positive trigonometric sums.

In this paper, we will establish Brannan’s conjecture for n = 3, that is,

for 2n+1 = 7. The method we will employ is based largely on (i) a judicious

rearrangement of the coefficients An(α, x) over carefully chosen subintervals

of (0,1), the domain of α, (ii) an application of Sturm sequences to verify

the nonnegativity of those rearrangements and (iii) using a computer algebra

3



program (in this case Maple) to generate the coefficients An(α, x) and the

Sturm sequences.

Section 1.

Brannan’s coefficient inequality (6) is equivalent to

A2
2n+1(α, 1) − |A2n+1(α, x)|2 ≥ 0 (7)

for 0 < α < 1, |x| = 1. We will let F2n+1(α, x) denote the left-hand side of

(7) and we will show for 2n + 1 = 7 that F2n+1(α, x) ≥ 0.

We note that

(1 + xz)α

(1 − z)
=

∞∑
n=0

(−α)n(−1)nxn

n!
zn

∞∑
n=0

zn

=

∞∑
n=0

n∑
k=0

(−α)k(−1)kxk

k!
zn

=
∞∑

n=0

An(α, x)zn,

where (a)k denotes the Pockhammer symbol, which is defined as

(a)k =

{
1 k = 0

a(a + 1) · · · (a + k − 1) k > 0
.

Hence, we can write FN(α, x) as

FN(α, x) =
N∑

k=0

(−α)k(−1)k

k!

N∑
k=0

(−α)k(−1)k

k!
−

N∑
k=0

(−α)k(−1)kxk

k!

N∑
k=0

(−α)k(−1)kx̄k

k!
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=

2∗N∑
k=0

k∑
j=0

(−α)j(−α)k−j(−1)kδjδk−j

k!(k − j)!
−

2∗N∑
k=0

k∑
j=0

(−α)j(−α)k−j(−1)kδjδk−jx
2∗j−k

k!(k − j)!

where

δj =

{
1 0 ≤ j ≤ N

0 N + 1 ≤ j ≤ 2 ∗ N

Since FN(α, x) is real, we can write, setting x = eiθ,

FN(α, x) =

2∗N∑
k=0

k∑
j=0

(−α)j(−α)k−j(−1)kδjδk−j

k!(k − j)!
−

2∗N∑
k=0

k∑
j=0

(−α)j(−α)k−j(−1)kδjδk−j cos((2 ∗ j − k)θ)

k!(k − j)!
(8)

The following Maple Procedure can be used to generate the coefficients

of FN(α, x), where x = eiθ,

Procedure 1

F:=proc(N)
local i, j, a, csum, dsum, temp;
global c;

a[0]:=1;
for i from 1 to N do a[i]:=a[i-1]*(-alpha+i-1)*(-1)/i od;
for i from N+1 to 2*N do a[i]:=0 od;
csum:=0; dsum:=0;
for i from 0 to N do csum:= csum+a[i] od;
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for i from 0 to 2*N do
for j from 0 to i do

dsum:= dsum + a[j]*a[i-j]* cos ((2*j-i)*theta);
od;
od;
temp:= collect(csum*csum-dsum,alpha);
for i from 0 to (2*N-1) do c[i]:= coeff(temp,alpha,i) od;
temp;

end;

Using Procedure 1, we obtain for N = 7 that F7(α, x) =

13∑
k=1

ck(θ)α
k where

each ck(θ) is a trigonometric polynomial of the form ck(θ) =

7∑
j=0

akj cos(jθ)

with rational coefficients akj. We will show that F7(α, x) ≥ 0 for 0 < α < 1

by subdividing the domain of α into subintervals 0 < α ≤ t0 and t0 < α < 1,

where t0 = 2/5. We will show that F7(α, x) ≥ 0 on each subinterval.

First for the case 0 < α ≤ t0 we will show the following:

c1(θ) ≥ 0,
7

10
c1(θ) + c2(θ)t0 ≥ 0, (9.1)

1

10
c1(θ) + c3(θ)t

2
0 ≥ 0,

1

10
c1(θ) + c3(θ)t

2
0 + c4(θ)t

3
0 ≥ 0, (9.2)

1

5
c1(θ) + c5(θ)t

4
0 ≥ 0,

1

5
c1(θ) + c5(θ)t

4
0 + c6(θ)t

5
0 ≥ 0, (9.3)

c7(θ) ≥ 0, c7(θ) + c8(θ)t0 ≥ 0, (9.4)

c9(θ) ≥ 0, c9(θ) + c10(θ)t0 ≥ 0, (9.5)

c11(θ) ≥ 0, c11(θ) + c12(θ)t0 ≥ 0, (9.6)

c13(θ) ≥ 0. (9.7)

It will follow then that for 0 < α ≤ t0 we have
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F7(α, x) =
[

7
10

c1(θ) + c2(θ)α
]
α +

[
1
10

c1(θ) + c3(θ)α
2 + c4(θ)α

3
]
α

+
[

1
5
c1(θ) + c5(θ)α

4 + c6(θ)α
5
]
α + [c7(θ) + c8(θ)α]α7

+ [c9(θ) + c10(θ)α] α9 + [c11(θ) + c12(θ)α]α11

+ c13(θ)α
13 ≥ 0

(10)

The inequalities (9) imply (10) because they imply that each of the terms

in brackets in (10) are non-negative. The non-negativity of the bracketed

terms of the form [ci(θ) + ci+1(θ)α] follows from (9.1), (9.4), (9.5) and (9.6)

because the terms are linear in α and, hence they take their minimum at

either α = 0 or else at α = t0.

Since [c3(θ) + c4(θ)α] is linear in α, it takes its minimum at either α = 0

or else at α = t0. Thus, we have

1

10
c1(θ) + (c3(θ) + c4(θ)α)α2 ≥ 1

10
c1(θ) + min

0<s≤t0
{c3(θ) + c4(θ)s}α2. (11)

The right-hand side of (11) is linear in α2, and hence takes its minimum at

either α = 0 or else at α = t0. Therefore, the right-hand side of (11) is

non-negative by (9.2).

Similarly, since [c5(θ) + c6(θ)α] is linear in α, it takes its minimum at

either α = 0 or else at α = t0. Thus, we have

1

5
c1(θ) + (c5(θ) + c6(θ)α)α4 ≥ 1

5
c1(θ) + min

0<s≤t0
{c5(θ) + c6(θ)s}α4. (12)

The right-hand side of (12) is linear in α4, and hence takes its minimum at

either α = 0 or else at α = t0. Therefore, the right-hand side of (12) is

non-negative by (9.3).

Thus, to complete the case 0 < α ≤ t0 we will need to establish (9). We

will transform each of the trigonometric coefficients ci(θ), which are polyno-

mials in cos(nθ), to polynomials in cos θ and then by a change of variable

to polynomials ei(x), −1 ≤ x ≤ 1. To verify the non-negativity of the lin-

ear combinations of trigonometric coefficients ci(θ) specified in (9), we will
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establish the non-negativity of the same linear combinations of polynomials

ei(x).

The following two Maple procedures can be used to: (i) transform the

trigonometric coefficients ci(θ) to the polynomials ei(x); and (ii) compute

the number of roots of a polynomial p on the interval (−1, 1] via a Sturm

sequence argument.

Procedure 2

G:=proc(N)
local i, t, temp;
global c, e;

for i from 0 to 2*N - 1 do
t[i] := expand(c[i]);
e[i] := subs(cos(theta) = x, t[i]);

od;
temp;

end;

Here N is chosen the same as in Procedure 1.

Procedure 3

H := proc(p)
local s;
global lc, nr;

lc := roots(p, x);
s := sturmseq(p, x);
nr := sturm(s, x, -1, 1)

end;

The library call readlib(sturm) must be loaded prior to applying the proce-

dure.
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If the polynomial e(x), created from linear combinations of the ei(x) after

applying Procedure 2, is assigned to the variable p, then Procedure 3 will

compute both the number of roots of e(x) on the interval (−1, 1] and the

location of the rational roots of e(x). We will see that the conclusion of

this application of Procedure 3 is that the polynomial e(x) is non-negative

on [−1, 1] with e(x) = 0 only for x = 1. This check can be confirmed

for each of the polynomials e(x) which arise as linear combinations of the

polynomials ei(x), where the linear combinations are specified as in (9), and,

thus, complete the case 0 < α ≤ t0.

To illustrate the utility of using computer algebra software to establish the

inequalities in (9) we will explicitly demonstrate the process for the inequality

(9.1). Applying Procedure 1 to compute the trigonometric coefficients ci(θ)

of F7(α, x), we obtain

c1(θ) = −2

5
cos(5θ) + cos(2θ) − 2

3
cos(3θ) +

1

3
cos(6θ)

+
1

2
cos(4θ) − 2 cos(θ) − 2

7
cos(7θ) +

319

210

From Procedure 2 we obtain

e(x) = e1(x) =
128

5
x5 − 32

3
x3 + 4 x2 +

24

35

+
32

3
x6 − 12 x4 − 128

7
x7.

Then, Procedure 3 yields

> H(p);

1

> lc

[[1, 1]]

The value returned by the procedure call H(p) is the number of roots of p on

(−1, 1] and the value returned by lc is the interval location of the rational

roots of p.
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For the second half of (9.1), we have

7
10

c1(θ) + c2(θ)t0 =
128

525
cos(5θ) − 37

210
cos(2θ) +

451

1575
cos(3θ)

− 292

1575
cos(60) − 197

700
cos(4θ) − 5

7
cos(θ) +

2

25
cos(7θ) +

523

700

From Procedure 2 we obtain

e(x) = 7
10

e1(x) + e2(x)t0 = −2656

525
x5 +

236

315
x3 − 151

105
x2

+
1303

1575
− 9344

1575
x6 +

698

105
x4 +

128

25
x7 − 32

35
x

Then, Procedure 3 yields

> H(p);

1;

> lc

[[1, 1]]

We have that each linear combination e(x) has only one root on (−1, 1]

and that root is at x = 1. Since we can explicitly observe that each e(0) > 0,

we can conclude that each e(x) is non-negative on [−1, 1]. Therefore, we

have that (9.1) holds.

For the case t0 < α < 1 we make the substitution α = β + t0. Then, we

have F7(α, x) = G7(β, x) =
∑13

k=0 dk(θ)β
k where each dk(θ) is a trigonometric

polynomial of the form dk(θ) =
∑7

j=0 bkj cos(jθ) and 0 < β < t1 = 3/5. It

will suffice to show for this case that

d0(θ) ≥ 0, d0(θ) + d2(θ)t
2
1 ≥ 0 (13.1)

d1(θ) ≥ 0,
2

3
d1(θ) + d5(θ)t

4
1 ≥ 0 (13.2)

1

3
d1(θ) + d6(θ)t

5
1 ≥ 0,

1

3
d1(θ) + d6(θ)t

5
1 + d8(θ)t

7
1 ≥ 0 (13.3)
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d3(θ) ≥ 0, d3(θ) + d4(θ)t1 ≥ 0 (13.4)

d7(θ) ≥ 0 (13.5)

d9(θ) ≥ 0, d9(θ) + d10(θ)t1 ≥ 0, (13.6)

d11(θ) ≥ 0, d11(θ) + d12(θ)t1 ≥ 0, (13.7)

d13(θ) ≥ 0. (13.8)

For then, it will follow that for 0 < β < t1 we have

G7(β, x) = [d0(θ) + d2(θ)β
2] +

[
2
3
d1(θ) + d5(θ)β

4
]
β

+
[

1
3
d1(θ) + d6(θ)β

5 + d8(θ)β
7
]
β + [d3(t) + d4(θ)β]β3

+ d7(θ)β
7 + [d9(θ) + d10(θ)β] β9 + [d11(θ) + d12(θ)β]β11

+ d13(θ)β
13 ≥ 0

(14)

The inequalities (13) imply (14) because they imply that each of the

bracketed terms in (14) are non-negative for 0 < β < t1. Procedure 2 can be

adapted (by changing the global variable c to d) so that it can be applied to

each of the trigonometric coefficients di(θ) to generate new polynomials ei(x).

Then, Procedure 3 can be applied to each of the (transformed) linear combi-

nations specified in (13) to verify (14) and thus, complete the case 0 < β < t1.

Remarks.

1. We have verified the above constructions alternately using Mathemat-

ica for the computer algebra component of the construction.

2. The above process can be applied to F3(α, x) and F5(α, x) to give

relatively straight-forward proofs of two cases of Brannan’s conjecture (6),

specifically, the cases 2n + 1 = 3 and 2n + 1 = 5. In the latter case, the

proof subdivides the interval 0 < α < 1 into two cases 0 < α ≤ 2/5 and

2/5 < α < 1. The argument here is substantially simpler than Milcetich’s

proof.
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3. This technique for verifying Brannan’s conjecture (6) for the case

2n + 1 = 7 can be applied to an alternate, but closely related coefficient

inequality. If in the series representation for FN(α, x) in (8) the summation

is extended to infinity, that is, if we write

FN(α, x) =

∞∑
k=0

k∑
j=0

(−α)j(−α)k−j(−1)kδjδk−j

k!(k − j)!
−

∞∑
k=0

k∑
j=0

(−α)j(−α)k−j(−1)kδjδk−j cos((2 ∗ j − k)θ)

k!(k − j)!
(15)

and where again

δj =

{
1 0 ≤ j ≤ N

0 N + 1 ≤ j
,

then one can define the partial sums

F m
N (α, x) =

m∑
k=0

k∑
j=0

(−α)j(−α)k−j(−1)kδjδk−j

k!(k − j)!
−

m∑
k=0

k∑
j=0

(−α)j(−α)k−j(−1)kδjδk−j cos((2 ∗ j − k)θ)

k!(k − j)!

Wheeler [Wh] considered the partial sums F m
N (α, x). He showed that these

partial sums have many properties which are analogous to the coefficient

sums FN(α, x). Specifically, he showed there that for each α, 0 < α < 1,

there exists an mα such that

max
|x|=1

F 2∗m
N (α, x) < 0

for m > mα. Furthermore, he devised the computer algebra technique de-

scribed above, and applied it to show that for m = 1, 3, 5 and 7,

F m
N (α, x) ≥ 0

for 0 < α < 1.
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